Skip to content
2000
  • E-ISSN:

Abstract

 Objective: 

This work aimed to evaluate the level set segmentation algorithm on ocular surface thermograms. In addition, the vascularity functioning between the contralateral portions of two eyes (right and left) was identified using statistical analysis methods.

Methods:

A total of 25 healthy participants with an average age of 35 years (20 men and 5 women) were selected in April 2022. Thermogram images were captured using a FLIR T series thermal camera. Conventional image processing techniques, such as filtering and edge detection, were used to preprocess thermograms. Next, the level set approach was used with the edge-detected pattern as an input to an automated segmented region of interest (ROI).

Results:

Five metrics, namely Dice Coefficient, Tanimoto Index, Jaccard Index, Volume Similarity, and Structural Similarity, were used to assess the performance of the segmentation technique compared to ground truth, which showed 97.5%, 92.5%, 94.5%, 96.5%, and 96.5% correlation, respectively, between the segmented and the ground truth images with average values for both the eyes. Statistical analysis demonstrated that the contralateral portions of the ocular thermograms were significantly different in terms of vascular distribution between the left and right eyes (p < 0.005).

Conclusion:

The level set method efficiently segmented the ROI in ocular thermograms with maximum correlation. According to the segmentation’s results, the model showed the dissimilarity between the contralateral parts of the left and right eyes in healthy cases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/1573405620666230829150100
2023-10-13
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e290823220478.html?itemId=/content/journals/cmim/10.2174/1573405620666230829150100&mimeType=html&fmt=ahah

References

  1. LawsonR. Implications of surface temperatures in the diagnosis of breast cancer.Can. Med. Assoc. J.195675430931113343098
    [Google Scholar]
  2. HerryC.L. FrizeM. Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging.Biomed. Eng. Online2004311910.1186/1475‑925X‑3‑1915222887
    [Google Scholar]
  3. Gonzalez-HernandezJ.L. RecinellaA.N. KandlikarS.G. DabydeenD. MedeirosL. PhatakP. Technology, application and potential of dynamic breast thermography for the detection of breast cancer.Int. J. Heat Mass Transf.201913155857310.1016/j.ijheatmasstransfer.2018.11.089
    [Google Scholar]
  4. NgE.Y.K. A review of thermography as promising non-invasive detection modality for breast tumor.Int. J. Therm. Sci.200948584985910.1016/j.ijthermalsci.2008.06.015
    [Google Scholar]
  5. MahA.J. Ghazi ZadehL. Khoshnam TehraniM. AskariS. ShadganB. Studying the accuracy of infrared thermography for measuring core body temperature.Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables III. ShadganB. GandjbakhcheA.H. SPIE20221510.1117/12.2608929
    [Google Scholar]
  6. TanY.K. HongC. LiH. AllenJ.C.Jr ThumbooJ. A novel use of combined thermal and ultrasound imaging in detecting joint inflammation in rheumatoid arthritis.Eur. J. Radiol.202113410942110.1016/j.ejrad.2020.10942133254064
    [Google Scholar]
  7. NeumannŁ. NowakR. StępieńJ. ChmielewskaE. PankiewiczP. SolanR. Jahnz-RóżykK. Thermography based skin allergic reaction recognition by convolutional neural networks.Sci. Rep.2022121264810.1038/s41598‑022‑06460‑935173225
    [Google Scholar]
  8. GonzálezJ.R. DamiãoC. MoranM. PantaleãoC.A. CruzR.A. BalariniG.A. ConciA. A Computational study on the role of parameters for identification of thyroid nodules by infrared images (and Comparison with Real Data).Sensors20212113445910.3390/s2113445934209986
    [Google Scholar]
  9. PurslowC. WolffsohnJ.S. Ocular surface temperature: A review.Eye Contact Lens200531311712310.1097/01.ICL.0000141921.80061.1715894878
    [Google Scholar]
  10. LeshnoA. SternO. BarkanaY. KapelushnikN. SingerR. PratD.L. CohenG. Ben-DavidG. AbrahamiD. Huna-BaronR. SkaatA. Ocular surface temperature differences in glaucoma.Eur. J. Ophthalmol.20223231518152410.1177/1120672121102372334105387
    [Google Scholar]
  11. VicneshJ. OhS.L. WeiJ.K.E. CiaccioE.J. ChuaK.C. TongL. Rajendra AcharyaU. Thoughts concerning the application of thermogram images for automated diagnosis of dry eye - A review.Infrared Phys. Technol.202010610327110.1016/j.infrared.2020.103271
    [Google Scholar]
  12. MorganP.B. SmythJ.V. TulloA.B. EfronN. Ocular temperature in carotid artery stenosis.Optom. Vis. Sci.1999761285085410.1097/00006324‑199912000‑0002110612407
    [Google Scholar]
  13. ChiarelliA.M. CardoreD. FilippiniC. Age-related ocular surface modifications assessment combining thermal infrared and deep learning approach.Infrared Sensors, Devices, and Applications XI. SoodA.K. WijewarnasuriyaP. D’SouzaA.I. SPIE20212210.1117/12.2594554
    [Google Scholar]
  14. AnsariH. HaghighiS. Headache or facial pain attributed to disorder of the cranium, eyes, ears, nose, sinuses, teeth, mouth, or other facial structure.Headache and Migraine in Practice.Elsevier202218720010.1016/B978‑0‑323‑99729‑4.00013‑2
    [Google Scholar]
  15. TanJ.H. NgE.Y.K. Rajendra AcharyaU. CheeC. Study of normal ocular thermogram using textural parameters.Infrared Phys. Technol.201053212012610.1016/j.infrared.2009.10.006
    [Google Scholar]
  16. TanJ.H. NgE.Y.K. Acharya UR. An efficient automated algorithm to detect ocular surface temperature on sequence of thermograms using snake and target tracing function.J. Med. Syst.201135594995810.1007/s10916‑010‑9552‑620703645
    [Google Scholar]
  17. TanJ.H. NgE.Y.K. AcharyaU.R. SuriJ.S. The applications of feature-based image metamorphosis and eyelashes removal in the investigations of ocular thermographic sequences.Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies.New York, NYSpringer201131533410.1007/978‑1‑4419‑8204‑9_12
    [Google Scholar]
  18. QianruixueZ. LiangB.K.W. Evaluation of ocular surface temperature of contact lens wearer using thermograms.J. Med. Imaging Health Inform.20133462262610.1166/jmihi.2013.1213
    [Google Scholar]
  19. AcharyaU.R. TanJ.H. KohJ.E.W. SudarshanV.K. YeoS. TooC.L. ChuaC.K. NgE.Y.K. TongL. Automated diagnosis of dry eye using infrared thermography images.Infrared Phys. Technol.20157126327110.1016/j.infrared.2015.04.007
    [Google Scholar]
  20. SudarshanV.K. KohJEW AcharyaU.R Evaluation of evaporative dry eye disease using thermal images of ocular surface regions with DWT and gabor transform.Application of Infrared to Biomedical Sciences.SingaporeSpringer201735937510.1007/978‑981‑10‑3147‑2_20
    [Google Scholar]
  21. SudarshanV.K. KohJ.W. TanJ.H. HagiwaraY. ChuaK.C. NgE.K. TongL. Performance evaluation of dry eye detection system using higher-order spectra features for different noise levels in IR thermal images.J. Mech. Med. Biol.2017177174001010.1142/S0219519417400103
    [Google Scholar]
  22. MatteoliS. VannettiF. SodiA. CorviA. Infrared thermographic investigation on the ocular surface temperature of normal subjects.Physiol. Meas.202041404500310.1088/1361‑6579/ab6b4831935708
    [Google Scholar]
  23. Josephine SelleJ. ShenbagavalliA. SriraamN. VenkatramanB. JayashreeM. MenakaM. Automated recognition of ROIs for breast thermograms of lateral view-a pilot study.Quant. Infrared Thermogr. J.201815212010.1080/17686733.2018.1426137
    [Google Scholar]
  24. IslamM.M. KashemM.A. Parametric active contour model-based tumor area segmentation from brain MRI images using minimum initial points.Iran J. Comput. Sci.20214212513210.1007/s42044‑020‑00078‑8
    [Google Scholar]
  25. SethianJ.A. Evolution, implementation, and application of level set and fast marching methods for advancing fronts.J. Comput. Phys.2001169250355510.1006/jcph.2000.6657
    [Google Scholar]
  26. GeP. ChenY. WangG. WengG. A hybrid active contour model based on pre-fitting energy and adaptive functions for fast image segmentation.Pattern Recognit. Lett.2022158717910.1016/j.patrec.2022.04.025
    [Google Scholar]
  27. ZhuX. ChengK. ChenQ. WangY. ZhangZ. Improved gradient vector flow over manifold for image segmentation using active contours.4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI).Yibin, China20-22 Aug2021232710.1109/PRAI53619.2021.9551057
    [Google Scholar]
  28. JhaS. SonL.H. KumarR. PriyadarshiniI. SmarandacheF. LongH.V. Neutrosophic image segmentation with dice coefficients.Measurement201913476277210.1016/j.measurement.2018.11.006
    [Google Scholar]
  29. WangZ. BovikA.C. SheikhH.R. SimoncelliE.P. Image quality assessment: From error visibility to structural similarity.IEEE Trans. Image Process.200413460061210.1109/TIP.2003.81986115376593
    [Google Scholar]
  30. KoenemanS.H. CavanaughJ.E. An improved asymptotic test for the Jaccard similarity index for binary data.Stat. Probab. Lett.202218410937510.1016/j.spl.2022.109375
    [Google Scholar]
  31. ChenY. HeT. Image denoising via an adaptive weighted anisotropic diffusion.Multidimens. Syst. Signal Process.202132265166910.1007/s11045‑020‑00760‑x
    [Google Scholar]
  32. JosephineJ. UlaganathanM. ShenbagavalliA. VenkatramanB. MenakaM. Statistical analysis on breast thermograms using logistic regression for image classification.IEEE Bombay Section Signature Conference (IBSSC).Gwalior, India18-20 Nov20211610.1109/IBSSC53889.2021.9673168
    [Google Scholar]
  33. YapB.W. SimC.H. Comparisons of various types of normality tests.J. Stat. Comput. Simul.201181122141215510.1080/00949655.2010.520163
    [Google Scholar]
  34. TanJ.H. NgE.Y.K. Rajendra AcharyaU. CheeC. Infrared thermography on ocular surface temperature: A review.Infrared Phys. Technol.20095249710810.1016/j.infrared.2009.05.002
    [Google Scholar]
  35. GolestaniN. EtehadTavakolM. NgE. Level set method for segmentation of infrared breast thermograms.Excli. J.20141324125126417258
    [Google Scholar]
/content/journals/cmim/10.2174/1573405620666230829150100
Loading
/content/journals/cmim/10.2174/1573405620666230829150100
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test