Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

To investigate the magnetic resonance imaging (MRI) radiomics models in evaluating the human epidermal growth factor receptor 2(HER2) expression in breast cancer.

Materials and Methods

The MRI data of 161 patients with invasive ductal carcinoma (non-special type) of breast cancer were retrospectively collected, and the MRI radiomics models were established based on the MRI imaging features of the fat suppression T2 weighted image (T2WI) sequence, dynamic contrast-enhanced (DCE)-T1WIsequence and joint sequences. The T-test and the least absolute shrinkage and selection operator (LASSO) algorithm were used for feature dimensionality reduction and screening, respectively, and the random forest (RF) algorithm was used to construct the classification model.

Results

The model established by -RF algorithm was used in the ROC curve analysis. In predicting the low expression state of HER2 in breast cancer, the radiomics models of the fat suppression T2WI sequence, DCE-T1WI sequence, and the combination of the two sequences showed better predictive efficiency. In the receiver operating characteristic (ROC) curve analysis for the verification set of low, negative, and positive HER2 expression, the area under the ROC curve (AUC) value was 0.81, 0.72, and 0.62 for the DCE-T1WI sequence model, 0.79, 0.65 and 0.77 for the T2WI sequence model, and 0.84, 0.73 and 0.66 for the joint sequence model, respectively. The joint sequence model had the highest AUC value.

Conclusions

The MRI radiomics models can be used to effectively predict the HER2 expression in breast cancer and provide a non-invasive and early assistant method for clinicians to formulate individualized and accurate treatment plans.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056234429240426181002
2024-01-01
2025-06-22
The full text of this item is not currently available.

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. CuriglianoG. CriscitielloC. AndrèF. ColleoniM. Di LeoA. Highlights from the 13th st gallen international breast cancer conference 2013. access to innovation for patients with breast cancer: How to speed it up?Ecancermedicalscience20137299[J].23589728
    [Google Scholar]
  3. ModiS. ParkH. MurthyR.K. IwataH. TamuraK. TsurutaniJ. Moreno-AspitiaA. DoiT. SagaraY. RedfernC. KropI.E. LeeC. FujisakiY. SugiharaM. ZhangL. ShahidiJ. TakahashiS. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low–expressing advanced breast cancer: Results from a phase ib study.J. Clin. Oncol.202038171887189610.1200/JCO.19.0231832058843
    [Google Scholar]
  4. EigerD. AgostinettoE. Saúde-CondeR. de AzambujaE. The Exciting new field of HER2-low breast cancer treatment.Cancers2021135101510.3390/cancers1305101533804398
    [Google Scholar]
  5. WesołaM. JeleńM. A comparison of IHC and FISH cytogenetic methods in the evaluation of HER2 status in breast cancer.Adv. Clin. Exp. Med.201524589990410.17219/acem/2792326768643
    [Google Scholar]
  6. GucalpA. TrainaT.A. Targeting the androgen receptor in triple-negative breast cancer.Curr. Probl. Cancer2016402-414115010.1016/j.currproblcancer.2016.09.00427816190
    [Google Scholar]
  7. KarimS. QadirA. FarooqU. ShakirM. LaghariA.A. Hyperspectral imaging: A review and trends towards medical imaging.Curr. Med. Imaging Rev.202219541742710.2174/157340561866622051914435835598236
    [Google Scholar]
  8. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  9. KuhlC.K. TruhnD. The long route to standardized radiomics: Unraveling the knot from the end.Radiology2020295233934110.1148/radiol.202020005932159452
    [Google Scholar]
  10. RizzoS. BottaF. RaimondiS. OriggiD. FanciulloC. MorgantiA.G. BellomiM. Radiomics: The facts and the challenges of image analysis.Eur. Radiol. Exp.2018213610.1186/s41747‑018‑0068‑z30426318
    [Google Scholar]
  11. ParekhV.S. JacobsM.A. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI.NPJ Breast Cancer2017314310.1038/s41523‑017‑0045‑329152563
    [Google Scholar]
  12. WangQ. MaoN. LiuM. ShiY. MaH. DongJ. ZhangX. DuanS. WangB. XieH. Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: A feasibility study.Clin. Imaging20217213614110.1016/j.clinimag.2020.11.02433242692
    [Google Scholar]
  13. MaoN. DaiY. LinF. MaH. DuanS. XieH. ZhaoW. HongN. Radiomics nomogram of DCE-MRI for the prediction of axillary lymph node metastasis in breast cancer.Front. Oncol.20201054184910.3389/fonc.2020.54184933381444
    [Google Scholar]
  14. SaeedU. KumarK. KhuhroM.A. LaghariA.A. ShaikhA.A. RaiA. DeepLeukNet—A CNN based microscopy adaptation model for acute lymphoblastic leukemia classification.Multimedia Tools Appl.20238372101921043[J].10.1007/s11042‑023‑16191‑2
    [Google Scholar]
  15. ZhuangX. ChenC. LiuZ. ZhangL. ZhouX. ChengM. JiF. ZhuT. LeiC. ZhangJ. JiangJ. TianJ. WangK. Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy.Transl. Oncol.2020131110083110.1016/j.tranon.2020.10083132759037
    [Google Scholar]
  16. CaballoM. SanderinkW.B.G. HanL. GaoY. AthanasiouA. MannR.M. Four-dimensional machine learning radiomics for the pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic Contrast-Enhanced MRI.J. Magn. Reson. Imaging20235719711010.1002/jmri.2827335633290
    [Google Scholar]
  17. DuntonK. VondelingG. HancockE. PetrouM. BurnO. PaineA. Methods for estimating long-term outcomes for trastuzumab deruxtecan in HER2-positive unresectable or metastatic breast cancer after two or more anti-HER2 therapies.Target. Oncol.202217665566310.1007/s11523‑022‑00923‑936342619
    [Google Scholar]
  18. LeithnerD. HorvatJ.V. MarinoM.A. Bernard-DavilaB. JochelsonM.S. Ochoa-AlbizteguiR.E. MartinezD.F. MorrisE.A. ThakurS. PinkerK. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: Initial results.Breast Cancer Res.201921110610.1186/s13058‑019‑1187‑z31514736
    [Google Scholar]
  19. KimJ.Y. KimJ.J. HwangboL. LeeJ.W. LeeN.K. NamK.J. ChooK.S. KangT. ParkH. SonY. GrimmR. Diffusion-weighted MRI of estrogen receptor-positive, HER2-negative, node-negative breast cancer: Association between intratumoral heterogeneity and recurrence risk.Eur. Radiol.2020301667610.1007/s00330‑019‑06383‑631385051
    [Google Scholar]
  20. XieT. WangZ. ZhaoQ. BaiQ. ZhouX. GuY. PengW. WangH. Machine learning-based analysis of MR multiparametric radiomics for the subtype classification of breast cancer.Front. Oncol.2019950510.3389/fonc.2019.0050531259153
    [Google Scholar]
  21. PicklesM.D. LowryM. MantonD.J. TurnbullL.W. Prognostic value of DCE-MRI in breast cancer patients undergoing neoadjuvant chemotherapy: A comparison with traditional survival indicators.Eur. Radiol.20152541097110610.1007/s00330‑014‑3502‑525424563
    [Google Scholar]
  22. RotiliA. TrimboliR.M. PencoS. PesapaneF. TantrigeP. CassanoE. SardanelliF. Double reading of diffusion-weighted magnetic resonance imaging for breast cancer detection.Breast Cancer Res. Treat.2020180111112010.1007/s10549‑019‑05519‑y31938940
    [Google Scholar]
  23. GuarneriV. Brasó-MaristanyF. DieciM.V. GriguoloG. ParéL. Marín-AguileraM. MigliettaF. BottossoM. GiorgiC.A. BlascoP. CastilloO. GalvánP. VivancosA. VillagrasaP. ParkerJ.S. PerouC.M. ConteP. PratA. HER2DX genomic test in HER2-positive/hormone receptor-positive breast cancer treated with neoadjuvant trastuzumab and pertuzumab: A correlative analysis from the PerELISA trial.EBioMedicine20228510432010.1016/j.ebiom.2022.10432036374768
    [Google Scholar]
  24. SmithI. ProcterM. GelberR.D. GuillaumeS. FeyereislovaA. DowsettM. GoldhirschA. UntchM. MarianiG. BaselgaJ. KaufmannM. CameronD. BellR. BerghJ. ColemanR. WardleyA. HarbeckN. LopezR.I. MallmannP. GelmonK. WilckenN. WistE. Sánchez RoviraP. Piccart-GebhartM.J. HERA study team 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: A randomised controlled trial.Lancet20073699555293610.1016/S0140‑6736(07)60028‑217208639
    [Google Scholar]
  25. MonticcioloD.L. NewellM.S. MoyL. NiellB. MonseesB. SicklesE.A. Breast cancer screening in women at higher-than-average risk: Recommendations from the ACR.J. Am. Coll. Radiol.201815340841410.1016/j.jacr.2017.11.03429371086
    [Google Scholar]
  26. MaX. LiY. LiL. GaoC. LiuD. LiH. ZhaoZ. ZhaoB. Pyrotinib-based treatments in HER2-positive breast cancer patients with brain metastases.Ann. Med.20225413084309410.1080/07853890.2022.213941136331291
    [Google Scholar]
  27. WuZ. XuS. ZhouL. YinW. LinY. DuY. WangY. JiangY. YinK. ZhangJ. LuJ. Clinical significance of quantitative HER2 gene amplification as related to its predictive value in breast cancer patients in neoadjuvant setting.OncoTargets Ther.20181180180810.2147/OTT.S15763429497312
    [Google Scholar]
  28. SungJ.S. JochelsonM.S. BrennanS. JooS. WenY.H. MoskowitzC. ZhengJ. DershawD.D. MorrisE.A. MR imaging features of triple-negative breast cancers.Breast J.201319664364910.1111/tbj.1218224015869
    [Google Scholar]
  29. ZhangH. KaterjiH. TurnerB.M. AudehW. HicksD.G. HER2-low breast cancers: Incidence, HER2 staining patterns, clinicopathologic features, MammaPrint and BluePrint genomic profiles.Mod. Pathol.20223581075108210.1038/s41379‑022‑01019‑535184150
    [Google Scholar]
  30. CainE.H. SahaA. HarowiczM.R. MarksJ.R. MarcomP.K. MazurowskiM.A. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: A study using an independent validation set.Breast Cancer Res. Treat.2019173245546310.1007/s10549‑018‑4990‑930328048
    [Google Scholar]
  31. SatakeH. IshigakiS. ItoR. NaganawaS. Radiomics in breast MRI: Current progress toward clinical application in the era of artificial intelligence.Radiol. Med.20221271395610.1007/s11547‑021‑01423‑y34704213
    [Google Scholar]
  32. KimJ.J. KimJ.Y. SuhH.B. HwangboL. LeeN.K. KimS. LeeJ.W. ChooK.S. NamK.J. KangT. ParkH. Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging.Eur. Radiol.202232282283310.1007/s00330‑021‑08166‑434345946
    [Google Scholar]
  33. LeithnerD. Bernard-DavilaB. MartinezD.F. HorvatJ.V. JochelsonM.S. MarinoM.A. AvendanoD. Ochoa-AlbizteguiR.E. SuttonE.J. MorrisE.A. ThakurS.B. PinkerK. Radiomic signatures derived from diffusion-weighted imaging for the assessment of breast cancer receptor status and molecular subtypes.Mol. Imaging Biol.202022245346110.1007/s11307‑019‑01383‑w31209778
    [Google Scholar]
  34. JiangZ. SongL. LuH. YinJ. The potential use of DCE-MRI texture analysis to predict HER2 2+ status.Front. Oncol.2019924210.3389/fonc.2019.0024231032222
    [Google Scholar]
  35. LuH. YinJ. Texture analysis of breast DCE-MRI based on intratumoral subregions for predicting HER2 2+ status.Front. Oncol.20201054310.3389/fonc.2020.0054332373531
    [Google Scholar]
  36. WangX. WangX. ZhangY. ZhangD. SongZ. MengQ. LiY. WangC. Development of the prediction model based on clinical-imaging omics: Molecular typing and sentinel lymph node metastasis of breast cancer.Ann. Transl. Med.2022101374910.21037/atm‑22‑284435957717
    [Google Scholar]
  37. SantucciD. FaiellaE. CordelliE. CalabreseA. LandiR. de FeliceC. Beomonte ZobelB. GrassoR.F. IannelloG. SodaP. The impact of tumor edema on T2-weighted 3T-MRI invasive breast cancer histological characterization: A pilot radiomics study.Cancers20211318463510.3390/cancers1318463534572862
    [Google Scholar]
  38. AnaissiA. GoyalM. CatchpooleD.R. BrayteeA. KennedyP.J. Ensemble feature learning of genomic data using support vector machine.PLoS One2016116e015733010.1371/journal.pone.015733027304923
    [Google Scholar]
  39. CastaldoR. PaneK. NicolaiE. SalvatoreM. FranzeseM. The impact of normalization approaches to automatically detect radiogenomic phenotypes characterizing breast cancer receptors status.Cancers202012251810.3390/cancers1202051832102334
    [Google Scholar]
  40. GeisserS. The predictive sample reuse method with applications.J. Am. Stat. Assoc.197570350320328[J].10.1080/01621459.1975.10479865
    [Google Scholar]
  41. StogiannosN. BougiasH. GeorgiadouE. LeandrouS. PapavasileiouP. Analysis of radiomic features derived from post-contrast T1-weighted images and apparent diffusion coefficient (ADC) maps for breast lesion evaluation: A retrospective study.Radiography202329235536110.1016/j.radi.2023.01.01936758380
    [Google Scholar]
  42. LiC. SongL. YinJ. Intratumoral and peritumoral radiomics based on functional parametric maps from breast DCE-MRI for prediction of HER -2 and Ki-67 status.J. Magn. Reson. Imaging202154370371410.1002/jmri.2765133955619
    [Google Scholar]
  43. BramanN. PrasannaP. WhitneyJ. SinghS. BeigN. EtesamiM. BatesD.D.B. GallagherK. BlochB.N. VulchiM. TurkP. BeraK. AbrahamJ. SikovW.M. SomloG. HarrisL.N. GilmoreH. PlechaD. VaradanV. MadabhushiA. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2) –positive breast cancer.JAMA Netw. Open201924e19256110.1001/jamanetworkopen.2019.256131002322
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056234429240426181002
Loading
/content/journals/cmir/10.2174/0115734056234429240426181002
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Breast cancer; Death; HER2 expression; MRI; Radiomics; Women
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test