Skip to content
2000
  • E-ISSN:

Abstract

Objective:

This study aims to investigate the efficiency of a radiomics model in identifying high-frequency microsatellite instability (MSI-H) and microsatellite stability (MSS) of colorectal liver metastasis (CRLM) according to machine learning radiomics features of enhanced CT liver images.

Materials and Methods:

A total of 12 patients with MSI-H CRLM and 96 patients with MSS CRLM were randomly divided into the training group and internal validation group according to the ratio of 7: 3 (training: 75 cases, validation: 33 cases). From the enhanced CT (portal phase) image data of patients, 788 radiomics features were extracted, and a random forest model was established with the optimal features selected. The receiver operating characteristics (ROC) curve analysis was performed to assess the model’s diagnostic efficacy.

Results:

The training group comprised 8 patients with MSI-H CRLM and 67 patients with MSS CRLM, and the internal validation group included 4 patients with MSI-H CRLM and 29 patients with MSS CRLM. After feature selection, 7 radiomics features good for distinguishing MSI-H CRLM and MSS CRLM were screened out. The ROC curve analysis demonstrated that the random forest model had the AUC (area under the ROC curve) value 0.88, accuracy 0.85, sensitivity 0.85, specificity 0.92, and F1 score 0.88 in the training group. The model had an AUC value of 0.75, accuracy of 0.74, sensitivity of 0.81, specificity of 0.85, and F1_score of 0.78 in the internal validation group in identifying the MSI-H from the MSS CRLM. In order to evaluate the robustness of the overall model, the 788 features obtained were all applied to the 5-fold cross-validation, with the model being built on the random forest and analyzed with the ROC curve analysis. The AUC value of the model was 0.86 (P<0.05), accuracy value 0.91, sensitivity 0.60, and specificity 0.95.

Conclusion:

The random forest prediction model built on the radiometric features extracted from enhanced CT images can be used to identify the MSI-H from the MSS CRLM and may provide effective guidance for clinical immunotherapy of CRLM patients with unknown MSI status.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/1573405620666230825113524
2023-10-13
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e250823220368.html?itemId=/content/journals/cmim/10.2174/1573405620666230825113524&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2017.CA Cancer J. Clin.201767173010.3322/caac.2138728055103
    [Google Scholar]
  2. ChenW. ZhengR. BaadeP.D. ZhangS. ZengH. BrayF. JemalA. YuX.Q. HeJ. Cancer statistics in China, 2015.CA Cancer J. Clin.201666211513210.3322/caac.2133826808342
    [Google Scholar]
  3. AkgülÖ. ÇetinkayaE. ErsözŞ. TezM. Role of surgery in colorectal cancer liver metastases.World J. Gastroenterol.201420206113612210.3748/wjg.v20.i20.611324876733
    [Google Scholar]
  4. BolandC.R. GoelA. Microsatellite instability in colorectal cancer.Gastroenterology2010138620732087.e310.1053/j.gastro.2009.12.06420420947
    [Google Scholar]
  5. Birkenkamp-DemtroderK. MansillaF. SørensenF.B. KruhøfferM. CabezónT. ChristensenL.L. AaltonenL.A. VerspagetH.W. Falck ØrntoftT. Phosphoprotein Keratin 23 accumulates in MSS but not MSI colon cancers in vivo and impacts viability and proliferation in vitro.Mol. Oncol.20071218119510.1016/j.molonc.2007.05.00519383294
    [Google Scholar]
  6. KokM. ChalabiM. HaanenJ. How I treat MSI cancers with advanced disease.ESMO Open20194S2e00051110.1136/esmoopen‑2019‑00051131231574
    [Google Scholar]
  7. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  8. LambinP. LeijenaarR.T.H. DeistT.M. PeerlingsJ. de JongE.E.C. van TimmerenJ. SanduleanuS. LarueR.T.H.M. EvenA.J.G. JochemsA. van WijkY. WoodruffH. van SoestJ. LustbergT. RoelofsE. van ElmptW. DekkerA. MottaghyF.M. WildbergerJ.E. WalshS. Radiomics: The bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol.2017141274976210.1038/nrclinonc.2017.14128975929
    [Google Scholar]
  9. BibaultJ.E. XingL. GiraudP. El AyachyR. GiraudN. DecazesP. BurgunA. GiraudP. Radiomics: A primer for the radiation oncologist.Cancer Radiother.202024540341010.1016/j.canrad.2020.01.01132265157
    [Google Scholar]
  10. RaoS.X. LambregtsD.M.J. SchnerrR.S. van OmmenW. van NijnattenT.J.A. MartensM.H. HeijnenL.A. BackesW.H. VerhoefC. ZengM.S. BeetsG.L. Beets-TanR.G.H. Whole‐liver CT texture analysis in colorectal cancer: Does the presence of liver metastases affect the texture of the remaining liver?United European Gastroenterol. J.20142653053810.1177/205064061455246325452849
    [Google Scholar]
  11. HanY. ChaiF. WeiJ. YueY. ChengJ. GuD. ZhangY. TongT. ShengW. HongN. YeY. WangY. TianJ. Identification of predominant histopathological growth patterns of colorectal liver metastasis by multi-habitat and multi-sequence based radiomics analysis.Front. Oncol.202010136310.3389/fonc.2020.0136332923388
    [Google Scholar]
  12. ChengJ. WeiJ. TongT. ShengW. ZhangY. HanY. GuD. HongN. YeY. TianJ. WangY. Prediction of histopathologic growth patterns of colorectal liver metastases with a noninvasive imaging method.Ann. Surg. Oncol.201926134587459810.1245/s10434‑019‑07910‑x31605342
    [Google Scholar]
  13. AhnS.J. KimJ.H. ParkS.J. HanJ.K. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis.Eur. J. Radiol.201685101867187410.1016/j.ejrad.2016.08.01427666629
    [Google Scholar]
  14. AndersenI.R. ThorupK. AndersenM.B. OlesenR. MortensenF.V. NielsenD.T. RasmussenF. Texture in the monitoring of regorafenib therapy in patients with colorectal liver metastases.Acta Radiol.20196091084109310.1177/028418511881794030612433
    [Google Scholar]
  15. BeckersR.C.J. TrebeschiS. MaasM. SchnerrR.S. SijmonsJ.M.L. BeetsG.L. HouwersJ.B. Beets-TanR.G.H. LambregtsD.M.J. CT texture analysis in colorectal liver metastases and the surrounding liver parenchyma and its potential as an imaging biomarker of disease aggressiveness, response and survival.Eur. J. Radiol.2018102152110.1016/j.ejrad.2018.02.03129685529
    [Google Scholar]
  16. LiangH.Y. HuangY.Q. YangZ.X. Ying-Ding ZengM.S. RaoS.X. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases.Eur. Radiol.20162672009201810.1007/s00330‑015‑4043‑226494642
    [Google Scholar]
  17. RaoS.X. LambregtsD.M.J. SchnerrR.S. BeckersR.C.J. MaasM. AlbarelloF. RiedlR.G. DejongC.H.C. MartensM.H. HeijnenL.A. BackesW.H. BeetsG.L. ZengM.S. Beets-TanR.G.H. CT texture analysis in colorectal liver metastases: A better way than size and volume measurements to assess response to chemotherapy?United European Gastroenterol. J.20164225726310.1177/205064061560160327087955
    [Google Scholar]
  18. RavanelliM. AgazziG.M. TononcelliE. RocaE. CabassaP. BaiocchiG. BerrutiA. MaroldiR. FarinaD. Texture features of colorectal liver metastases on pretreatment contrast-enhanced CT may predict response and prognosis in patients treated with bevacizumab-containing chemotherapy: A pilot study including comparison with standard chemotherapy.Radiol. Med.2019124987788610.1007/s11547‑019‑01046‑431172448
    [Google Scholar]
  19. van HeldenE.J. VacherY.J.L. van WieringenW.N. van VeldenF.H.P. VerheulH.M.W. HoekstraO.S. BoellaardR. Menke-van der Houven van OordtC.W. Radiomics analysis of pre-treatment [18F]FDG PET/CT for patients with metastatic colorectal cancer undergoing palliative systemic treatment.Eur. J. Nucl. Med. Mol. Imaging201845132307231710.1007/s00259‑018‑4100‑630094460
    [Google Scholar]
  20. ZhangH. LiW. HuF. SunY. HuT. TongT. MR texture analysis: Potential imaging biomarker for predicting the chemotherapeutic response of patients with colorectal liver metastases.Abdom. Radiol.2019441657110.1007/s00261‑018‑1682‑129967982
    [Google Scholar]
  21. O’KeefeS.J.D. LiJ.V. LahtiL. OuJ. CarboneroF. MohammedK. PosmaJ.M. KinrossJ. WahlE. RuderE. VipperlaK. NaidooV. MtshaliL. TimsS. PuylaertP.G.B. DeLanyJ. KrasinskasA. BenefielA.C. KasebH.O. NewtonK. NicholsonJ.K. de VosW.M. GaskinsH.R. ZoetendalE.G. Fat, fibre and cancer risk in African Americans and rural Africans.Nat. Commun.201561634210.1038/ncomms734225919227
    [Google Scholar]
  22. GiannakisM. MuX.J. ShuklaS.A. QianZ.R. CohenO. NishiharaR. BahlS. CaoY. Amin-MansourA. YamauchiM. SukawaY. StewartC. RosenbergM. MimaK. InamuraK. NoshoK. NowakJ.A. LawrenceM.S. GiovannucciE.L. ChanA.T. NgK. MeyerhardtJ.A. Van AllenE.M. GetzG. GabrielS.B. LanderE.S. WuC.J. FuchsC.S. OginoS. GarrawayL.A. Genomic correlates of immune-cell infiltrates in colorectal carcinoma.Cell Rep.201615485786510.1016/j.celrep.2016.03.07527149842
    [Google Scholar]
  23. WuY. ZhangC. FeiL. Effect of microsatellite instability on chemotherapy response and prognosis of patients with stage IV colorectal cancer.Chin. J. Cancer2015257522528
    [Google Scholar]
  24. Petaccia de MacedoM. MeloF.M. RibeiroH.S.C. MarquesM.C. KagoharaL.T. BegnamiM.D. NetoJ.C. RibeiroJ.S. SoaresF.A. CarraroD.M. CunhaI.W. KRAS mutation status is highly homogeneous between areas of the primary tumor and the corresponding metastasis of colorectal adenocarcinomas: One less problem in patient care.Am. J. Cancer Res.2017791978198928979819
    [Google Scholar]
  25. JiangH. ZhangY. LuF. . Dynamic enhanced CT imaging findings of colorectal cancer patients with liver metastasis.Shiyong Ganzangbing Zazhi2018211125126
    [Google Scholar]
  26. TanJichu ZengPengcheng HuiTao CT imaging characteristics and regularity analysis of colorectal cancer liver metastasis tumor.Guangzhou Med.20195016467
    [Google Scholar]
  27. GaneshanB. MilesK.A. YoungR.C.D. ChatwinC.R. In search of biologic correlates for liver texture on portal-phase CT.Acad. Radiol.20071491058106810.1016/j.acra.2007.05.02317707313
    [Google Scholar]
  28. GaneshanB. MilesK.A. YoungR.C.D. ChatwinC.R. Texture analysis in non-contrast enhanced CT: Impact of malignancy on texture in apparently disease-free areas of the liver.Eur. J. Radiol.200970110111010.1016/j.ejrad.2007.12.00518242909
    [Google Scholar]
  29. DohanA. GallixB. GuiuB. Le MalicotK. ReinholdC. SoyerP. BennounaJ. GhiringhelliF. BarbierE. BoigeV. TaiebJ. BouchéO. FrançoisE. PhelipJ.M. BorelC. FarouxR. SeitzJ.F. JacquotS. Ben AbdelghaniM. Khemissa-AkouzF. GenetD. JouveJ.L. RinaldiY. DesseigneF. TexereauP. SucE. LepageC. AparicioT. HoeffelC. Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab.Gut202069353153910.1136/gutjnl‑2018‑31640731101691
    [Google Scholar]
  30. DercleL. LuL. SchwartzL.H. QianM. TejparS. EggletonP. ZhaoB. PiessevauxH. Radiomics response signature for identification of metastatic colorectal cancer sensitive to therapies targeting EGFR pathway.J. Natl. Cancer Inst.2020112990291210.1093/jnci/djaa01732016387
    [Google Scholar]
  31. JingZ. ZhouY. MengQ. Study on the value of CT texture analysis in predicting therapeutic response of colorectal cancer liver metastases after combined targeted chemotherapy.J. Biomed. Eng.2018356914920
    [Google Scholar]
  32. LiangHeyue YangChaoxia FuCaixia The value of whole liver MRI histogram analysis in detecting liver metastasis and recurrence of colorectal cancer.Tumor Imaging20172611824
    [Google Scholar]
  33. LeeS.J. ZeaR. KimD.H. LubnerM.G. DemingD.A. PickhardtP.J. CT texture features of liver parenchyma for predicting development of metastatic disease and overall survival in patients with colorectal cancer.Eur. Radiol.20182841520152810.1007/s00330‑017‑5111‑629164382
    [Google Scholar]
  34. JunTan Advances in analysis methods of image genomics.Adv. biotechnol.201884277283
    [Google Scholar]
  35. ZhuX. XuC. LingZ. Characteristics of KRAS and BRAF gene mutations and their clinicopathological correlation in Chinese colorectal cancer patients.Chinese J. Pathol.201241958458923157824
    [Google Scholar]
  36. LubnerM.G. StaboN. LubnerS.J. del RioA.M. SongC. HalbergR.B. PickhardtP.J. CT textural analysis of hepatic metastatic colorectal cancer: Pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes.Abdom. Imaging20154072331233710.1007/s00261‑015‑0438‑425968046
    [Google Scholar]
  37. WuJingjun LiuAilian YingZhao Prediction of microsatellite instability of colorectal cancer by texture analysis of iodine (water) image of spectral CT imaging.China Med. Imaging Technol.2019351116831688
    [Google Scholar]
  38. YangJ. GuoX. OuX. ZhangW. MaX. Discrimination of pancreatic serous cystadenomas from mucinous cystadenomas with CT textural features: Based on machine learning.Front. Oncol.2019949410.3389/fonc.2019.0049431245294
    [Google Scholar]
/content/journals/cmim/10.2174/1573405620666230825113524
Loading
/content/journals/cmim/10.2174/1573405620666230825113524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test