Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background

Abdominal multi-slice helical computed tomography (CT) and contrast-enhanced scanning have been widely recognized clinically.

Objective

The impact of the deep learning image reconstruction (DLIR) on the quality of dynamic contrast-enhanced CT imaging of primary liver cancer lesions was evaluated through comparison with the filtered back projection (FBP) and the new generation of adaptive statistical iterative reconstruction-V (ASIR-V).

Methods

We evaluated the image noise of the lesion, fine structures inside the lesion, and diagnostic confidence in 48 liver cancer subjects. The CT values of the solid part of the lesion and the adjacent normal liver tissue and the systolic and diastolic blood pressure (SD) values of the right paravertebral muscle were measured. The muscle SD value was considered as the background noise of the image, and the signal noise ratio (SNR) and contrast signal-to-noise ratio (CNR) of the lesion and normal liver parenchyma were calculated.

Results

High consistency in the evaluation of image noise (Kappa = 0.717). The Kappa values for margin/pseudocapsule, fine structure within the lesion, and diagnostic confidence were 0.463, 0.527, and 0.625, respectively. Besides, the differences in SD, SNR and CNR data of reconstructed lesion images among the six groups were statistically significant.

Conclusion

The contrast-enhanced CT image noise of DLIR-H in the portal venous phase is much lower than that of ASIR-V and FBP in primary liver cancer patients. In terms of the lesion structure display, the new reconstruction algorithm DLIR is superior.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056261849231207055304
2024-01-01
2025-06-20
The full text of this item is not currently available.

References

  1. ParkW. ChungY.H. KimJ.A. JinY.J. LeeD. ShimJ.H. LeeD. KimK.M. LimY.S. LeeH.C. LeeY.S. KimP.N. SungK.B. Recurrences of hepatocellular carcinoma following complete remission by transarterial chemoembolization or radiofrequency therapy: Focused on the recurrence patterns.Hepatol. Res.201343121304131210.1111/hepr.1208323442052
    [Google Scholar]
  2. BoasF.E. DoB. LouieJ.D. KotharyN. HwangG.L. KuoW.T. HovsepianD.M. KantrowitzM. SzeD.Y. Optimal imaging surveillance schedules after liver-directed therapy for hepatocellular carcinoma.J. Vasc. Interv. Radiol.2015261697310.1016/j.jvir.2014.09.01325446423
    [Google Scholar]
  3. SolomonJ. LyuP. MarinD. SameiE. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm.Med. Phys.20204793961397110.1002/mp.1431932506661
    [Google Scholar]
  4. LaurentG. VillaniN. HossuG. RauchA. NoëlA. BlumA. Gondim TeixeiraP.A. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance.Eur. Radiol.20192984016402510.1007/s00330‑018‑5988‑830701327
    [Google Scholar]
  5. BenzD.C. BenetosG. RampidisG. von FeltenE. BakulaA. SustarA. KuduraK. MesserliM. FuchsT.A. GebhardC. PazhenkottilA.P. KaufmannP.A. BuechelR.R. Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy.J. Cardiovasc. Comput. Tomogr.202014544445110.1016/j.jcct.2020.01.00231974008
    [Google Scholar]
  6. MorenoC.C. HemingwayJ. JohnsonA.C. HughesD.R. MittalP.K. DuszakR.Jr Changing abdominal imaging utilization patterns: Perspectives from medicare beneficiaries over two decades.J. Am. Coll. Radiol.201613889490310.1016/j.jacr.2016.02.03127084072
    [Google Scholar]
  7. LiuZ. LiC. Effect of adaptive statistic iterative reconstruction veo on CT image quality: Phantom study.Chinese J. Medical Imaging201624755355610.3969/j.issn.1005‑5185.2016.07.021
    [Google Scholar]
  8. De MarcoP. OriggiD. New adaptive statistical iterative reconstruction ASiR-V: Assessment of noise performance in comparison to ASiR.J. Appl. Clin. Med. Phys.201819227528610.1002/acm2.1225329363260
    [Google Scholar]
  9. FältT. SöderbergM. HörbergL. ChristoffersenC. LångK. Abul-KasimK. LeanderP. Simulated dose reduction for abdominal CT with filtered back projection technique: Effect on liver lesion detection and characterization.AJR Am. J. Roentgenol.20192121849310.2214/AJR.17.1944130299999
    [Google Scholar]
  10. SagaraY. HaraA.K. PavlicekW. SilvaA.C. PadenR.G. WuQ. Abdominal CT: Comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients.AJR Am. J. Roentgenol.2010195371371910.2214/AJR.09.298920729451
    [Google Scholar]
  11. GoodenbergerM.H. Wagner-BartakN.A. GuptaS. LiuX. YapR.Q. SunJ. TammE.P. JensenC.T. Computed tomography image quality evaluation of a new iterative reconstruction algorithm in the abdomen (Adaptive Statistical Iterative Reconstruction–V) a comparison with model-based iterative reconstruction, adaptive statistical iterative reconstruction, and filtered back projection reconstructions.J. Comput. Assist. Tomogr.201842218419010.1097/RCT.000000000000066628806318
    [Google Scholar]
  12. MiletoA. GuimaraesL.S. McColloughC.H. FletcherJ.G. YuL. State of the art in abdominal CT: The limits of iterative reconstruction algorithms.Radiology2019293349150310.1148/radiol.201919142231660806
    [Google Scholar]
  13. JensenC.T. TelesmanichM.E. Wagner-BartakN.A. LiuX. RongJ. SzklarukJ. QayyumA. WeiW. ChandlerA.G. TammE.P. Evaluation of abdominal computed tomography image quality using a new version of vendor-specific model-based iterative reconstruction.J. Comput. Assist. Tomogr.2017411677410.1097/RCT.000000000000047227529683
    [Google Scholar]
  14. BaeJ.S. LeeJ.M. KimS.W. ParkS. HanS. YoonJ.H. JooI. HongH. Low-contrast-dose liver CT using low monoenergetic images with deep learning–based denoising for assessing hepatocellular carcinoma: A randomized controlled noninferiority trial.Eur. Radiol.20223364344435410.1007/s00330‑022‑09298‑x36576547
    [Google Scholar]
  15. KimI. KangH. YoonH.J. ChungB.M. ShinN.Y. Deep learning–based image reconstruction for brain CT: Improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V).Neuroradiology202163690591210.1007/s00234‑020‑02574‑x33037503
    [Google Scholar]
  16. AkagiM. NakamuraY. HigakiT. NaritaK. HondaY. ZhouJ. YuZ. AkinoN. AwaiK. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT.Eur. Radiol.201929116163617110.1007/s00330‑019‑06170‑330976831
    [Google Scholar]
  17. JensenC.T. LiuX. TammE.P. ChandlerA.G. SunJ. MoraniA.C. JavadiS. Wagner-BartakN.A. Image quality assessment of abdominal CT by use of new deep learning image reconstruction: Initial experience.AJR Am. J. Roentgenol.20202151505710.2214/AJR.19.2233232286872
    [Google Scholar]
  18. BaeK.T. Intravenous contrast medium administration and scan timing at CT: considerations and approaches.Radiology20102561326110.1148/radiol.1009090820574084
    [Google Scholar]
  19. YeFP XuB WangMJ Application of adaptive iterative dose reduction and low tube voltage in renal artery computed tomography angiography.Chinese J. CT MRI2015101808310.3969/j.issn.1672‑5131.2015.10.026
    [Google Scholar]
  20. DongJ.W. The progress on research and principles of computed tomography iterative reconstruction.China Medical Equipment2016131012813310.3969/J.ISSN.2016.10.038
    [Google Scholar]
  21. ZhangX.R. HeT.P. JiaY.J. Effect of three different reconstruction algorithms (FBP,ASIR and ASIR-V) on the upper abdominal CT image quality with low radiation dose.Chin Imag. J. Integrat. Tradit. Western. Med.202018330530810.3969/j.issn.1672‑0512.2020.03.027
    [Google Scholar]
  22. KwonH. ChoJ. OhJ. KimD. ChoJ. KimS. LeeS. LeeJ. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: Comparison with the adaptive statistical iterative reconstruction technique.Br. J. Radiol.20158810542015046310.1259/bjr.2015046326234823
    [Google Scholar]
  23. WilleminkM.J. NoëlP.B. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence.Eur. Radiol.20192952185219510.1007/s00330‑018‑5810‑730377791
    [Google Scholar]
  24. GreffierJ. FrandonJ. PereiraF. HamardA. BeregiJ.P. LarbiA. OmoumiP. Optimization of radiation dose for CT detection of lytic and sclerotic bone lesions: a phantom study.Eur. Radiol.20203021075107810.1007/s00330‑019‑06425‑z31506818
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056261849231207055304
Loading
/content/journals/cmir/10.2174/0115734056261849231207055304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test