Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background:

Currently, three-dimensional cephalometry measurements are mainly based on cone beam computed tomography (CBCT), which has limitations of ionizing radiation, lack of soft tissue information, and lack of standardization of median sagittal plane establishment.

Objectives:

This study investigated magnetic resonance imaging (MRI)-only based 3D cephalometry measurement based on the integrated and modular characteristics of the human head.

Methods:

Double U-Net CycleGAN was used for CT image synthesis from MRI. This method enabled the synthesis of a CT-like image from MRI and measurements were made using 3D slicer registration and fusion.

Results:

A protocol for generating and optimizing MRI-based synthetic CT was described and found to meet the precision requirements of 3D head measurement using MRI midline positioning methods reported in neuroscience to establish the median sagittal plane. An MRI-only reference frame and coordinate system were established enabling an MRI-only cephalometric analysis protocol that combined the dual advantages of soft and hard tissue display. The protocol was devised using data from a single volunteer and validation data from a larger sample remains to be collected.

Conclusion:

The reported method provided a new protocol for MRI-only cephalometric analysis of craniofacial growth and development, malformation occurrence, treatment planning, and outcomes.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056258953231026094236
2023-11-06
2025-01-26
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/e15734056258953.html?itemId=/content/journals/cmir/10.2174/0115734056258953231026094236&mimeType=html&fmt=ahah

References

  1. XiaJ.J. GatenoJ. TeichgraeberJ.F. YuanP. LiJ. ChenK.C. JajooA. NicolM. AlfiD.M. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: Three-dimensional cephalometry.Int. J. Oral Maxillofac. Surg.201544121441145010.1016/j.ijom.2015.06.00726573563
    [Google Scholar]
  2. LisboaC.O. MastersonD. MottaA.F.J. MottaA.T. Reliability and reproducibility of three-dimensional cephalometric landmarks using CBCT: a systematic review.J. Appl. Oral Sci.201523211211910.1590/1678‑77572014033626018303
    [Google Scholar]
  3. Clinical recommendations regarding use of cone beam computed tomography in orthodontics. Position statement by the American Academy of Oral and Maxillofacial Radiology.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2013116223825710.1016/j.oooo.2013.06.00223849378
    [Google Scholar]
  4. National Research Council Committee on Health Effects of Exposure to Low Levels of Ionizing R. Health Effects of Exposure to Low Levels of Ionizing RadiationsTime for Reassessment?National Academies PressWashington1998
    [Google Scholar]
  5. SpassovA. Toro-IbacacheV. KrautwaldM. BrinkmeierH. KupczikK. Congenital muscle dystrophy and diet consistency affect mouse skull shape differently.J. Anat.2017231573674810.1111/joa.1266428762259
    [Google Scholar]
  6. AlabdullahM. SaltajiH. Abou-HamedH. YoussefM. Association between facial growth pattern and facial muscle activity: A prospective cross-sectional study.Int. Orthod.201513218119410.1016/j.ortho.2015.03.01125986702
    [Google Scholar]
  7. YamaguchiK. LonicD. KoE.W.C. LoL.J. An integrated surgical protocol for adult patients with hemifacial microsomia: Methods and outcome.PLoS One2017128e017722310.1371/journal.pone.017722328783745
    [Google Scholar]
  8. NurR.B. ÇakanD.G. ArunT. Evaluation of facial hard and soft tissue asymmetry using cone-beam computed tomography.Am. J. Orthod. Dentofacial Orthop.2016149222523710.1016/j.ajodo.2015.07.03826827979
    [Google Scholar]
  9. Siqueira de LimaL. BrunettoD.P. da Cunha Gonçalves NojimaM. Evaluation of facial soft tissue thickness in symmetric and asymmetric subjects with the use of cone-beam computed tomography.Am. J. Orthod. Dentofacial Orthop.2019155221622310.1016/j.ajodo.2018.03.02430712693
    [Google Scholar]
  10. GreenM.N. BloomJ.M. KulbershR. A simple and accurate craniofacial midsagittal plane definition.Am. J. Orthod. Dentofacial Orthop.2017152335536310.1016/j.ajodo.2016.12.02528863916
    [Google Scholar]
  11. ShinS.M. KimY.M. KimN.R. ChoiY.S. ParkS.B. KimY.I. Statistical shape analysis-based determination of optimal midsagittal reference plane for evaluation of facial asymmetry.Am. J. Orthod. Dentofacial Orthop.2016150225226010.1016/j.ajodo.2016.01.01727476357
    [Google Scholar]
  12. GatenoJ. JajooA. NicolM. XiaJ.J. The primal sagittal plane of the head: A new concept.Int. J. Oral Maxillofac. Surg.201645339940510.1016/j.ijom.2015.11.01326708049
    [Google Scholar]
  13. SuttonP.H. GatenoJ. EnglishJ.D. ParanilamJ. TeichgraeberJ.F. XiaJ.J. Both the observer’s expertise and the subject’s facial symmetry can affect anatomical position of the head.J. Oral Maxillofac. Surg.2019772406.e1406.e910.1016/j.joms.2018.09.03730395819
    [Google Scholar]
  14. ZhangD. WangS. LiJ. ZhouY. Novel method of constructing a stable reference frame for 3-dimensional cephalometric analysis.Am. J. Orthod. Dentofacial Orthop.2018154339740410.1016/j.ajodo.2017.11.03830173843
    [Google Scholar]
  15. Gondré-LewisM.C. GboluajeT. ReidS.N. LinS. WangP. GreenW. DiogoR. Fidélia-LambertM.N. HermanM.M. The human brain and face: Mechanisms of cranial, neurological and facial development revealed through malformations of holoprosencephaly, cyclopia and aberrations in chromosome 18.J. Anat.2015227325526710.1111/joa.1234326278930
    [Google Scholar]
  16. AdameykoI. FriedK. The nervous system orchestrates and integrates craniofacial development: A review.Front. Physiol.201674910.3389/fphys.2016.0004926924989
    [Google Scholar]
  17. MarcucioR.S. YoungN.M. HuD. HallgrimssonB. Mechanisms that underlie co‐variation of the brain and face.Genesis201149417718910.1002/dvg.2071021381182
    [Google Scholar]
  18. AotoK. TrainorP.A. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival.Hum. Mol. Genet.201524369871310.1093/hmg/ddu48925292199
    [Google Scholar]
  19. VenezianoA. MeloroC. IrishJ.D. StringerC. ProficoA. De GrooteI. Neuromandibular integration in humans and chimpanzees: Implications for dental and mandibular reduction in Homo.Am. J. Phys. Anthropol.20181671849610.1002/ajpa.2360629737530
    [Google Scholar]
  20. Esteve-AltavaB. DiogoR. SmithC. BoughnerJ.C. Rasskin-GutmanD. Anatomical networks reveal the musculoskeletal modularity of the human head.Sci. Rep.201551829810.1038/srep0829825656958
    [Google Scholar]
  21. Esteve-AltavaB. BoughnerJ.C. DiogoR. VillmoareB.A. Rasskin-GutmanD. Anatomical network analysis shows decoupling of modular lability and complexity in the evolution of the primate skull.PLoS One2015105e012765310.1371/journal.pone.012765325992690
    [Google Scholar]
  22. McCarthyN. SidikA. BertrandJ.Y. EberhartJ.K. An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull.Dev. Biol.2016415226127710.1016/j.ydbio.2016.04.00527060628
    [Google Scholar]
  23. LuX. ForteA.J. Sawh-MartinezR. MadariS. WuR. CabrejoR. SteinbacherD.M. AlperovichM. AlonsoN. PersingJ.A. Facial malformation in crouzon’s syndrome is consistent with cranial base development in time and space.Plast. Reconstr. Surg. Glob. Open2018610e196310.1097/GOX.000000000000196330534503
    [Google Scholar]
  24. TubbsR.S. BosmiaA.N. Cohen-GadolA.A. The human calvaria: A review of embryology, anatomy, pathology, and molecular development.Childs Nerv. Syst.2012281233110.1007/s00381‑011‑1637‑022120469
    [Google Scholar]
  25. NorthcuttR.G. GansC. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins.Q. Rev. Biol.198358112810.1086/4130556346380
    [Google Scholar]
  26. JiangX. ZhangY. BaiS. Three-dimensional analysis of craniofacial asymmetry and integrated, modular organization of human head.Int. J. Clin. Exp. Med.2017101142411431
    [Google Scholar]
  27. JiangX.L. DingY. ZhangY.Y. Relationship between anterior cerebral falx and craniofacial midline: Significance in the analysis of craniofacial asymmetry.Int. J. Clin. Exp. Med.2017101612116132
    [Google Scholar]
  28. InoueT. NakamuraS. OsumiN. Fate mapping of the mouse prosencephalic neural plate.Dev. Biol.2000219237338310.1006/dbio.2000.961610694429
    [Google Scholar]
  29. BrugmannS.A. AllenN.C. JamesA.W. MekonnenZ. MadanE. HelmsJ.A. A primary cilia-dependent etiology for midline facial disorders.Hum. Mol. Genet.20101981577159210.1093/hmg/ddq03020106874
    [Google Scholar]
  30. SchockE.N. BrugmannS.A. Neural crest cells utilize primary cilia to regulate ventral forebrain morphogenesis via Hedgehog-dependent regulation of oriented cell division.Dev. Biol.2017431216817810.1016/j.ydbio.2017.09.02628941984
    [Google Scholar]
  31. ReidS.N. ZiermannJ.M. Gondré-LewisM.C. Genetically induced abnormal cranial development in human trisomy 18 with holoprosencephaly: comparisons with the normal tempo of osteogenic–neural development.J. Anat.20152271213310.1111/joa.1232626018729
    [Google Scholar]
  32. SrairiM. HoarauL. FourcadeO. GeeraertsT. What is the gold standard method for midline structures shift assessment using computed tomography?Crit. Care Med.201240123332333310.1097/CCM.0b013e3182675d4523164791
    [Google Scholar]
  33. KurataniS. SchillingT. Head segmentation in vertebrates.Integr. Comp. Biol.200848560461010.1093/icb/icn03620607135
    [Google Scholar]
  34. GlicksohnJ. MyslobodskyM.S. The representation of patterns of structural brain asymmetry in normal individuals.Neuropsychologia199331214515910.1016/0028‑3932(93)90043‑Y8455784
    [Google Scholar]
  35. LiX. CrowT.J. HopkinsW.D. GongQ. RobertsN. Human torque is not present in chimpanzee brain.Neuroimage201816528529310.1016/j.neuroimage.2017.10.01729031530
    [Google Scholar]
  36. NordenskjöldR. LarssonE.M. AhlströmH. JohanssonL. KullbergJ. Automated interhemispheric surface extraction in T1-weighted MRI using intensity and symmetry information.J. Neurosci. Methods20142229710510.1016/j.jneumeth.2013.11.00724239903
    [Google Scholar]
  37. LiuY. DawantB.M. Automatic localization of the anterior commissure, posterior commissure, and midsagittal plane in MRI scans using regression forests.IEEE J. Biomed. Health Inform.20151941362137410.1109/JBHI.2015.242867225955855
    [Google Scholar]
  38. ArdekaniB.A. BachmanA.H. Model-based automatic detection of the anterior and posterior commissures on MRI scans.Neuroimage200946367768210.1016/j.neuroimage.2009.02.03019264138
    [Google Scholar]
  39. VolkG.F. KaramyanI. KlingnerC.M. ReichenbachJ.R. Guntinas-LichiusO. Quantitative magnetic resonance imaging volumetry of facial muscles in healthy patients with facial palsy.Plast. Reconstr. Surg. Glob. Open201426e17310.1097/GOX.000000000000012825289366
    [Google Scholar]
  40. BurgosN. GuerreiroF. McClellandJ. PreslesB. ModatM. NillS. DearnaleyD. deSouzaN. OelfkeU. KnopfA.C. OurselinS. Jorge CardosoM. Iterative framework for the joint segmentation and CT synthesis of MR images: Application to MRI-only radiotherapy treatment planning.Phys. Med. Biol.201762114237425310.1088/1361‑6560/aa66bf28291745
    [Google Scholar]
  41. JohnstoneE. WyattJ.J. HenryA.M. ShortS.C. Sebag-MontefioreD. MurrayL. KellyC.G. McCallumH.M. SpeightR. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging–only radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.2018100119921710.1016/j.ijrobp.2017.08.04329254773
    [Google Scholar]
  42. FarjamR. TyagiN. DeasyJ.O. HuntM.A. Dosimetric evaluation of an atlas‐based synthetic CT generation approach for MR ‐only radiotherapy of pelvis anatomy.J. Appl. Clin. Med. Phys.201920110110910.1002/acm2.1250130474353
    [Google Scholar]
  43. ZhaoC. CarassA. LeeJ. JogA. PrinceJ.L. A supervoxel based random forest synthesis framework for bidirectional MR/CT synthesis.Lect. Notes Comput. Sci.201710557334010.1007/978‑3‑319‑68127‑6_430221260
    [Google Scholar]
  44. OwrangiA.M. GreerP.B. Glide-HurstC.K. MRI-only treatment planning: Benefits and challenges.Phys. Med. Biol.201863505TR0110.1088/1361‑6560/aaaca429393071
    [Google Scholar]
  45. WolterinkJ.M. DinklaA.M. SavenijeM. Deep MR to CT synthesis using unpaired data.International Workshop on Simulation and Synthesis in Medical Imaging2017142310.1007/978‑3‑319‑68127‑6_2
    [Google Scholar]
  46. Torrado-CarvajalA. HerraizJ.L. AlcainE. MontemayorA.S. Garcia-CañamaqueL. Hernandez-TamamesJ.A. RozenholcY. MalpicaN. Fast patch-based pseudo-CT Synthesis from T1-Weighted MR Images for PET/MR attenuation correction in brain studies.J. Nucl. Med.201657113614310.2967/jnumed.115.15629926493204
    [Google Scholar]
  47. PriceR.G. KimJ.P. ZhengW. ChettyI.J. Glide-HurstC. Image guided radiation therapy using synthetic computed tomography images in brain cancer.Int. J. Radiat. Oncol. Biol. Phys.20169541281128910.1016/j.ijrobp.2016.03.00227209500
    [Google Scholar]
  48. SunB. JiaS. JiangX. JiaF. Double U-Net CycleGAN for 3D MR to CT image synthesis.Int. J. CARS202218114915610.1007/s11548‑022‑02732‑x35984606
    [Google Scholar]
  49. EleyK.A. Watt-SmithS.R. SheerinF. GoldingS.J. “Black Bone” MRI: A potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis.Eur. Radiol.201424102417242610.1007/s00330‑014‑3286‑725038852
    [Google Scholar]
  50. EleyK.A. Watt-SmithS.R. GoldingS.J. Three-dimensional reconstruction of the craniofacial skeleton with gradient echo magnetic resonance imaging (“Black Bone”).J. Craniofac. Surg.201728246346710.1097/SCS.000000000000321928114217
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056258953231026094236
Loading
/content/journals/cmir/10.2174/0115734056258953231026094236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test