Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background:

Multisystem information, including musculoskeletal information, can be captured from chest CT scans of patients with COVID-19 without further examination.

Aims:

This study aims to assess the relationship between chest CT-extracted baseline bone mineral density (BMD) and body composition parameters and the length of hospital stay in these patients.

Methods:

A retrospective analysis was performed in a cohort of 88 patients with COVID-19. Correlation analysis and a generalized linear model (GLM) were used to assess the associations between the length of hospital stay and covariates, including age, sex, body mass index (BMI), BMD and body composition variables.

Results:

The mean length of hospital stay was 27.4±8.7 days. The length of hospital stay was significantly positively associated with age (r=0.202, p=0.046) and the paraspinal muscle fat ratio (r=0.246, p=0.021). The GLM involving age, sex, BMD, paraspinal muscle fat ratio, subcutaneous adipose tissue (SAT) area, visceral adipose tissue (VAT) area, and liver fat fraction (LFF) showed that the length of hospital stay was positively correlated with VAT area (β coefficients, 95% CI: 9.304, 1.141-17.478, p=0.025).

Conclusion:

The musculoskeletal features extracted from chest CT correlated with the prognosis of COVID-19 patients. Factors including old age, a higher paraspinal muscle fat ratio and a larger VAT area in patients with COVID-19 were associated with longer hospital stays.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056271481231112110727
2024-01-16
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/e15734056271481.html?itemId=/content/journals/cmir/10.2174/0115734056271481231112110727&mimeType=html&fmt=ahah

References

  1. World Health OrganizationCoronavirus (COVID-19) Dashboard.2022Available from:https://www.covid19.who.int (Accessed 18 Nov 2022)
  2. CuiF. ZhouH.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019.Biosens. Bioelectron.202016511234910.1016/j.bios.2020.11234932510340
    [Google Scholar]
  3. AiT. YangZ. HouH. ZhanC. ChenC. LvW. TaoQ. SunZ. XiaL. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in china: A report of 1014 cases.Radiology20202962E32E4010.1148/radiol.202020064232101510
    [Google Scholar]
  4. BaiH.X. HsiehB. XiongZ. HalseyK. ChoiJ.W. TranT.M.L. PanI. ShiL.B. WangD.C. MeiJ. JiangX.L. ZengQ.H. EgglinT.K. HuP.F. AgarwalS. XieF.F. LiS. HealeyT. AtalayM.K. LiaoW.H. Performance of radiologists in differentiating COVID-19 from Non-COVID-19 Viral pneumonia at chest CT.Radiology20202962E46E5410.1148/radiol.202020082332155105
    [Google Scholar]
  5. LvH XuH ZengN Value of chest digital radiography in the initial diagnosis of secondary cases of COVID-19.Int J Med Radiol20204325325610.19300/j.2020.L18101
    [Google Scholar]
  6. WeiW. WeiX. YanY. Application of medical imaging features for the analysis of influencing factors of hospitalization days in COVID-19.J Clin Exp Med202221998100210.3969/j.issn.1671‑4695.2022.09.028
    [Google Scholar]
  7. General Office of the National Health Commission of the People’s Republic of China, Office of the State Administration of Traditional Chinese Medicine of the People’s Republic of ChinaDiagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 9).Chinas. Med.20221748148710.3760/j.issn.1673‑4777.2022.04.001
    [Google Scholar]
  8. BalcomE.F. NathA. PowerC. Acute and chronic neurological disorders in COVID-19: potential mechanisms of disease.Brain2021144123576358810.1093/brain/awab30234398188
    [Google Scholar]
  9. ChungM.K. ZidarD.A. BristowM.R. CameronS.J. ChanT. HardingC.V.III KwonD.H. SinghT. TiltonJ.C. TsaiE.J. TuckerN.R. BarnardJ. LoscalzoJ. COVID-19 and cardiovascular disease.Circ. Res.202112881214123610.1161/CIRCRESAHA.121.31799733856918
    [Google Scholar]
  10. SchultzeJ.L. AschenbrennerA.C. COVID-19 and the human innate immune system.Cell202118471671169210.1016/j.cell.2021.02.02933743212
    [Google Scholar]
  11. EmekliE. Bostancı CanE.Z. Prognostic value of diaphragm diameter, muscle volume, and bone mineral density in critically Ill COVID-19 patients.J. Intensive Care Med.202338984785510.1177/0885066623116949437050868
    [Google Scholar]
  12. SalehA.H. KumarD. SirakovI. ShafieeP. ArefianM. Application of nano compounds for the prevention, diagnosis, and treatment of SARS-coronavirus: A review.J Composit Comp202134010.52547/jcc.3.4.4
    [Google Scholar]
  13. BakhshN. BanjarM. BaigM. Correlation of bone density measured on CT chest with the severity of COVID-19 infection: A retrospective study.PLoS One2023186e028639510.1371/journal.pone.028639537289783
    [Google Scholar]
  14. ChengY. YangH. LiuZ. HaiY. LiuY. ZhouL. Will the bone mineral density in postmenopausal women get worse during the COVID-19 pandemic?Med. Hypotheses202216211080310.1016/j.mehy.2022.11080335221448
    [Google Scholar]
  15. ZeiglerZ. COVID-19 Self-quarantine and Weight Gain Risk Factors in Adults.Curr. Obes. Rep.202110342343310.1007/s13679‑021‑00449‑734251647
    [Google Scholar]
  16. MorettiA LiguoriS PaolettaM Bone fragility during the COVID-19 pandemic: The role of macro- and micronutrients.Ther Adv Musculoskelet Dis2023151759720X23115820010.1177/1759720X231158200
    [Google Scholar]
  17. ZhouB.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults.Biomed. Environ. Sci.2002151839612046553
    [Google Scholar]
  18. ChengX.G. The China guideline for the diagnosis criteria of osteoporosis with quantitative computed tomography (QCT)(2018).Chin J Osteoporos201825733737
    [Google Scholar]
  19. ChengX. ZhangY. WangC. DengW. WangL. DuanmuY. LiK. YanD. XuL. WuC. ShenW. TianW. The optimal anatomic site for a single slice to estimate the total volume of visceral adipose tissue by using the quantitative computed tomography (QCT) in Chinese population.Eur. J. Clin. Nutr.201872111567157510.1038/s41430‑018‑0122‑129559725
    [Google Scholar]
  20. TahtabasiM. KilicaslanN. AkinY. KaramanE. GezerM. IcenY.K. SahinerF. The prognostic value of vertebral bone density on chest CT in hospitalized COVID-19 patients.J. Clin. Densitom.202124450651510.1016/j.jocd.2021.07.00734353732
    [Google Scholar]
  21. KottlorsJ. Große HokampN. FerversP. BremmJ. FichterF. PersigehlT. SafarovO. MaintzD. TrittS. AbdullayevN. Early extrapulmonary prognostic features in chest computed tomography in COVID-19 pneumonia: Bone mineral density is a relevant predictor for the clinical outcome - A multicenter feasibility study.Bone202114411579010.1016/j.bone.2020.11579033301962
    [Google Scholar]
  22. BattistiS. NapoliN. PedoneC. LombardiM. LeanzaG. TramontanaF. FarajM. AgnolettiV. VernaM. ViolaL. GiampalmaE. StrolloR. Vertebral fractures and mortality risk in hospitalised patients during the COVID-19 pandemic emergency.Endocrine202174346146910.1007/s12020‑021‑02872‑134529239
    [Google Scholar]
  23. NapoliN. ElderkinA.L. KielD.P. KhoslaS. Managing fragility fractures during the COVID-19 pandemic.Nat. Rev. Endocrinol.202016946746810.1038/s41574‑020‑0379‑z32528045
    [Google Scholar]
  24. GittoesN.J. CrisenoS. Appelman-DijkstraN.M. BollerslevJ. CanalisE. RejnmarkL. Hassan-SmithZ. Endocrinology in the time of COVID-19: Management of calcium metabolic disorders and osteoporosis.Eur. J. Endocrinol.20201832G57G6510.1530/EJE‑20‑038532396134
    [Google Scholar]
  25. YuE.W. TsourdiE. ClarkeB.L. BauerD.C. DrakeM.T. Osteoporosis Management in the Era of COVID ‐19.J. Bone Miner. Res.20203561009101310.1002/jbmr.404932406536
    [Google Scholar]
  26. DuY. LvY. ZhaW. ZhouN. HongX. Association of body mass index (BMI) with critical COVID-19 and in-hospital mortality: A dose-response meta-analysis.Metabolism202111715437310.1016/j.metabol.2020.15437332949592
    [Google Scholar]
  27. ZhaoX. GangX. HeG. LiZ. LvY. HanQ. WangG. Obesity Increases the Severity and Mortality of Influenza and COVID-19: A Systematic Review and Meta-Analysis.Front. Endocrinol.20201159510910.3389/fendo.2020.59510933408692
    [Google Scholar]
  28. FreuerD. LinseisenJ. MeisingerC. Impact of body composition on COVID-19 susceptibility and severity: A two-sample multivariable Mendelian randomization study.Metabolism202111815473210.1016/j.metabol.2021.15473233631142
    [Google Scholar]
  29. TolonenA. PakarinenT. SassiA. KyttäJ. CancinoW. Rinta-KiikkaI. PertuzS. ArponenO. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review.Eur. J. Radiol.202114510994310.1016/j.ejrad.2021.10994334839215
    [Google Scholar]
  30. SchiaffinoS. AlbanoD. CozziA. MessinaC. ArioliR. BnàC. BrunoA. CarbonaroL.A. CarrieroA. CarrieroS. DannaP.S.C. D’AscoliE. De BerardinisC. Della PepaG. FalaschiZ. GittoS. MalavazosA.E. MauriG. MonfardiniL. PaschèA. RizzatiR. SecchiF. VanzulliA. TombiniV. VicentinI. ZagariaD. SardanelliF. SconfienzaL.M. CT-derived chest muscle metrics for outcome prediction in patients with COVID-19.Radiology20213002E328E33610.1148/radiol.202120414133724065
    [Google Scholar]
  31. KimJ.W. YoonJ.S. KimE.J. HongH.L. KwonH.H. JungC.Y. KimK.C. SungY.S. ParkS.H. KimS.K. ChoeJ.Y. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019.J. Gerontol. A Biol. Sci. Med. Sci.2021768e110e11610.1093/gerona/glab08533780535
    [Google Scholar]
  32. de SiqueiraJ.V.V. AlmeidaL.G. ZicaB.O. BrumI.B. BarcelóA. de Siqueira GalilA.G. Impact of obesity on hospitalizations and mortality, due to COVID-19: A systematic review.Obes. Res. Clin. Pract.202014539840310.1016/j.orcp.2020.07.00532736969
    [Google Scholar]
  33. ChandaranaH. DaneB. MikheevA. TaffelM.T. FengY. RusinekH. Visceral adipose tissue in patients with COVID-19: Risk stratification for severity.Abdom. Radiol.202146281882510.1007/s00261‑020‑02693‑232748252
    [Google Scholar]
  34. PetersenA. BressemK. AlbrechtJ. ThießH.M. VahldiekJ. HammB. MakowskiM.R. NiehuesA. NiehuesS.M. AdamsL.C. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany.Metabolism202011015431710.1016/j.metabol.2020.15431732673651
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056271481231112110727
Loading
/content/journals/cmir/10.2174/0115734056271481231112110727
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Body composition; Bone density; COVID-19; CT scan; Subcutaneous fat; Visceral fat
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test