Skip to content
2000
  • E-ISSN:

Abstract

Background:

DWI and ADC-mapping was performed to analyze hepatic metastasis of GIST, GEP-NET.

Objective:

The objective of this study is to present hepatic metastasis of GIST and GEP-NET with Diffusion weighted MR imaging(DWI) and the Apparent diffusion coefficients (ADC) values of masses.

Methods:

18 GIST patients and 8 GEP-NET patients were examined retrospectively. 11 males and 6 females were present in GIST group, 7 males to 5 females were involved in GEP-NET group. 18 primary GIST and 10 hepatic metastasis of GIST, 8 original GEP-NET and 19 hepatic metastasis of GEP-NET; total 55 GIST and GEP-NET masses were analysed by ADC mapping. MR images were acquired by 1,5 T MR units (32 mT/min gradient strength- Achieva; Philips Healthcare, Best, Netherlands and 32 channel GE Signa GE-Wisconsin-USA); by using a 4-8 channel standard phased-array torso XL coil, all images were evaluated by an Abdominal MRI experienced radiologist. DWI was performed in the transverse plane by using spin-echo-planar imaging sequence.

Results:

No statistical differences were observed between GIST and GEP-NET patients according to age and gender variations. No significant statistical differences were observed according to the diameters and ADC values of GIST and GEP-NET patients. A significant statistical difference was observed between GIST and GEP-NET groups in terms of size of liver metastasis which was significantly higher in GIST patients. All three groups (GIST_Hep. MET, GEP-NET_Liver_Met and normal) were statistically differed according to ADC values. With the ROC curve analysis: Hepatic metastasis of GIST(n=10) and normal liver (n:47) had cut-off value for ADC: 0.925 under AUC: 0.939 with regard to ADC values and regarded 89.4% Sensitivity, 100% Specificity, 100% PPV and 66.7% PPV. ROC curve of GEP NET_ Hepatic metastasis (n=19) group and normal liver (n:47) group presented cut-off value for ADC: 0.860 under AUC: 0.967 correlated to ADC values with 93.6% sensitivity, 89.5% specificity, 95.7% PPV and 85% PPV.

Conclusion:

High cellular tumors resulted from liver metastasis of GIST and GEP-NET’s, and a positive correlation was observed between ADC values and cellularity/differentiation ratios of metastatic masses.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/1573405620666230522151427
2023-08-16
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e220523217207.html?itemId=/content/journals/cmim/10.2174/1573405620666230522151427&mimeType=html&fmt=ahah

References

  1. AydinH. MetinM.R. KizilgozV. Results of gastrointestinal stromal tumors, correlated to the endoscopy-endosonography and histopathology. A retrospective research.J Cancer Clin Oncol.201511100103
    [Google Scholar]
  2. GrandeC. HallerD.G. Gastrointestinal stromal tumors and neuroendocrine tumors.Semin. Oncol. Nurs.2009251486010.1016/j.soncn.2008.10.00419217505
    [Google Scholar]
  3. MiettinenM. LasotaJ. Gastrointestinal stromal tumors-Definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis.Virchows Arch.2001438111210.1007/s00428000033811213830
    [Google Scholar]
  4. HorwitzB.M. ZamoraG.E. GallegosM.P. Best cases from the AFIP: Gastrointestinal stromal tumor of the small bowel.Radiographics201131242943410.1148/rg.31210503121415188
    [Google Scholar]
  5. BareckE. Ba-SsalamahA. BrodowiczT. EistererW. HäfnerM. HögenauerC. KastnerU. KührT. LängleF. Liegl-AtzwangerB. SchoppmannS.F. WidmannG. WrbaF. ZacherlJ. PlonerF. Gastrointestinal stromal tumors: Diagnosis, therapy and follow-up care in Austria.Wien. Med. Wochenschr.20131635-613715210.1007/s10354‑013‑0187‑323508516
    [Google Scholar]
  6. KimH.C. LeeJ.M. KimK.W. ParkS.H. KimS.H. LeeJ.Y. HanJ.K. ChoiB.I. Gastrointestinal stromal tumors of the stomach: CT findings and prediction of malignancy.AJR Am. J. Roentgenol.2004183489389810.2214/ajr.183.4.183089315385278
    [Google Scholar]
  7. SundinA. VulliermeM.P. KaltsasG. PlöckingerU. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: Radiological examinations.Neuroendocrinology200990216718310.1159/00018485519077417
    [Google Scholar]
  8. KulaliF. Semiz-OysuA. DemirM. Segmen-YilmazM. BukteY. Role of diffusion-weighted MR imaging in predicting the grade of nonfunctional pancreatic neuroendocrine tumors.Diagn. Interv. Imaging201899530130910.1016/j.diii.2017.10.01229258825
    [Google Scholar]
  9. VerdeF GalatolaR RomeoV Pancreatic neuroendocrine tumors in patients with multiple endocrine neoplasia type 1: Diagnostic value of different MRI sequences.Neuroendocrinology202111169670410.1159/000509647
    [Google Scholar]
  10. LeungD. SchwartzL. Imaging of neuroendocrine tumors.Semin. Oncol.201340110911910.1053/j.seminoncol.2012.11.00823391118
    [Google Scholar]
  11. RockallA.G. ReznekR.H. Imaging of neuroendocrine tumours (CT/MR/US).Best Pract. Res. Clin. Endocrinol. Metab.2007211436810.1016/j.beem.2007.01.00317382265
    [Google Scholar]
  12. PlöckingerU. RindiG. ArnoldR. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours. A consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS).Neuroendocrinology200480639442410.1159/00008523715838182
    [Google Scholar]
  13. McDermottS. O’NeillA.C. SkehanS.J. Staging of gastroenteropancreatic neuroendocrine tumors: How we do it based on an evidence-based approach.Clin. Imaging201337219420010.1016/j.clinimag.2012.05.00623465968
    [Google Scholar]
  14. BondsM. RochaF.G. Neuroendocrine tumors of the pancreatobiliary and gastrointestinal tracts.Surg. Clin. North Am.2020100363564810.1016/j.suc.2020.02.01032402306
    [Google Scholar]
  15. ErikssonB KloeppelG KrenningEP Consensus guidelines for the management of patients with digestive neuroendocrine tumors-well-differentiated jejunal-ileal tumor/carcinoma.Neuroendocrinology20088781910.1159/000111034
    [Google Scholar]
  16. ÖbergK. AstrupL. ErikssonB. Guidelines for the management of gastroenteropancreatic neuroendocrine tumours (including bronchopulmonary and thymic neoplasms).Acta Oncol.200443761610.1080/0284186041001850215545182
    [Google Scholar]
  17. CivesM. StrosbergJ.R. Gastroenteropancreatic neuroendocrine tumors.CA Cancer J. Clin.201868647148710.3322/caac.2149330295930
    [Google Scholar]
  18. NamimotoT. YamashitaY. SumiS. TangY. TakahashiM. Focal liver masses: characterization with diffusion-weighted echo-planar MR imaging.Radiology1997204373974410.1148/radiology.204.3.92802529280252
    [Google Scholar]
  19. IchikawaT. HaradomeH. HachiyaJ. NitatoriT. ArakiT. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: Detection and characterization of focal hepatic lesions.AJR Am. J. Roentgenol.1998170239740210.2214/ajr.170.2.94569539456953
    [Google Scholar]
  20. BanoS. PuriS.K. UpretiL. ChaudharyV. SantH.K. GondalR. Gastrointestinal stromal tumors (GISTs): An imaging perspective.Jpn. J. Radiol.201230210511510.1007/s11604‑011‑0020‑022190071
    [Google Scholar]
  21. BurkillG.J.C. BadranM. Al-MuderisO. Malignant gastrointestinal stromal tumor: Distribution, imaging features, and pattern of metastatic spread.Radiology2003226252753210.1148/radiol.226201188012563150
    [Google Scholar]
  22. UlusanS. KoçZ. Radiologic findings in malignant gastrointestinal stromal tumors.Diagn. Interv. Radiol.200915212112619517382
    [Google Scholar]
  23. Werewka-MaczugaA. OsińskiT. ChrzanR. BuczekM. UrbanikA. Characteristics of computed tomography imaging of gastrointestinal stromal tumor (GIST) and related diagnostic problems.Pol. J. Radiol.2011763384822802840
    [Google Scholar]
  24. TaalB.G. VisserO. Epidemiology of neuroendocrine tumours.Neuroendocrinology200480Suppl. 13710.1159/00008073115477707
    [Google Scholar]
  25. YaoJ.C. HassanM. PhanA. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States.J. Clin. Oncol.200826183063307210.1200/JCO.2007.15.437718565894
    [Google Scholar]
  26. GuoA.C. CummingsT.J. DashR.C. ProvenzaleJ.M. Lymphomas and high-grade astrocytomas: Comparison of water diffusibility and histologic characteristics.Radiology2002224117718310.1148/radiol.224101063712091680
    [Google Scholar]
  27. HayashidaY. HiraiT. MorishitaS. Diffusion-weighted imaging of metastatic brain tumors: Comparison with histologic type and tumor cellularity.AJNR Am. J. Neuroradiol.20062771419142516908550
    [Google Scholar]
  28. SugitaR. YamazakiT. FurutaA. ItohK. FujitaN. TakahashiS. High b-value diffusion-weighted MRI for detecting gallbladder carcinoma: Preliminary study and results.Eur. Radiol.20091971794179810.1007/s00330‑009‑1322‑919190910
    [Google Scholar]
  29. MüllerM.F. PrasadP. SiewertB. NissenbaumM.A. RaptopoulosV. EdelmanR.R. Abdominal diffusion mapping with use of a whole-body echo-planar system.Radiology1994190247547810.1148/radiology.190.2.82844028284402
    [Google Scholar]
  30. KweeT.C. TakaharaT. OchiaiR. KatahiraK. Van CauterenM. ImaiY. NievelsteinR.A.J. LuijtenP.R. Whole-body diffusion-weighted magnetic resonance imaging.Eur. J. Radiol.200970340941710.1016/j.ejrad.2009.03.05419403255
    [Google Scholar]
  31. KimT. MurakamiT. TakahashiS. HoriM. TsudaK. NakamuraH. Diffusion-weighted single-shot echoplanar MR imaging for liver disease.AJR Am. J. Roentgenol.1999173239339810.2214/ajr.173.2.1043014310430143
    [Google Scholar]
  32. RiesM. JonesR.A. BasseauF. MoonenC.T.W. GrenierN. Diffusion tensor MRI of the human kidney.J. Magn. Reson. Imaging2001141424910.1002/jmri.114911436213
    [Google Scholar]
  33. WongC.S. GongN. ChuY.C. Correlation of measurements from diffusion weighted MR imaging and FDG PET/CT in GIST patients: ADC versus SUV.Eur. J. Radiol.20128192122212610.1016/j.ejrad.2011.09.00321955604
    [Google Scholar]
  34. Charles-EdwardsE.M. deSouzaN.M. Diffusion-weighted magnetic resonance imaging and its application to cancer.Cancer Imaging20066113514310.1102/1470‑7330.2006.002117015238
    [Google Scholar]
  35. BammerR. Basic principles of diffusion-weighted imaging.Eur. J. Radiol.200345316918410.1016/S0720‑048X(02)00303‑012595101
    [Google Scholar]
  36. GourtsoyianniS. PapanikolaouN. YarmenitisS. MarisT. KarantanasA. GourtsoyiannisN. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions.Eur. Radiol.200818348649210.1007/s00330‑007‑0798‑417994317
    [Google Scholar]
  37. LestraT. KanagaratnamL. MuléS. Measurement variability of liver metastases from neuroendocrine tumors on different magnetic resonance imaging sequences.Diagn. Interv. Imaging2018992738110.1016/j.diii.2017.12.00929339222
    [Google Scholar]
  38. QuanX.Y. SunX.J. YuZ.J. TangM. Evaluation of diffusion weighted imaging of magnetic resonance imaging in small focal hepatic lesions: a quantitative study in 56 cases.Hepatobiliary Pancreat. Dis. Int.20054340640916109526
    [Google Scholar]
  39. HernethA.M. GuccioneS. BednarskiM. Apparent Diffusion Coefficient: a quantitative parameter for in vivo tumor characterization.Eur. J. Radiol.200345320821310.1016/S0720‑048X(02)00310‑812595105
    [Google Scholar]
  40. GongN.J. WongC.S. ChuY.C. GuJ. Treatment response monitoring in patients with gastrointestinal stromal tumor using diffusion-weighted imaging: preliminary results in comparison with positron emission tomography/computed tomography.NMR Biomed.201326218519210.1002/nbm.283422806958
    [Google Scholar]
  41. SankowskiA.J. ĆwiklaJ.B. NowickiM.L. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement.Med. Sci. Monit.2012185MT33MT4010.12659/MSM.88271922534718
    [Google Scholar]
  42. LordickF. OttK. KrauseB.J. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: The MUNICON phase II trial.Lancet Oncol.20078979780510.1016/S1470‑2045(07)70244‑917693134
    [Google Scholar]
  43. IvancevicM.K. KweeT.C. TakaharaT. Diffusion-weighted MR imaging of the liver at 3.0 Tesla using TRacking Only Navigator echo (TRON): A feasibility study.J. Magn. Reson. Imaging20093051027103310.1002/jmri.2193919856431
    [Google Scholar]
  44. NemethA.J. HensonJ.W. MullinsM.E. GonzalezR.G. SchaeferP.W. Improved detection of skull metastasis with diffusion-weighted MR imaging.AJNR Am. J. Neuroradiol.20072861088109210.3174/ajnr.A050117569964
    [Google Scholar]
  45. CossettiR.J.D. BezerraR.O.F. GumzB. TellesA. CostaF.P. FredericoP.C. Whole body diffusion for metastatic disease assessment in neuroendocrine carcinomas: comparison with OctreoScan® in two cases.World J. Surg. Oncol.20121018210.1186/1477‑7819‑10‑8222591909
    [Google Scholar]
  46. CaplinM.E. BuscombeJ.R. HilsonA.J. JonesA.L. WatkinsonA.F. BurroughsA.K. Carcinoid tumour.Lancet1998352913079980510.1016/S0140‑6736(98)02286‑79737302
    [Google Scholar]
  47. JacksonJ.E. Angiography and arterial stimulation venous sampling in the localization of pancreatic neuroendocrine tumours.Best Pract. Res. Clin. Endocrinol. Metab.200519222923910.1016/j.beem.2004.10.00215763697
    [Google Scholar]
  48. RockallA.G. PlancheK. PowerN. Detection of neuroendocrine liver metastases with MnDPDP-enhanced MRI.Neuroendocrinology200989328829510.1159/00017620719023191
    [Google Scholar]
  49. TaouliB. VilgrainV. DumontE. DaireJ.L. FanB. MenuY. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients.Radiology20032261717810.1148/radiol.226101190412511671
    [Google Scholar]
  50. StåhlbergF. BrockstedtS. ThomsenC. WirestamR. Single-shot diffusion-weighted echo-planar imaging of normal and cirrhotic livers using a phased-array multicoil.Acta Radiol.199940333910335977
    [Google Scholar]
  51. ParikhT. DrewS.J. LeeV.S. WongS. HechtE.M. BabbJ.S. Focal liver lesions detection and characterization with Diffusion MR Imaging: Comparison with breath hold T2 weighted imaging.Radiology200824681282210.1148/radiol.246307043218223123
    [Google Scholar]
  52. AnadolN. Karaciğer lezyonlarının benign malign ayrımında PET benzeri kontrasta sahip MR difüzyon görüntülerinin değeri.2016 Available from: http://abakus.inonu.edu.tr/xmlui/bitstream/handle/11616/9781/431673.pdf?sequence=1
  53. NasuK. KurokiY. NawanoS. Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging.Radiology2006239112213010.1148/radiol.238304138416493012
    [Google Scholar]
  54. DanetI.M. SemelkaR.C. LeonardouP. Spectrum of MRI appearances of untreated metastases of the liver.AJR Am. J. Roentgenol.2003181380981710.2214/ajr.181.3.181080912933487
    [Google Scholar]
  55. NooneT.C. HoseyJ. FiratZ. SemelkaR.C. Imaging and localization of islet-cell tumours of the pancreas on CT and MRI.Best Pract. Res. Clin. Endocrinol. Metab.200519219521110.1016/j.beem.2004.11.01315763695
    [Google Scholar]
/content/journals/cmim/10.2174/1573405620666230522151427
Loading
/content/journals/cmim/10.2174/1573405620666230522151427
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Diffusion; GIST; Hepatic; Imaging; Metastasis; MR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test