Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background:

Nowadays, High Intensity Focused Ultrasound (HIFU) is a common surgery option for the treatment of uterine fibroids in China, the immediate response of which is clinically evaluated using Contrast Enhanced (CE) imaging. However, the injection of gadolinium with its potential adverse effect is of concern in CE and therefore, it deserves efforts to find a better imaging method without the need for contrast agent injection for this task.

Objective:

To assess the role of Diffusion-weighted Imaging (DWI) in evaluating the immediate therapeutic response of HIFU treatment for uterine fibroids in comparison with CE.

Methods:

68 patients with 74 uterine fibroids receiving HIFU treatment were enrolled, and immediate treatment response was assessed using post-surgical DWI images. Semi-quantitative ordinal ablation quality grading and quantitative nonperfusion volume (NPV) measurement based on DWI and CE imaging were determined by two experienced radiologists. Agreement of ablation quality grading between DWI and CE was assessed using the weighted kappa coefficient, while intraobserver, interobserver and interprotocol agreements of NPV measurements within and between DWI and CE were evaluated using the intraclass correlation (ICC) and Bland-Altman analysis.

Results:

Grading of immediate HIFU treatment response showed a moderate agreement between DWI and CE (weighted kappa = 0.446, < 0.001). NPV measured in 65 fibroids with DWI of Grade 3~5 showed very high ICCs for the intraobserver and interobserver agreement within DWI and CE (all ICC > 0.980, < 0.001) and also for the interprotocol agreement between DWI and CE (ICC = 0.976, < 0.001).

Conclusion:

DWI could provide satisfactory ablation quality grading, and reliable NPV quantification results to assess immediate therapeutic responses of HIFU treatment for uterine fibroids in most cases, which suggests that non-contrast enhanced DWI might be potentially used as a more cost-effective and convenient method in a large proportion of patients for this task replacing CE imaging.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056270504231218072151
2024-02-27
2025-07-15
The full text of this item is not currently available.

References

  1. StewartE.A. CooksonC.L. GandolfoR.A. Schulze-RathR. Epidemiology of uterine fibroids: A systematic review.BJOG2017124101501151210.1111/1471‑0528.1464028296146
    [Google Scholar]
  2. De La CruzM.S. BuchananE.M. Uterine fibroids: Diagnosis and treatment.Am. Fam. Physician201795210010728084714
    [Google Scholar]
  3. WangY. GengJ. BaoH. DongJ. ShiJ. XiQ. Comparative effectiveness and safety of high-intensity focused ultrasound for uterine fibroids: A systematic review and meta-analysis.Front. Oncol.20211160080010.3389/fonc.2021.60080033767979
    [Google Scholar]
  4. WangZ.B. WuJ. FangL.Q. WangH. LiF.Q. TianY.B. GongX.B. ZhangH. ZhangL. FengR. Preliminary ex vivo feasibility study on targeted cell surgery by high intensity focused ultrasound (HIFU).Ultrasonics201151336937510.1016/j.ultras.2010.11.00221144543
    [Google Scholar]
  5. ChangI. HwangK.J. ChoiH.J. YoonH.J. LeeE.S. ChoiS.Y. HIFU: Effects and clinical effectiveness of non-surgical therapy for uterine fibroids.J. Menopausal Med.2016222596110.6118/jmm.2016.22.2.5927617237
    [Google Scholar]
  6. TongA. KangS.K. HuangC. HuangK. SlevinA. HindmanN. MRI screening for uterine leiomyosarcoma.J. Magn. Reson. Imaging2019497e282e29410.1002/jmri.2663030637854
    [Google Scholar]
  7. LiaoL. XuY.H. BaiJ. ZhanP. ZhouJ. LiM.X. ZhangY. MRI parameters for predicting the effect of ultrasound-guided high-intensity focused ultrasound in the ablation of uterine fibroids.Clin. Radiol.2023781616910.1016/j.crad.2022.09.11236241567
    [Google Scholar]
  8. ZhaoW.P. ChenJ.Y. ChenW.Z. Dynamic contrast-enhanced MRI serves as a predictor of HIFU treatment outcome for uterine fibroids with hyperintensity in T2-weighted images.Exp. Ther. Med.201611132833410.3892/etm.2015.287926889263
    [Google Scholar]
  9. JeongJ.H. HongG.P. KimY.R. HaJ.E. LeeK.S. Clinical consideration of treatment to ablate uterine fibroids with magnetic resonance imaging-guided high intensity focused ultrasound (MRgFUS): Sonalleve.J. Menopausal Med.20162229410710.6118/jmm.2016.22.2.9427617244
    [Google Scholar]
  10. KimY. LeeJ.W. ChoiC.H. KimB.G. BaeD.S. RhimH. LimH.K. Uterine fibroids: Correlation of T2 signal intensity with semiquantitative perfusion MR parameters in patients screened for MR-guided high-intensity focused ultrasound ablation.Radiology2016278392593510.1148/radiol.201515060826313526
    [Google Scholar]
  11. YangS. KongF. HouR. RongF. MaN. LiS. YangJ. Ultrasound guided high-intensity focused ultrasound combined with gonadotropin releasing hormone analogue (GnRHa) ablating uterine leiomyoma with homogeneous hyperintensity on T 2 weighted MR imaging.Br. J. Radiol.20179010732016076010.1259/bjr.2016076028256923
    [Google Scholar]
  12. WangY. WangZ.B. XuY.H. Efficacy, efficiency, and safety of magnetic resonance-guided high-intensity focused ultrasound for ablation of uterine fibroids: Comparison with ultrasound-guided method.Korean J. Radiol.201819472473210.3348/kjr.2018.19.4.72429962878
    [Google Scholar]
  13. Czeyda-PommersheimF. MartinD.R. CostelloJ.R. KalbB. Contrast agents for MR imaging.Magn. Reson. Imaging Clin. N. Am.201725470571110.1016/j.mric.2017.06.01128964460
    [Google Scholar]
  14. MessinaC. BignoneR. BrunoA. BrunoA. BrunoF. CalandriM. CarusoD. CoppolinoP. De RobertisR. GentiliF. GrazziniI. NatellaR. ScaliseP. BarileA. GrassiR. AlbanoD. Diffusion-weighted imaging in oncology: An update.Cancers2020126149310.3390/cancers1206149332521645
    [Google Scholar]
  15. RomanoA. PalizziS. RomanoA. MoltoniG. Di NapoliA. MaccioniF. BozzaoA. Diffusion weighted imaging in neuro-oncology: Diagnosis, post-treatment changes, and advanced sequences - An updated review.Cancers202315361810.3390/cancers1503061836765575
    [Google Scholar]
  16. JacobsM.A. OuwerkerkR. KamelI. BottomleyP.A. BluemkeD.A. KimH.S. Proton, diffusion-weighted imaging, and sodium ( 23 Na) MRI of uterine leiomyomata after MR-guided high-intensity focused ultrasound: A preliminary study.J. Magn. Reson. Imaging200929364965610.1002/jmri.2167719243047
    [Google Scholar]
  17. LiaoD. XiaoZ. LvF. ChenJ. QiuL. Non-contrast enhanced MRI for assessment of uterine fibroids’ early response to ultrasound-guided high-intensity focused ultrasound thermal ablation.Eur. J. Radiol.202012210867010.1016/j.ejrad.2019.10867031778966
    [Google Scholar]
  18. CuschieriS. The STROBE guidelines.Saudi J. Anaesth.20191353110.4103/sja.SJA_543_1830930717
    [Google Scholar]
  19. FanH.J. ZhangC. LeiH.T. CunJ.P. ZhaoW. HuangJ.Q. ZhaiY. Ultrasound-guided high-intensity focused ultrasound in the treatment of uterine fibroids.Medicine20199810e1456610.1097/MD.000000000001456630855440
    [Google Scholar]
  20. ŁozińskiT. FilipowskaJ. GurynowiczG. ZgliczyńskaM. KluzT. JędraR. SkowyraA. CiebieraM. The effect of high-intensity focused ultrasound guided by magnetic resonance therapy on obstetrical outcomes in patients with uterine fibroids – experiences from the main Polish center and a review of current data.Int. J. Hyperthermia201936158158910.1080/02656736.2019.161611731159642
    [Google Scholar]
  21. FunakiK FukunishiH FunakiT SawadaK KajiY MaruoT Magnetic resonance-guided focused ultrasound surgery for uterine fibroids: Relationship between the therapeutic effects and signal intensity of preexisting T2-weighted magnetic resonance images.Am J Obstet Gynecol20071962184e1184e6
    [Google Scholar]
  22. KimY. LimH.K. ParkM.J. RhimH. JungS.H. SohnI. KimT.J. KeserciB. Screening magnetic resonance imaging-based prediction model for assessing immediate therapeutic response to magnetic resonance imaging-guided high-intensity focused ultrasound ablation of uterine fibroids.Invest. Radiol.2016511152410.1097/RLI.000000000000019926309184
    [Google Scholar]
  23. LongL. ChenJ. XiongY. ZouM. DengY. ChenL. WangZ. Efficacy of high-intensity focused ultrasound ablation for adenomyosis therapy and sexual life quality.Int. J. Clin. Exp. Med.201587117011170726380007
    [Google Scholar]
  24. LiuJ. WeiJ. KeserciB. ZhangJ. YangX. WangX. T2*-weighted imaging in the assessment of the non-perfused volume of uterine fibroids following magnetic resonance-guided high-intensity focused ultrasound ablation.Int. J. Gynaecol. Obstet.2016132110010210.1016/j.ijgo.2015.07.00526475075
    [Google Scholar]
  25. WatsonP.F. PetrieA. Method agreement analysis: A review of correct methodology.Theriogenology20107391167117910.1016/j.theriogenology.2010.01.00320138353
    [Google Scholar]
  26. KooT.K. LiM.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research.J. Chiropr. Med.201615215516310.1016/j.jcm.2016.02.01227330520
    [Google Scholar]
  27. ChenG. TaylorP.A. HallerS.P. KircanskiK. StoddardJ. PineD.S. LeibenluftE. BrotmanM.A. CoxR.W. Intraclass correlation: Improved modeling approaches and applications for neuroimaging.Hum. Brain Mapp.20183931187120610.1002/hbm.2390929218829
    [Google Scholar]
  28. MainentiP.P. PizzutiL.M. SegretoS. ComerciM. FronzoS.D. RomanoF. CrisciV. SmaldoneM. LaccettiE. StortoG. AlfanoB. MaureaS. SalvatoreM. PaceL. Diffusion volume (DV) measurement in endometrial and cervical cancer: A new MRI parameter in the evaluation of the tumor grading and the risk classification.Eur. J. Radiol.201685111312410.1016/j.ejrad.2015.10.01426724655
    [Google Scholar]
  29. ExnerM. KühnA. StumppP. HöckelM. HornL.C. KahnT. BrandmaierP. Value of diffusion-weighted MRI in diagnosis of uterine cervical cancer: A prospective study evaluating the benefits of DWI compared to conventional MR sequences in a 3T environment.Acta Radiol.201657786987710.1177/028418511560214626329683
    [Google Scholar]
  30. SchernbergA. BalleyguierC. DumasI. GouyS. EscandeA. BentivegnaE. MoriceP. DeutschE. Haie-MederC. ChargariC. Diffusion-weighted MRI in image-guided adaptive brachytherapy: Tumor delineation feasibility study and comparison with GEC-ESTRO guidelines.Brachytherapy201716595696310.1016/j.brachy.2017.05.01028673762
    [Google Scholar]
  31. FukukuraY. ShindoT. HakamadaH. TakumiK. UmanodanT. NakajoM. KamimuraK. UmanodanA. IdeueJ. YoshiuraT. Diffusion-weighted MR imaging of the pancreas: Optimizing b-value for visualization of pancreatic adenocarcinoma.Eur. Radiol.201626103419342710.1007/s00330‑015‑4174‑526738506
    [Google Scholar]
  32. VoogtM.J. KeserciB. KimY.S. Diffusion weighted MR imaging to evaluate treatment results after volumetric MR-guided high intensity focused ultrasound of uterine fibroids: Influence of different b-values.10th International Symposium on Therapeutic Ultrasound. Chantilly, VA, USA: AIP Conference Proceedings20114837
    [Google Scholar]
  33. YeoS.Y. KimY. LimH.K. RhimH. JungS.H. HwangN.Y. Uterine fibroids: Influence of “T2-Rim sign” on immediate therapeutic responses to magnetic resonance imaging-guided high-intensity focused ultrasound ablation.Eur. J. Radiol.201797213010.1016/j.ejrad.2017.10.00629153363
    [Google Scholar]
  34. LiuX. WangW. WangY. WangY. LiQ. TangJ. Clinical predictors of long-term success in ultrasound-guided high-intensity focused ultrasound ablation treatment for adenomyosis: A retrospective study.Medicine2016953e244310.1097/MD.000000000000244326817877
    [Google Scholar]
  35. JacobsM.A. GultekinD.H. KimH.S. Comparison between diffusion-weighted imaging, T1-weighted, and postcontrast -weighted imaging after MR-guided, high intensity, focused ultrasound treatment of uterine leiomyomata: Preliminary results.Med. Phys.20103794768477610.1118/1.347594020964196
    [Google Scholar]
  36. AmriM.M. AbedS.A. The data-driven future of healthcare: A review.Mesopot. J. Big Data20232023707610.58496/MJBD/2023/010
    [Google Scholar]
  37. ChenJ ChenS WeeL DekkerA BermejoI Deep learning based unpaired image-to-image translation applications for medical physics: A systematic review.Phys Med Biol202368505TR110.1088/1361‑6560/acba74
    [Google Scholar]
  38. ZhangS. MetaxasD. On the challenges and perspectives of foundation models for medical image analysis.Med. Image Anal.20249110299610.1016/j.media.2023.10299637857067
    [Google Scholar]
  39. JiangY. QinS. WangY. LiuY. LiuN. TangL. FangJ. JiaQ. HuangX. Intravoxel incoherent motion diffusion-weighted MRI for predicting the efficacy of high-intensity focused ultrasound ablation for uterine fibroids.Front. Oncol.202313117864910.3389/fonc.2023.117864937427113
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056270504231218072151
Loading
/content/journals/cmir/10.2174/0115734056270504231218072151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test