Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background:

The recent advancements and detailed studies in the field of 3D bioprinting have made it a promising avenue in the field of organ shortage, where many patients die awaiting transplantation. The main challenges bioprinting faces are precision during printing, vascularization, and cell proliferation. Additionally, overcoming these shortcomings requires experts from engineering, medicine, physics, ., and if accomplished, it will significantly benefit humankind.

Objective:

This paper covers the general roadmap of the bioprinting process, different kinds of bioinks, and available bioprinters. The paper also includes designing the anatomical structure, which is the first phase of the bioprinting process, and how AI has facilitated this entire process of 3D printing in healthcare and associated applications like medical modelling and disease modelling.

Methods:

The process of 3D bioprinting involves meticulous structure designing of the anatomical structure under study, which forms the base of the entire bioprinting process. One of the significant applications of 3D printing in healthcare is Medical Modelling and Disease Modelling, which requires the detection of disease in anatomy and its delineation from the rest of anatomy for meticulous creation of ROI using sophisticated segmentation software(s) for the construction of 3D models of diseased anatomy and healthy anatomical surroundings.

Conclusion:

The study concluded that bioprinting is the future of the worldwide organ transplantation crisis. Anatomical accuracy is an important aspect that must be considered while producing 3D models. The reproduction of patient-specific 3D models requires human rights and ethics approval under four principles of ethics in healthcare: autonomy, non-maleficence, beneficence, and justice.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056259274231019061329
2024-01-01
2025-06-23
The full text of this item is not currently available.

References

  1. The global organ shortage: Doctor explains how world organ donation day can make a difference.Available from: https://www.thehealthsite.com/diseases-conditions/the-global-organ-shortage-doctor-explains-how-world-organ-donation-day-can-make-a-difference-1000369/ (Accessed on: Aug. 25, 2023).
  2. PapaioannouT.G. ManolesouD. DimakakosE. TsoucalasG. VavuranakisM. TousoulisD. 3D bioprinting methods and techniques: Applications on artificial blood vessel fabrication.Zhonghua Minguo Xinzangxue Hui Zazhi201935328428910.6515/ACS.201905_35(3).20181115A31249458
    [Google Scholar]
  3. YeZ. DunA. JiangH. NieC. ZhaoS. WangT. ZhaiJ. The role of 3D printed models in the teaching of human anatomy: A systematic review and meta-analysis.BMC Med. Educ.202020133510.1186/s12909‑020‑02242‑x32993608
    [Google Scholar]
  4. LauI. SquelchA. Patient-specific 3D printed model in delineating brain glioma and surrounding structures in a pediatric patient.Digit. Med.2017328610.4103/digm.digm_25_17
    [Google Scholar]
  5. JoshiS.C. SheikhA.A. 3D printing in aerospace and its long-term sustainability.Virtual Phys. Prototyp.201510417518510.1080/17452759.2015.1111519
    [Google Scholar]
  6. WangY.C. ChenT. YehY.L. Advanced 3D printing technologies for the aircraft industry: A fuzzy systematic approach for assessing the critical factors.Int. J. Adv. Manuf. Technol.2019105104059406910.1007/s00170‑018‑1927‑8
    [Google Scholar]
  7. BhardwajN. SoodM. GillS.S. Artificial intelligence-empowered 3D bioprinting.Perspect.202312010.1201/9781003230113‑1
    [Google Scholar]
  8. MurphyS.V. AtalaA. 3D bioprinting of tissues and organs.Nat. Biotechnol.201432877378510.1038/nbt.295825093879
    [Google Scholar]
  9. WhitakerM. The history of 3D printing in healthcare.Bull. R. Coll. Surg. Engl.20159671719
    [Google Scholar]
  10. LiJ. ChenM. FanX. ZhouH. Recent advances in bioprinting techniques: Approaches, applications and future prospects.J. Transl. Med.201614127110.1186/s12967‑016‑1028‑027645770
    [Google Scholar]
  11. BishopE.S. MostafaS. PakvasaM. LuuH.H. LeeM.J. WolfJ.M. AmeerG.A. HeT.C. ReidR.R. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends.Genes Dis.20174418519510.1016/j.gendis.2017.10.00229911158
    [Google Scholar]
  12. VijayavenkataramanS. YanW.C. LuW.F. WangC.H. FuhJ.Y.H. 3D bioprinting of tissues and organs for regenerative medicine.Adv. Drug Deliv. Rev.201813229633210.1016/j.addr.2018.07.00429990578
    [Google Scholar]
  13. SquelchA. 3D printing and medical imaging.J. Med. Radiat. Sci.201865317117210.1002/jmrs.30030175453
    [Google Scholar]
  14. GuZ. FuJ. LinH. HeY. Development of 3D bioprinting: From printing methods to biomedical applications.Asian J. Pharm. Sci202015552955710.1016/j.ajps.2019.11.00333193859
    [Google Scholar]
  15. DeyM. OzbolatI.T. 3D bioprinting of cells, tissues and organs.Sci. Rep.20201011402310.1038/s41598‑020‑70086‑y32811864
    [Google Scholar]
  16. Meyer-SzaryJ. LuisM.S. MikulskiS. PatelA. SchulzF. TretiakowD. FerchoJ. JaguszewskaK. FrankiewiczM. PawłowskaE. TargońskiR. SzarpakŁ. DądelaK. SabiniewiczR. KwiatkowskaJ. The role of 3D printing in planning complex medical procedures and training of medical professionals—cross-sectional multispecialty review.Int. J. Environ. Res. Public Health2022196333110.3390/ijerph1906333135329016
    [Google Scholar]
  17. JoshiA. ChoudhuryS. GugulothuS.B. VisweswariahS.S. ChatterjeeK. Strategies to promote vascularization in 3D printed tissue scaffolds: Trends and challenges.Biomacromolecules20222372730275110.1021/acs.biomac.2c0042335696326
    [Google Scholar]
  18. FazeliN. ArefianE. IraniS. ArdeshirylajimiA. SeyedjafariE. 3D-printed PCL scaffolds coated with nanobioceramics enhance osteogenic differentiation of stem cells.ACS Omega2021651352843529610.1021/acsomega.1c0401534984260
    [Google Scholar]
  19. CornejoJ. Cornejo-AguilarJ.A. VargasM. HelgueroC.G. Milanezi de AndradeR. Torres-MontoyaS. Asensio-SalazarJ. Rivero CalleA. Martínez SantosJ. DamonA. Quiñones-HinojosaA. Quintero-ConsuegraM.D. UmañaJ.P. Gallo-BernalS. BriceñoM. TripodiP. SebastianR. Perales-VillarroelP. De la Cruz-KuG. MckenzieT. ArruaranaV.S. JiJ. ZuluagaL. HaehnD.A. PaoliA. VillaJ.C. MartinezR. GonzalezC. GrossmannR.J. EscalonaG. CinelliI. RussomanoT. Anatomical engineering and 3D printing for surgery and medical devices: International review and future exponential innovations.BioMed Res. Int.2022202212810.1155/2022/679774535372574
    [Google Scholar]
  20. EdelmersE. KazokaD. Creation of anatomically correct and optimized for 3d printing human bones models.Appl. Syst. Innov202143
    [Google Scholar]
  21. TraceA.P. OrtizD. DealA. RetrouveyM. ElzieC. GoodmurphyC. MoreyJ. HawkinsC.M. Radiology’s emerging role in 3-D printing applications in health care.J. Am. Coll. Radiol.2016137856862.e410.1016/j.jacr.2016.03.02527236288
    [Google Scholar]
  22. LiX. LvS. LiM. ZhangJ. JiangY. QinY. LuoH. YinS. SDMT: Spatial dependence multi-task transformer network for 3D knee MRI segmentation and landmark localization.IEEE Trans. Med. Imaging20234282274228510.1109/TMI.2023.324754337027574
    [Google Scholar]
  23. Materialise Mimics.Available from: https://www.materialise.com/en/medical/mimics-innovation-suite/mimics (Accessed on: May 26, 2022).
  24. New features with simpleware software release T-2022.03.Available from: https://www.synopsys.com/simpleware/news-and-events/simpleware-t-2022-03.html (Accessed on: May 26, 2022).
  25. 3D Slicer image computing platform.2022Available from: https://www.slicer.org/ (Accessed on: May 26, 2022).
  26. The world's most advanced 3D anatomy platform.Available from: https://3d4medical.com/ (Accessed on: Aug. 24, 2023).
  27. MotsingerS.K. Complete anatomy.J. Med. Libr. Assoc.2020108115515710.5195/jmla.2020.853
    [Google Scholar]
  28. UltiMaker Cura.Available from: https://ultimaker.com/software/ultimaker-cura (Accessed on: Mar. 22, 2023).
  29. CREALITY.Available from: https://www.creality.com/ (Accessed on: Mar. 22, 2023).
  30. What Exactly is Bioink?.Available from: https://all3dp.com/2/for-ricardo-what-is-bioink-simply-explained/ (Accessed on: May 26, 2022).
  31. ChimeneD. LennoxK.K. KaunasR.R. GaharwarA.K. Advanced bioinks for 3D printing: A materials science perspective.Ann. Biomed. Eng.20164462090210210.1007/s10439‑016‑1638‑y27184494
    [Google Scholar]
  32. MoldovanN.I. Progress in scaffold-free bioprinting for cardiovascular medicine.J. Cell. Mol. Med.20182262964296910.1111/jcmm.1359829536627
    [Google Scholar]
  33. MirzaeiM. OkoroO. V. NieL. FreitasD. PetriS. ShavandiA. Protein-based 3D biofabrication of biomaterials.Bioengineering2021844810.3390/bioengineering8040048
    [Google Scholar]
  34. KochL. DeiwickA. SchlieS. MichaelS. GrueneM. CogerV. ZychlinskiD. SchambachA. ReimersK. VogtP.M. ChichkovB. Skin tissue generation by laser cell printing.Biotechnol. Bioeng.201210971855186310.1002/bit.2445522328297
    [Google Scholar]
  35. MahendiranB. MuthusamyS. SampathS. JaisankarS.N. PopatK.C. SelvakumarR. KrishnakumarG.S. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review.Int. J. Biol. Macromol.202118356458810.1016/j.ijbiomac.2021.04.17933933542
    [Google Scholar]
  36. Gungor-OzkerimP.S. InciI. ZhangY.S. KhademhosseiniA. DokmeciM.R. Bioinks for 3D bioprinting: An overview.Biomater. Sci.20186591594610.1039/C7BM00765E29492503
    [Google Scholar]
  37. ZhangJ. WehrleE. RubertM. MüllerR. 3d bioprinting of human tissues: Biofabrication, bioinks and bioreactors.Int. J. Mol. Sci.2021228397110.3390/ijms2208397133921417
    [Google Scholar]
  38. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.00322125349
    [Google Scholar]
  39. XuC. ChaiW. HuangY. MarkwaldR.R. Scaffold‐free inkjet printing of three‐dimensional zigzag cellular tubes.Biotechnol. Bioeng.2012109123152316010.1002/bit.2459122767299
    [Google Scholar]
  40. JinY. HeY. GaoQ. FuJ. FuG. Droplet deviation modeling and compensation scheme of inkjet printing.Int. J. Adv. Manuf. Technol.2014759-121405141510.1007/s00170‑014‑6224‑6
    [Google Scholar]
  41. GopinathanJ. NohI. Recent trends in bioinks for 3D printing.Biomater. Res.20182211110.1186/s40824‑018‑0122‑129636985
    [Google Scholar]
  42. TuanR.S. BolandG. TuliR. Adult mesenchymal stem cells and cell-based tissue engineering.Arthritis Res Ther200351324510.1186/ar614
    [Google Scholar]
  43. ZhuW. MaX. GouM. MeiD. ZhangK. ChenS. 3D printing of functional biomaterials for tissue engineering.Curr. Opin. Biotechnol.20164010311210.1016/j.copbio.2016.03.01427043763
    [Google Scholar]
  44. WilsonW.C.Jr BolandT. Cell and organ printing 1: Protein and cell printers.Anat. Rec. A Discov. Mol. Cell. Evol. Biol.2003272A249149610.1002/ar.a.1005712740942
    [Google Scholar]
  45. RingeisenB.R. KimH. Laser printing of pluripotent embryonal carcinoma cells.Tissue Eng2004103-448349110.1089/107632704323061843
    [Google Scholar]
  46. DincaV. Directed three-dimensional patterning of self-assembled peptide fibrils.Nano Lett200882538543
    [Google Scholar]
  47. Kosik-KoziołA. CostantiniM. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration.Biofabrication20179404410510.1088/1758‑5090/aa90d7
    [Google Scholar]
  48. BarronJ.A. WuP. LadouceurH.D. RingeisenB.R. Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns.Biomed. Microdevices20046213914710.1023/B:BMMD.0000031751.67267.9f15320636
    [Google Scholar]
  49. MironovV. BolandT. TruskT. ForgacsG. MarkwaldR.R. Organ printing: Computer-aided jet-based 3D tissue engineering.Trends Biotechnol.200321415716110.1016/S0167‑7799(03)00033‑712679063
    [Google Scholar]
  50. JonesN. Science in three dimensions: The print revolution.Nature20124877405222310.1038/487022a22763531
    [Google Scholar]
  51. PlaconeJ.K. EnglerA.J. Recent advances in extrusion‐based 3D printing for biomedical applications.Adv. Healthc. Mater.201878170116110.1002/adhm.20170116129283220
    [Google Scholar]
  52. KačarevićŽ. RiderP. AlkildaniS. RetnasinghS. SmeetsR. JungO. IvaniševićZ. BarbeckM. An introduction to 3D bioprinting: Possibilities, challenges and future aspects.Materials20181111219910.3390/ma1111219930404222
    [Google Scholar]
  53. LiN. GuoR. ZhangZ.J. Bioink formulations for bone tissue regeneration.Front. Bioeng. Biotechnol.20219February63048810.3389/fbioe.2021.63048833614614
    [Google Scholar]
  54. DerakhshanfarS. MbeleckR. XuK. ZhangX. ZhongW. XingM. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances.Bioact. Mater.20183214415610.1016/j.bioactmat.2017.11.00829744452
    [Google Scholar]
  55. RaggattL.J. PartridgeN.C. Cellular and molecular mechanisms of bone remodeling.J. Biol. Chem.201028533251032510810.1074/jbc.R109.04108720501658
    [Google Scholar]
  56. VetschJ.R. MüllerR. HofmannS. The influence of curvature on three-dimensional mineralized matrix formation under static and perfused conditions: An in vitro bioreactor model.J. R. Soc. Interface2016131232016042510.1098/rsif.2016.042527733699
    [Google Scholar]
  57. ShahinK. DoranP.M. Strategies for enhancing the accumulation and retention of extracellular matrix in tissue-engineered cartilage cultured in bioreactors.PLoS One201168e2311910.1371/journal.pone.002311921858004
    [Google Scholar]
  58. BhardwajN. SoodM. GillS.S. Deep learning framework using CNN for brain tumor classification.2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT)26-27 November 2022Aligarh, India202210.1109/IMPACT55510.2022.10029043
    [Google Scholar]
  59. BückingT.M. HillE.R. RobertsonJ.L. ManeasE. PlumbA.A. NikitichevD.I. From medical imaging data to 3D printed anatomical models.PLoS One2017125e017854010.1371/journal.pone.017854028562693
    [Google Scholar]
  60. NaftulinJ.S. KimchiE.Y. CashS.S. Streamlined, inexpensive 3D printing of the brain and skull.PLoS One2015108e013619810.1371/journal.pone.013619826295459
    [Google Scholar]
  61. LinminP. LasithaV. Wei-WenH. Md MoniborR. IftekharuddinK.M. Brain tumor classification using 3D convolutional neural network.International MICCAI Brainlesion WorkshopSpringer202033534210.1007/978‑3‑030‑46643‑5_33
    [Google Scholar]
  62. SadoonT.A. AliM.H.R. An overview of medical images classification based on CNN.Int. J. Curr. Eng.202010690090510.14741/ijcet/v.10.6.1
    [Google Scholar]
  63. KibriyaH. AminR. AlshehriA.H. MasoodM. AlshamraniS.S. AlshehriA. A novel and effective brain tumor classification model using deep feature fusion and famous machine learning classifiers.Comput Intell Neurosci202220227897669
    [Google Scholar]
  64. DrissB. ChebanD. Asymptotic stability of switching systems.Electron. J. Differ. Equ.20102010911810.1016/j.mri.2012.05.001.3D
    [Google Scholar]
  65. WuY. KongQ. CDT-CAD: Context-aware deformable transformers for end-to-end chest abnormality detection on X-ray images.IEEE/ACM Trans. Comput. Biol. Bioinforma.2023811210.1109/TCBB.2023.3258455
    [Google Scholar]
  66. BosargeP.M. Understanding and treating PMS/PMDD.Nursing200313-41710.1097/00152193‑200311001‑00005
    [Google Scholar]
  67. ShafiA.S.M. RahmanM.B. AnwarT. HalderR.S. KaysH.M.E. Classification of brain tumors and auto-immune disease using ensemble learning.Inform. Med. Unlocked.20212410060810.1016/j.imu.2021.100608
    [Google Scholar]
  68. BhandariA. KoppenJ. AgzarianM. Convolutional neural networks for brain tumour segmentation.Insights Imaging20201117710.1186/s13244‑020‑00869‑432514649
    [Google Scholar]
  69. El-DahshanE.S.A. HosnyT. SalemA.B.M. Hybrid intelligent techniques for MRI brain images classification.Digit. Signal Process.201020243344110.1016/j.dsp.2009.07.002
    [Google Scholar]
  70. Materialise Mimics Innovation Suite.Available from: https://www.materialise.com/en/healthcare/mimics-innovation-suite (Accessed on: Jan. 09, 2023).
  71. FreeSurfer software suite.Available from: https://surfer.nmr.mgh.harvard.edu/ (Accessed on: Aug. 23, 2023).
  72. DingS. WangH. Two path gland segmentation algorithm of colon pathological image based on local semantic guidance.IEEE J. Biomed. Heal. Informatics20232741701170810.1109/JBHI.2022.3207874
    [Google Scholar]
  73. LiX. JiangY. LiuY. ZhangJ. YinS. LuoH. RAGCN: Region aggregation graph convolutional network for bone age assessment from X-ray images.IEEE Trans. Instrum. Meas.20227111210.1109/TIM.2022.3190025
    [Google Scholar]
  74. RothH.R. LuL. LayN. HarrisonA.P. FaragA. SohnA. SummersR.M. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.Med. Image Anal.2018459410710.1016/j.media.2018.01.00629427897
    [Google Scholar]
  75. MeshLab.Available from: https://www.meshlab.net/ (Accessed on: Aug. 23, 2023).
  76. Blender 4.0.Available from: https://www.blender.org/ (Accessed on: Jan. 09, 2023).
  77. SiniosoglouI. ArgyriouV. Post-processing fairness evaluation of federated models: An unsupervised approach in healthcare.IEEE/ACM Trans. Comput. Biol. Bioinforma.20232042518252910.1109/TCBB.2023.3269767
    [Google Scholar]
  78. WangD.D. QianZ. VukicevicM. EngelhardtS. KheradvarA. ZhangC. LittleS.H. VerjansJ. ComaniciuD. O’NeillW.W. VannanM.A. 3D printing, computational modeling, and artificial intelligence for structural heart disease.JACC Cardiovasc. Imaging2021141416010.1016/j.jcmg.2019.12.02232861647
    [Google Scholar]
  79. 3D printing in prosthetics: History, benefits, and materials.Available from: https://www.xometry.com/resources/3d-printing/3d-printing-in-prosthetics/ (Accessed on: Aug. 25, 2023).
  80. ThawaniJ.P. SinghN. PisapiaJ.M. AbdullahK.G. ParkerD. PukenasB.A. ZagerE.L. VermaR. BremS. Three-dimensional printed modeling of diffuse low-grade gliomas and associated white matter tract anatomy.Neurosurgery201780463564510.1093/neuros/nyx00928362934
    [Google Scholar]
  81. BhatlaP. TretterJ.T. ChikkabyrappaS. ChakravartiS. MoscaR.S. Surgical planning for a complex double‐outlet right ventricle using 3D printing.Echocardiography201734580280410.1111/echo.1351228317159
    [Google Scholar]
  82. ByrneN. Velasco ForteM. TandonA. ValverdeI. HussainT. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system.JRSM Cardiovasc. Dis.2016510.1177/204800401664546727170842
    [Google Scholar]
  83. OgdenK.M. AslanC. OrdwayN. DialloD. Tillapaugh-FayG. SomanP. Factors affecting dimensional accuracy of 3-D printed anatomical structures derived from CT data.J. Digit. Imaging201528665466310.1007/s10278‑015‑9803‑725982877
    [Google Scholar]
  84. Analyze (imaging software).Available from: https://en.wikipedia.org/wiki/Analyze_(imaging_software)
  85. ChristensenA. RybickiF.J. Maintaining safety and efficacy for 3D printing in medicine.J. 3d Print.20173111010.1186/s41205‑016‑0009‑530050978
    [Google Scholar]
  86. WaranV. NarayananV. KaruppiahR. ThambynayagamH.C. MuthusamyK.A. RahmanZ.A.A. KirollosR.W. Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology.Simul. Healthc.2015101434810.1097/SIH.000000000000006025514588
    [Google Scholar]
  87. PugalendhiA. ArumugamS. RanganathanR. GanesanS. 3D printed patient-specific bone models for anatomy education from medical imaging.J. Eng. Res.20212021311210.36909/jer.ICIPPSD.15521
    [Google Scholar]
  88. IlliJ. BernhardB. NguyenC. PilgrimT. PrazF. GloecklerM. WindeckerS. HaeberlinA. GräniC. Translating imaging into 3D printed cardiovascular phantoms.JACC Basic Transl. Sci.20227101050106210.1016/j.jacbts.2022.01.00236337920
    [Google Scholar]
  89. ZerradF.E. TaouzariM. MakroumE.M. AhmadS. AlkurtF.O. KaraaslanM. IslamM.T. HusseinM.I. Symmetrical and asymmetrical breast phantoms with 3D-printed anatomical structure for microwave imaging of breast cancer.IEEE Access2022109968969690810.1109/ACCESS.2022.3205004
    [Google Scholar]
  90. ShokoohiS. EmamiA.H. MohammadiA. Medical education online.Med. Educ. Online20141946
    [Google Scholar]
  91. ŠtrkaljG. DayalM. Working together, sharing resources: An interuniversity collaboration to advance anatomy education.Anat. Sci. Educ.20147650150210.1002/ase.149625288218
    [Google Scholar]
  92. FrisardiG. ChessaG. BaroneS. PaoliA. RazionaleA. FrisardiF. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery.BMC Med. Imaging2011111510.1186/1471‑2342‑11‑521338504
    [Google Scholar]
  93. PlochC.C. MansiC.S.S.A. JayamohanJ. KuhlE. Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning.World Neurosurg.20169066867410.1016/j.wneu.2016.02.08126924117
    [Google Scholar]
  94. PokojnaH. ErolinC. HenstridgeC. The transparent minds: Methods of creation of 3D digital models from patient specific data.J. Vis. Commun. Med.2022452839710.1080/17453054.2021.200823035019795
    [Google Scholar]
  95. MüllerA. KrishnanK.G. UhlE. MastG. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery.J. Craniofac. Surg.200314689991410.1097/00001665‑200311000‑0001414600634
    [Google Scholar]
  96. Hansjörg Wyss Institute for Biologically Inspired Engineering at Harvard University3D bioprinting of living tissues.2017Available from: https://wyss.harvard.edu/technology/3d-bioprinting/ (Accessed on: May 26, 2022).
  97. BoseS. VahabzadehS. BandyopadhyayA. Bone tissue engineering using 3D printing.Mater. Today2013161249650410.1016/j.mattod.2013.11.017
    [Google Scholar]
  98. CoatesD.R. ChinJ.M. ChungS.T.L. NIH public access.Bone20112311710.1002/uog.12484.Towards
    [Google Scholar]
  99. OdehM. LevinD. InzielloJ. Lobo FenogliettoF. MathurM. HermsenJ. StubbsJ. RipleyB. Methods for verification of 3D printed anatomic model accuracy using cardiac models as an example.3D Print. Med.201951610.1186/s41205‑019‑0043‑130923948
    [Google Scholar]
  100. CC BY-SA 4.0 Deed | Attribution-ShareAlike 4.0 International | Creative Commons https://creativecommons.org/licenses/by-sa/4.0/deed.en (accessed Apr. 03, 2024).
  101. How much does 3D printing cost?.Available from: https://prtwd.com/guides/how-much-does-3d-printing-cost/ (Accessed on: Aug. 25, 2023).
/content/journals/cmir/10.2174/0115734056259274231019061329
Loading
/content/journals/cmir/10.2174/0115734056259274231019061329
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 3D printing; Artificial intelligence; Bioinks; Bioprinters; Healthcare; Segmentation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test