Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The prediction power of MRI radiomics for microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) remains uncertain.

Objective

To investigate the prediction performance of MRI radiomics for MVI in HCC.

Methods

Original studies focusing on preoperative prediction performance of MRI radiomics for MVI in HCC, were systematically searched from databases of PubMed, Embase, Web of Science and Cochrane Library. Radiomics quality score (RQS) and risk of bias of involved studies were evaluated. Meta-analysis was carried out to demonstrate the value of MRI radiomics for MVI prediction in HCC. Influencing factors of the prediction performance of MRI radiomics were identified by subgroup analyses.

Results

13 studies classified as type 2a or above according to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis statement were eligible for this systematic review and meta-analysis. The studies achieved an average RQS of 14 (ranging from 11 to 17), accounting for 38.9% of the total points. MRI radiomics achieved a pooled sensitivity of 0.82 (95%CI: 0.78 – 0.86), specificity of 0.79 (95%CI: 0.76 – 0.83) and area under the summary receiver operator characteristic curve (AUC) of 0.88 (95%CI: 0.84 – 0.91) to predict MVI in HCC. Radiomics models combined with clinical features achieved superior performances compared to models without the combination (AUC: 0.90 0.85, < 0.05).

Conclusion

MRI radiomics has the potential for preoperative prediction of MVI in HCC. Further studies with high methodological quality should be designed to improve the reliability and reproducibility of the radiomics models for clinical application.

The systematic review and meta-analysis was registered prospectively in the International Prospective Register of Systematic Reviews (No. CRD42022333822).

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056256824231204073534
2024-02-13
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/20/1/CMIR-20-E15734056256824.html?itemId=/content/journals/cmir/10.2174/0115734056256824231204073534&mimeType=html&fmt=ahah

References

  1. OmataM. ChengA.L. KokudoN. KudoM. LeeJ.M. JiaJ. TateishiR. HanK.H. ChawlaY.K. ShiinaS. JafriW. PayawalD.A. OhkiT. OgasawaraS. ChenP.J. LesmanaC.R.A. LesmanaL.A. GaniR.A. ObiS. DokmeciA.K. SarinS.K. Asia–Pacific clinical practice guidelines on the management of hepatocellular carcinoma: A 2017 update.Hepatol. Int.201711431737010.1007/s12072‑017‑9799‑928620797
    [Google Scholar]
  2. ErstadD.J. TanabeK.K. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma.Ann. Surg. Oncol.20192651474149310.1245/s10434‑019‑07227‑930788629
    [Google Scholar]
  3. LiJ. YangF. LiJ. HuangZ.Y. ChengQ. ZhangE.L. Postoperative adjuvant therapy for hepatocellular carcinoma with microvascular invasion.World J. Gastrointest. Surg.2023151193110.4240/wjgs.v15.i1.1936741072
    [Google Scholar]
  4. ZhengZ. GuanR. JianxiW. ZhaoZ. PengT. LiuC. LinY. JianZ. Microvascular invasion in hepatocellular carcinoma: A review of its definition, clinical significance, and comprehensive management.J. Oncol.2022202211010.1155/2022/956704135401743
    [Google Scholar]
  5. RastogiA. Changing role of histopathology in the diagnosis and management of hepatocellular carcinoma.World J. Gastroenterol.201824354000401310.3748/wjg.v24.i35.400030254404
    [Google Scholar]
  6. ReginelliA. VaccaG. SegretoT. PicasciaR. ClementeA. UrraroF. SerraN. VanzulliA. CappabiancaS. Can microvascular invasion in hepatocellular carcinoma be predicted by diagnostic imaging? A critical review.Future Oncol.201814282985299410.2217/fon‑2018‑017530084651
    [Google Scholar]
  7. HongS.B. ChoiS.H. KimS.Y. ShimJ.H. LeeS.S. ByunJ.H. ParkS.H. KimK.W. KimS. LeeN.K. MRI features for predicting microvascular invasion of hepatocellular carcinoma: A systematic review and meta-analysis.Liver Cancer20211029410610.1159/00051370433981625
    [Google Scholar]
  8. SurovA. PechM. OmariJ. FischbachF. DammR. FischbachK. PowerskiM. ReljaB. WienkeA. Diffusion-weighted imaging reflects tumor grading and microvascular invasion in hepatocellular carcinoma.Liver Cancer2021101102410.1159/00051138433708636
    [Google Scholar]
  9. LvK. CaoX. DuP. FuJ.Y. GengD.Y. ZhangJ. Radiomics for the detection of microvascular invasion in hepatocellular carcinoma.World J. Gastroenterol.202228202176218310.3748/wjg.v28.i20.217635721882
    [Google Scholar]
  10. XuT. RenL. LiaoM. ZhaoB. WeiR. ZhouZ. HeY. ZhangH. ChenD. ChenH. LiaoW. Preoperative radiomics analysis of contrast-enhanced CT for microvascular invasion and prognosis stratification in hepatocellular carcinoma.J. Hepatocell. Carcinoma2022918920110.2147/JHC.S35657335340666
    [Google Scholar]
  11. ZhouH.Y. ChengJ.M. ChenT.W. CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis.Clinics202378100264
    [Google Scholar]
  12. HuF. ZhangY. LiM. LiuC. ZhangH. LiX. LiuS. HuX. WangJ. Preoperative prediction of microvascular invasion risk grades in hepatocellular carcinoma based on tumor and peritumor dual-region radiomics signatures.Front. Oncol.20221285333610.3389/fonc.2022.85333635392229
    [Google Scholar]
  13. TianY. HuaH. PengQ. ZhangZ. WangX. HanJ. MaW. ChenJ. Preoperative evaluation of Gd-EOB-DTPA-Enhanced MRI radiomics-based nomogram in small solitary hepatocellular carcinoma (≤3 cm) with microvascular invasion: A two-center study.J. Magn. Reson. Imaging20225651459147210.1002/jmri.2815735298849
    [Google Scholar]
  14. JiangT. HeS. YangH. Multiparametric MRI-based radiomics for the prediction of microvascular invasion in hepatocellular carcinoma.Acta Radiol.20222022284185122108083035354318
    [Google Scholar]
  15. LiL. SuQ. YangH. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: A radiomic nomogram based on MRI.Clin. Radiol.2022774e269e27910.1016/j.crad.2021.12.00834980458
    [Google Scholar]
  16. YangY. FanW. GuT. YuL. ChenH. LvY. LiuH. WangG. ZhangD. Radiomic features of multi-ROI and multi-phase MRI for the Prediction of microvascular invasion in solitary hepatocellular carcinoma.Front. Oncol.20211175621610.3389/fonc.2021.75621634692547
    [Google Scholar]
  17. ZhangY. LvX. QiuJ. ZhangB. ZhangL. FangJ. LiM. ChenL. WangF. LiuS. ZhangS. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma.J. Magn. Reson. Imaging202154113414310.1002/jmri.2753833559293
    [Google Scholar]
  18. ZengQ. LiuB. XuY. ZhouW. An attention-based deep learning model for predicting microvascular invasion of hepatocellular carcinoma using an intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging.Phys. Med. Biol.2021661818501910.1088/1361‑6560/ac22db34469880
    [Google Scholar]
  19. SongD. WangY. WangW. WangY. CaiJ. ZhuK. LvM. GaoQ. ZhouJ. FanJ. RaoS. WangM. WangX. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters.J. Cancer Res. Clin. Oncol.2021147123757376710.1007/s00432‑021‑03617‑333839938
    [Google Scholar]
  20. ZhangY. ShuZ. YeQ. ChenJ. ZhongJ. JiangH. WuC. YuT. PangP. MaT. LinC. Preoperative Prediction of microvascular invasion in hepatocellular carcinoma via multi-parametric MRI radiomics.Front. Oncol.20211163359610.3389/fonc.2021.63359633747956
    [Google Scholar]
  21. ZhuY.J. FengB. WangS. WangL.M. WuJ.F. MaX.H. ZhaoX.M. Model‑based three‑dimensional texture analysis of contrast‑enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma.Oncol. Lett.201918172073210.3892/ol.2019.1037831289547
    [Google Scholar]
  22. ZhangR. XuL. WenX. ZhangJ. YangP. ZhangL. XueX. WangX. HuangQ. GuoC. ShiY. NiuT. ChenF. A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma.Quant. Imaging Med. Surg.2019991503151510.21037/qims.2019.09.0731667137
    [Google Scholar]
  23. FengS.T. JiaY. LiaoB. HuangB. ZhouQ. LiX. WeiK. ChenL. LiB. WangW. ChenS. HeX. WangH. PengS. ChenZ.B. TangM. ChenZ. HouY. PengZ. KuangM. Preoperative prediction of microvascular invasion in hepatocellular cancer: A radiomics model using Gd-EOB-DTPA-enhanced MRI.Eur. Radiol.20192994648465910.1007/s00330‑018‑5935‑830689032
    [Google Scholar]
  24. YangL. GuD. WeiJ. YangC. RaoS. WangW. ChenC. DingY. TianJ. ZengM. A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma.Liver Cancer20198537338610.1159/00049409931768346
    [Google Scholar]
  25. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ2021372n7110.1136/bmj.n7133782057
    [Google Scholar]
  26. CollinsG.S. ReitsmaJ.B. AltmanD.G. MoonsK.G.M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement.BMJ2015350g759410.1136/bmj.g759425569120
    [Google Scholar]
  27. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  28. WhitingP.F. RutjesA.W. WestwoodM.E. MallettS. DeeksJ.J. ReitsmaJ.B. LeeflangM.M. SterneJ.A. BossuytP.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies.Ann. Intern. Med.2011155852953610.7326/0003‑4819‑155‑8‑201110180‑0000922007046
    [Google Scholar]
  29. XuX. ZhangH.L. LiuQ.P. SunS.W. ZhangJ. ZhuF.P. YangG. YanX. ZhangY.D. LiuX.S. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.J. Hepatol.20197061133114410.1016/j.jhep.2019.02.02330876945
    [Google Scholar]
  30. NiM. ZhouX. LvQ. LiZ. GaoY. TanY. LiuJ. LiuF. YuH. JiaoL. WangG. Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: Which model is the best model?Cancer Imaging20191916010.1186/s40644‑019‑0249‑x31455432
    [Google Scholar]
  31. SchmidM. GefellerO. WaldmannE. MayrA. HeppT. Approaches to regularized regression - A comparison between gradient boosting and the lasso.Methods Inf. Med.201655542243010.3414/ME16‑01‑003327626931
    [Google Scholar]
  32. DaiH. LuM. HuangB. TangM. PangT. LiaoB. CaiH. HuangM. ZhouY. ChenX. DingH. FengS.T. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.Quant. Imaging Med. Surg.20211151836185310.21037/qims‑20‑21833936969
    [Google Scholar]
  33. ZhangJ. HuangS. XuY. WuJ. Diagnostic accuracy of artificial intelligence based on imaging data for preoperative prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis.Front. Oncol.20221276384210.3389/fonc.2022.76384235280776
    [Google Scholar]
  34. MengX.P. WangY.C. ZhouJ.Y. YuQ. LuC.Q. XiaC. TangT.Y. XuJ. SunK. XiaoW. JuS. Comparison of MRI and CT for the prediction of microvascular invasion in solitary hepatocellular carcinoma based on a non-radiomics and radiomics method: Which imaging modality is better?J. Magn. Reson. Imaging202154252653610.1002/jmri.2757533622022
    [Google Scholar]
  35. StanzioneA. CuocoloR. UggaL. VerdeF. RomeoV. BrunettiA. MaureaS. Oncologic imaging and radiomics: A walkthrough review of methodological challenges.Cancers20221419487110.3390/cancers1419487136230793
    [Google Scholar]
  36. NieK. XiaoY. Radiomics in clinical trials: Perspectives on standardization.Phys. Med. Biol.202368101TR0110.1088/1361‑6560/aca38836384049
    [Google Scholar]
  37. YangY. ZhouY. ZhouC. MaX. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma.Eur. J. Surg. Oncol.20224851068107710.1016/j.ejso.2021.11.12034862094
    [Google Scholar]
  38. SunB.Y. GuP.Y. GuanR.Y. ZhouC. LuJ.W. YangZ.F. PanC. ZhouP.Y. ZhuY.P. LiJ.R. WangZ.T. GaoS.S. GanW. YiY. LuoY. QiuS.J. Deep-learning-based analysis of preoperative MRI predicts microvascular invasion and outcome in hepatocellular carcinoma.World J. Surg. Oncol.202220118910.1186/s12957‑022‑02645‑835676669
    [Google Scholar]
  39. NamD. ChapiroJ. ParadisV. SeraphinT.P. KatherJ.N. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction.JHEP Reports20224410044310.1016/j.jhepr.2022.10044335243281
    [Google Scholar]
  40. ZhongJ. HuY. SiL. JiaG. XingY. ZhangH. YaoW. A systematic review of radiomics in osteosarcoma: Utilizing radiomics quality score as a tool promoting clinical translation.Eur. Radiol.20213131526153510.1007/s00330‑020‑07221‑w32876837
    [Google Scholar]
  41. ParkJ.E. KimD. KimH.S. ParkS.Y. KimJ.Y. ChoS.J. ShinJ.H. KimJ.H. Quality of science and reporting of radiomics in oncologic studies: Room for improvement according to radiomics quality score and TRIPOD statement.Eur. Radiol.202030152353610.1007/s00330‑019‑06360‑z31350588
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056256824231204073534
Loading
/content/journals/cmir/10.2174/0115734056256824231204073534
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test