Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603
side by side viewer icon HTML

Abstract

Background:

In the realm of cancer studies,the differences among the biological behavior of oligometastatic prostate cancer (OPCa), localized prostate cancer (LPCa), and widely prostate cancer (WPCa) are still unclear.

Objectives:

The purpose of our study was to assess the clinical and intravoxel incoherent motion (IVIM) parameters of tumor burden in OPCa. In addition, the correlation between clinical and IVIM parameters and the prostate-specific antigen nadir (PSAN) and time to nadir (TTN) during initial androgen deprivation therapy (ADT) in OPCa was explored. It was found that the IVIM parameters could effectively differentiate LPCa and WPCa, as well as LPCa and OPC. Moreover, Gleason score (GS) was positively correlated with PSAN, while prostate volume was positively correlated with TTN.

Methods:

About 54 patients were included in this retrospective study (mean age=74±7.4 years). ADC, D, D*, and were acquired according to the biexponential Diffusion Weighted Imaging (DWI) model. The Kruskal-Wallis test was used to test the differences in clinical and IVIM parameters among the three groups. The Receiver Operating Characteristic (ROC) curve was used to evaluate the discrimination abilities. The Area Under the Curve (AUC) was compared using the DeLong test. Furthermore, Spearman correlation analysis was performed to assess the correlation between clinical and IVIM parameters of PSAN and TTN during initial ADT with OPCa.

Results:

There were significant differences among the three groups observed for age, PSA, GS, ADC, D and D* values (<0.05). Multi-parameter pairwise comparison results showed that significant differences between LPCa and WPCa were observed for the age, PSA, GS, ADC, D and D* values (<0.05). However, D* was different between the LPCa and OPCa groups (=0.032). GS showed a significant positive correlation with PSAN (=0.594, =0.042), and prostate volume showed a significant positive correlation with TTN (=0.777, =0.003).

Conclusions:

The IVIM parameters can effectively differentiate LPCa and WPCa, as well as LPCa and OPCa. Moreover, there was a certain trend in their distribution, which could reflect the tumor burden of PCa.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056248787231025072754
2024-03-25
2025-07-13
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.2021713209249Epub ahead of print10.3322/caac.2166033538338
    [Google Scholar]
  2. MottetN. van den BerghR.C.N. BriersE. Van den BroeckT. CumberbatchM.G. De SantisM. FantiS. FossatiN. GandagliaG. GillessenS. GrivasN. GrummetJ. HenryA.M. van der KwastT.H. LamT.B. LardasM. LiewM. MasonM.D. MorisL. Oprea-LagerD.E. van der PoelH.G. RouvièreO. SchootsI.G. TilkiD. WiegelT. WillemseP.P.M. CornfordP. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update. Part 1: Screening, diagnosis, and local treatment with curative intent.Eur. Urol.202179224326210.1016/j.eururo.2020.09.04233172724
    [Google Scholar]
  3. HellmanS. WeichselbaumR.R. Oligometastases.J. Clin. Oncol.199513181010.1200/JCO.1995.13.1.87799047
    [Google Scholar]
  4. SinghD. YiW.S. BrasacchioR.A. MuhsA.G. SmudzinT. WilliamsJ.P. MessingE. OkunieffP. Is there a favorable subset of patients with prostate cancer who develop oligometastases?Int. J. Radiat. Oncol. Biol. Phys.200458131010.1016/S0360‑3016(03)01442‑114697414
    [Google Scholar]
  5. GillessenS. BossiA. DavisI.D. de BonoJ. FizaziK. JamesN.D. MottetN. ShoreN. SmallE. SmithM. SweeneyC.J. TombalB. AntonarakisE.S. AparicioA.M. ArmstrongA.J. AttardG. BeerT.M. BeltranH. BjartellA. BlanchardP. BrigantiA. BristowR.G. BulbulM. CaffoO. CastellanoD. CastroE. ChengH.H. ChiK.N. ChowdhuryS. ClarkeC.S. ClarkeN. DaugaardG. De SantisM. DuranI. EelesR. EfstathiouE. EfstathiouJ. EkekeO.N. EvansC.P. FantiS. FengF.Y. FonteyneV. FossatiN. FrydenbergM. GeorgeD. GleaveM. GravisG. HalabiS. HeinrichD. HerrmannK. HiganoC. HofmanM.S. HorvathL.G. HussainM. Jereczek-FossaB.A. JonesR. KanesvaranR. Kellokumpu-LehtinenP.L. KhauliR.B. KlotzL. KramerG. LeibowitzR. LogothetisC. MahalB. MalufF. MateoJ. MathesonD. MehraN. MerseburgerA. MorgansA.K. MorrisM.J. MrabtiH. MukherjiD. MurphyD.G. MurthyV. NguyenP.L. OhW.K. OstP. O’SullivanJ.M. PadhaniA.R. PezaroC.J. PoonD.M.C. PritchardC.C. RabahD.M. RathkopfD. ReiterR.E. RubinM.A. RyanC.J. SaadF. SadeJ.P. SartorO. ScherH.I. SharifiN. SkonecznaI. SouleH. SprattD.E. SrinivasS. SternbergC.N. SteuberT. SuzukiH. SydesM.R. TaplinM.E. TilkiD. TürkeriL. TurcoF. UemuraH. UemuraH. ÜrünY. ValeC.L. van OortI. VapiwalaN. WalzJ. YamoahK. YeD. YuE.Y. ZapateroA. ZilliT. OmlinA. Management of patients with advanced prostate cancer—metastatic and/or castration-resistant prostate cancer: Report of the Advanced Prostate Cancer Consensus Conference (APCCC) 2022.Eur. J. Cancer202318517821510.1016/j.ejca.2023.02.01837003085
    [Google Scholar]
  6. JohnstonE.W. LatifoltojarA. SidhuH.S. RamachandranN. SokolskaM. BainbridgeA. MooreC. AhmedH.U. PunwaniS. Multiparametric whole-body 3.0-T MRI in newly diagnosed intermediate- and high-risk prostate cancer: diagnostic accuracy and interobserver agreement for nodal and metastatic staging.Eur. Radiol.20192963159316910.1007/s00330‑018‑5813‑430519933
    [Google Scholar]
  7. Le BihanD. BretonE. LallemandD. GrenierP. CabanisE. Laval-JeantetM. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders.Radiology1986161240140710.1148/radiology.161.2.37639093763909
    [Google Scholar]
  8. CuiY. LiC. LiuY. JiangY. YuL. LiuM. ZhangW. ShiK. ZhangC. ZhangJ. ChenM. Differentiation of prostate cancer and benign prostatic hyperplasia: Comparisons of the histogram analysis of intravoxel incoherent motion and monoexponential model with in-bore MR-guided biopsy as pathological reference.Abdom. Radiol.202045103265327710.1007/s00261‑019‑02227‑531549212
    [Google Scholar]
  9. YaoW. LiuJ. ZhengJ. LuP. ZouS. XuY. Study on diagnostic value of quantitative parameters of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in prostate cancer.Am. J. Transl. Res.20211343696370234017553
    [Google Scholar]
  10. Rodríguez-CabelloM.A. Méndez-RubioS. Sanz-MiguelañezJ.L. Moraga-SanzA. Aulló-GonzálezC. Platas-SanchoA. Prevalence and grade of malignancy differences with respect to the area of involvement in multiparametric resonance imaging of the prostate in the diagnosis of prostate cancer using the PI-RADS version 2 classification.World J. Urol.20234182155216310.1007/s00345‑023‑04466‑037326654
    [Google Scholar]
  11. CornfordP. van den BerghR.C.N. BriersE. Van den BroeckT. CumberbatchM.G. De SantisM. FantiS. FossatiN. GandagliaG. GillessenS. GrivasN. GrummetJ. HenryA.M. der KwastT.H. LamT.B. LardasM. LiewM. MasonM.D. MorisL. Oprea-LagerD.E. der PoelH.G. RouvièreO. SchootsI.G. TilkiD. WiegelT. WillemseP.P.M. MottetN. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II—2020 update: Treatment of relapsing and metastatic prostate cancer.Eur. Urol.202179226328210.1016/j.eururo.2020.09.04633039206
    [Google Scholar]
  12. WeinrebJ.C. BarentszJ.O. ChoykeP.L. CornudF. HaiderM.A. MacuraK.J. MargolisD. SchnallM.D. ShternF. TempanyC.M. ThoenyH.C. VermaS. PI-RADS prostate imaging – reporting and data system: 2015, version 2.Eur. Urol.2016691164010.1016/j.eururo.2015.08.05226427566
    [Google Scholar]
  13. KothariG. OstP. CheungP. BlanchardP. TreeA.C. van AsN.J. LoS.S. MoghanakiD. LoblawA. SivaS. Trends in management of oligometastatic hormone-sensitive prostate cancer.Curr. Oncol. Rep.20192154310.1007/s11912‑019‑0791‑530919165
    [Google Scholar]
  14. PatelP.H. ChawC.L. TreeA.C. SharabianiM. van AsN.J. Stereotactic body radiotherapy for bone oligometastatic disease in prostate cancer.World J. Urol.201937122615262110.1007/s00345‑019‑02873‑w31346760
    [Google Scholar]
  15. ParkerC.C. JamesN.D. BrawleyC.D. ClarkeN.W. HoyleA.P. AliA. RitchieA.W.S. AttardG. ChowdhuryS. CrossW. DearnaleyD.P. GillessenS. GilsonC. JonesR.J. LangleyR.E. MalikZ.I. MasonM.D. MathesonD. MillmanR. RussellJ.M. ThalmannG.N. AmosC.L. AlonziR. BahlA. BirtleA. DinO. DouisH. EswarC. GaleJ. GannonM.R. JonnadaS. KhaksarS. LesterJ.F. O’SullivanJ.M. ParikhO.A. PedleyI.D. PudneyD.M. SheehanD.J. SrihariN.N. TranA.T.H. ParmarM.K.B. SydesM.R. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): A randomised controlled phase 3 trial.Lancet2018392101622353236610.1016/S0140‑6736(18)32486‑330355464
    [Google Scholar]
  16. GodtmanRA KollbergKS PihlCG MånssonM HugossonJ The association between age, prostate cancer risk, and higher gleason score in a long-term screening program: Results from the göteborg-1 prostate cancer screening trial.Eur Urol.202282331131710.1016/j.eururo.2022.01.018
    [Google Scholar]
  17. MandelP. HoehB. PreisserF. WenzelM. HumkeC. WelteM.N. JerrentrupI. KöllermannJ. WildP. TilkiD. HaeseA. BeckerA. RoosF.C. ChunF.K.H. KluthL.A. Influence of tumor burden on serum prostate-specific antigen in prostate cancer patients undergoing radical prostatectomy.Front. Oncol.20211165644410.3389/fonc.2021.65644434395240
    [Google Scholar]
  18. TaguchiS. MorikawaT. ShibaharaJ. FukuharaH. Prognostic significance of tertiary Gleason pattern in the contemporary era of Gleason grade grouping: A narrative review.Int. J. Urol.202128661462110.1111/iju.1452433580599
    [Google Scholar]
  19. NiaH.T. MunnL.L. JainR.K. Physical traits of cancer.Science20203706516eaaz086810.1126/science.aaz086833122355
    [Google Scholar]
  20. HectorsS.J. SemaanS. SongC. LewisS. HainesG.K. TewariA. RastinehadA.R. TaouliB. Advanced diffusion-weighted imaging modeling for prostate cancer characterization: Correlation with quantitative histopathologic tumor tissue composition—a hypothesis-generating study.Radiology2018286391892810.1148/radiol.201717090429117481
    [Google Scholar]
  21. De CobelliF. RavelliS. EspositoA. GigantiF. GallinaA. MontorsiF. Del MaschioA. Apparent diffusion coefficient value and ratio as noninvasive potential biomarkers to predict prostate cancer grading: Comparison with prostate biopsy and radical prostatectomy specimen.AJR Am. J. Roentgenol.2015204355055710.2214/AJR.14.1314625714284
    [Google Scholar]
  22. ShanY. ChenX. LiuK. ZengM. ZhouJ. Prostate cancer aggressive prediction: preponderant diagnostic performances of intravoxel incoherent motion (IVIM) imaging and diffusion kurtosis imaging (DKI) beyond ADC at 3.0 T scanner with gleason score at final pathology.Abdom. Radiol.201944103441345210.1007/s00261‑019‑02075‑331144091
    [Google Scholar]
  23. WangX. HielscherT. RadtkeJ.P. GörtzM. SchützV. KuderT.A. GnirsR. SchwabC. StenzingerA. HohenfellnerM. SchlemmerH.P. BonekampD. Comparison of single-scanner single-protocol quantitative ADC measurements to ADC ratios to detect clinically significant prostate cancer.Eur. J. Radiol.2021136109538Epub ahead of print10.1016/j.ejrad.2021.10953833482592
    [Google Scholar]
  24. BaxterL.T. JainR.K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection.Microvasc. Res.19893717710410.1016/0026‑2862(89)90074‑52646512
    [Google Scholar]
  25. TomiokaA. TanakaN. YoshikawaM. MiyakeM. AnaiS. ChiharaY. OkajimaE. HirayamaA. HiraoY. FujimotoK. Nadir PSA level and time to nadir PSA are prognostic factors in patients with metastatic prostate cancer.BMC Urol.20141413310.1186/1471‑2490‑14‑3324773608
    [Google Scholar]
  26. HamanoI. HatakeyamaS. NaritaS. TakahashiM. SakuraiT. KawamuraS. HoshiS. IshidaM. KawaguchiT. IshidoyaS. ShimodaJ. SatoH. MitsuzukaK. TochigiT. TsuchiyaN. AraiY. HabuchiT. OhyamaC. Impact of nadir PSA level and time to nadir during initial androgen deprivation therapy on prognosis in patients with metastatic castration-resistant prostate cancer.World J. Urol.201937112365237310.1007/s00345‑019‑02664‑330729312
    [Google Scholar]
  27. PeiX WuK SunY GaoX GouX XuJ GaoF HeD LiL PSA time to nadir as a prognostic factor of first-line docetaxel treatment in castration-resistant prostate cancer: Multicenter validation in patients from the Chinese Prostate Cancer Consortium.UrolOncol.20203812.e112.E1710.1016/j.urolonc.2019.07.014
    [Google Scholar]
  28. FahmyO. AlhakamyN.A. AhmedO.A.A. Khairul-AsriM.G. Impact of prostate size on the outcomes of radical prostatectomy: A systematic review and meta-analysis.Cancers20211323613010.3390/cancers1323613034885239
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056248787231025072754
Loading
/content/journals/cmir/10.2174/0115734056248787231025072754
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test