Skip to content
2000
  • E-ISSN:
side by side viewer icon HTML

Abstract

The blood-brain barrier (BBB) is an important structure that maintains the normal function of the central nervous system (CNS). The functional structure of BBB is closely related to diseases of CNS, including degenerative diseases, brain tumours, traumatic brain injury, stroke, . Imaging methods were commonly used to monitor the integrity of BBB, such as DCE-MRI, DSC-MRI, and PET, this contributes to understand the process of related diseases and develop appropriate treatment options. In recent years, many studies had shown that the MRI methods (ASL, IVIM, CEST, .) could evaluate blood-brain barrier function, which use endogenous contrast agents and become an increasingly great concern. Another image methods (FUS, uWB-eMPs) can open up the normal BBB, allowing macromolecular drugs across the locally opening BBB, which could be beneficial to the treatment of some brain diseases. In this review, we briefly introduce the theory of BBB imaging modalities and its clinical application.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/1573405620666230428115403
2023-06-08
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e280423216349.html?itemId=/content/journals/cmim/10.2174/1573405620666230428115403&mimeType=html&fmt=ahah

References

  1. DanemanR PratA. The blood-brain barrier.Cold Spring Harb Perspect Biol.201571a02041210.1101/cshperspect.a020412
    [Google Scholar]
  2. LiebnerS. DijkhuizenR.M. ReissY. PlateK.H. AgalliuD. ConstantinG. Functional morphology of the blood–brain barrier in health and disease.Acta Neuropathol.2018135331133610.1007/s00401‑018‑1815‑129411111
    [Google Scholar]
  3. ArvanitisC.D. FerraroG.B. JainR.K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases.Nat. Rev. Cancer2020201264110.1038/s41568‑019‑0205‑x31601988
    [Google Scholar]
  4. VekslerR. ShelefI. FriedmanA. Blood-brain barrier imaging in human neuropathologies.Arch. Med. Res.201445864665210.1016/j.arcmed.2014.11.01625453223
    [Google Scholar]
  5. KadryH NooraniB CuculloL. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑3
    [Google Scholar]
  6. BenzF. LiebnerS. Structure and function of the Blood–Brain Barrier (BBB).Handb. Exp. Pharmacol.202027333110.1007/164_2020_40433249527
    [Google Scholar]
  7. ObermeierB. DanemanR. RansohoffR.M. Development, maintenance and disruption of the blood-brain barrier.Nat. Med.201319121584159610.1038/nm.340724309662
    [Google Scholar]
  8. JosephCR Novel MRI techniques identifying vascular leak and paravascular flow reduction in early Alzheimer Disease.Biomedicines202087228
    [Google Scholar]
  9. ZhaoZ NelsonAR BetsholtzC ZlokovicBV Establishment and dysfunction of the blood-brain barrier.Cell201516351064107810.1016/j.cell.2015.10.067
    [Google Scholar]
  10. HeyeA.K. CullingR.D. Valdés HernándezM.C. ThrippletonM.J. WardlawJ.M. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review.Neuroimage Clin.20146626227410.1016/j.nicl.2014.09.00225379439
    [Google Scholar]
  11. MontagneA BarnesSR SweeneyMD Blood-brain barrier breakdown in the aging human hippocampus.Neuron201585229630210.1016/j.neuron.2014.12.032
    [Google Scholar]
  12. VillringerK. Sanz CuestaB.E. OstwaldtA.C. GrittnerU. BruneckerP. KhalilA.A. SchindlerK. EisenblätterO. AudebertH. FiebachJ.B. DCE-MRI blood–brain barrier assessment in acute ischemic stroke.Neurology201788543344010.1212/WNL.000000000000356628031392
    [Google Scholar]
  13. OhSS LeeEH KimJH The use of dynamic contrast-enhanced magnetic resonance imaging for the evaluation of blood-brain barrier disruption in traumatic brain injury: What is the evidence?Brain Sci2021116775
    [Google Scholar]
  14. RajaR RosenbergGA CaprihanA MRI measurements of blood-brain barrier function in dementia: A review of recent studies.Neuropharmacology2018134Pt B25927110.1016/j.neuropharm.2017.10.034
    [Google Scholar]
  15. IshiiM. IadecolaC. Risk factor for Alzheimer’s disease breaks the blood–brain barrier.Nature20205817806313210.1038/d41586‑020‑01152‑832350425
    [Google Scholar]
  16. ChagnotA. BarnesS.R. MontagneA. Magnetic resonance imaging of blood–brain barrier permeability in dementia.Neuroscience2021474474142910.1016/j.neuroscience.2021.08.00334400249
    [Google Scholar]
  17. LitakJ MazurekM KuleszaB Cerebral small vessel disease.Int. J. Mol. Sci.20202124972910.3390/ijms21249729
    [Google Scholar]
  18. KamintskyL. CairnsK.A. VekslerR. BowenC. BeyeaS.D. FriedmanA. CalkinC. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression.Neuroimage Clin.20202610204910.1016/j.nicl.2019.10204931718955
    [Google Scholar]
  19. ElschotE.P. BackesW.H. PostmaA.A. van OostenbruggeR.J. StaalsJ. RouhlR.P.W. JansenJ.F.A. A comprehensive view on MRI techniques for imaging blood-brain barrier integrity.Invest. Radiol.2021561101910.1097/RLI.000000000000072332932377
    [Google Scholar]
  20. WangJ. Fernández-SearaM.A. WangS. LawrenceK.S.S. When perfusion meets diffusion: In vivo measurement of water permeability in human brain.J. Cereb. Blood Flow Metab.200727483984910.1038/sj.jcbfm.960039816969383
    [Google Scholar]
  21. SantarosaC. CastellanoA. ConteG.M. CadioliM. IadanzaA. TerreniM.R. FranzinA. BelloL. CauloM. FaliniA. AnzaloneN. Dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis.Eur. J. Radiol.20168561147115610.1016/j.ejrad.2016.03.02027161065
    [Google Scholar]
  22. CaoY NageshV HamstraD The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas.Cancer Res.200666178912710.1158/0008‑5472.CAN‑05‑4328
    [Google Scholar]
  23. YoenH. YooR.E. ChoiS.H. KimE. OhB.M. YangD. HwangI. KangK.M. YunT.J. KimJ. SohnC.H. Blood-brain barrier disruption in mild traumatic brain injury patients with post-concussion syndrome: Evaluation with region-based quantification of dynamic contrast-enhanced MR imaging parameters using automatic whole-brain segmentation.Korean J. Radiol.202122111813010.3348/kjr.2020.001632783413
    [Google Scholar]
  24. LingalaS.G. GuoY. BliesenerY. ZhuY. LebelR.M. LawM. NayakK.S. Tracer kinetic models as temporal constraints during brain tumor DCE-MRI reconstruction.Med. Phys.2020471375110.1002/mp.1388531663134
    [Google Scholar]
  25. ThornhillR.E. ChenS. RammoW. MikulisD.J. KassnerA. Contrast-enhanced MR imaging in acute ischemic stroke: T2* measures of blood-brain barrier permeability and their relationship to T1 estimates and hemorrhagic transformation.AJNR Am. J. Neuroradiol.20103161015102210.3174/ajnr.A200320190209
    [Google Scholar]
  26. JinS. HanS. StoyanovaR. AckerstaffE. ChoH. Pattern recognition analysis of dynamic susceptibility contrast (DSC)-MRI curves automatically segments tissue areas with intact blood–brain barrier in a rat stroke model: A feasibility and comparison study.J. Magn. Reson. Imaging20205151369138110.1002/jmri.2694931654463
    [Google Scholar]
  27. LeighR. JenS.S. VarmaD.D. HillisA.E. BarkerP.B. Arrival time correction for dynamic susceptibility contrast MR permeability imaging in stroke patients.PLoS One2012712e5265610.1371/journal.pone.005265623285132
    [Google Scholar]
  28. AvsenikJ BisdasS PopovicKS Blood-brain barrier permeability imaging using perfusion computed tomography.Radiol. Oncol.20154921071410.2478/raon‑2014‑0029
    [Google Scholar]
  29. KassnerA. MeraliZ. Assessment of blood–brain barrier disruption in stroke.Stroke201546113310331510.1161/STROKEAHA.115.00886126463696
    [Google Scholar]
  30. SehlinD. SyvänenS. Engineered antibodies: New possibilities for brain PET?Eur. J. Nucl. Med. Mol. Imaging201946132848285810.1007/s00259‑019‑04426‑031342134
    [Google Scholar]
  31. LorberboymM. LamplY. SadehM. Correlation of 99mTc-DTPA SPECT of the blood-brain barrier with neurologic outcome after acute stroke.J. Nucl. Med.200344121898190414660714
    [Google Scholar]
  32. OttoyJ VerhaegheJ NiemantsverdrietE EngelborghsS StroobantsS StaelensS. A simulation study on the impact of the blood flow-dependent component in [18F]AV45 SUVR in Alzheimer's disease.PLoS One20171212e0189155
    [Google Scholar]
  33. Hernandez-GarciaL. LahiriA. SchollenbergerJ. Recent progress in ASL.Neuroimage201918718731610.1016/j.neuroimage.2017.12.09529305164
    [Google Scholar]
  34. ThrippletonM.J. BackesW.H. SourbronS. IngrischM. van OschM.J.P. DichgansM. FazekasF. RopeleS. FrayneR. van OostenbruggeR.J. SmithE.E. WardlawJ.M. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations.Alzheimers Dement.201915684085810.1016/j.jalz.2019.01.01331031101
    [Google Scholar]
  35. DickieB.R. VandesquilleM. UlloaJ. BoutinH. ParkesL.M. ParkerG.J.M. Water-exchange MRI detects subtle blood-brain barrier breakdown in Alzheimer’s disease rats.Neuroimage201918418434935810.1016/j.neuroimage.2018.09.03030219292
    [Google Scholar]
  36. LiJ. LiW. NiuJ. SongX. WuW. GongT. ZhengR. Ting-Fang ShihT. LiW. ZhouX.J. Intravoxel incoherent motion diffusion-weighted MRI of infiltrated marrow for predicting overall survival in newly diagnosed acute myeloid leukemia.Radiology2020295115516110.1148/radiol.202019169332068504
    [Google Scholar]
  37. LiJ. ZhengR. NiuJ. SongX. WuW. FanR. GongT. Correlation of intravoxel incoherent motion parameters and histological characteristics from infiltrated marrow in patients with acute leukemia.J. Magn. Reson. Imaging20205161720172610.1002/jmri.2699931737979
    [Google Scholar]
  38. YangX. XiaoX. LuB. ChenY. WenZ. YuS. Perfusion-sensitive parameters of intravoxel incoherent motion MRI in rectal cancer: evaluation of reproducibility and correlation with dynamic contrast-enhanced MRI.Acta Radiol.201960556957710.1177/028418511879120130114928
    [Google Scholar]
  39. PaschoalA.M. LeoniR.F. dos SantosA.C. PaivaF.F. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases.Neuroimage Clin.20182070571410.1016/j.nicl.2018.08.03030221622
    [Google Scholar]
  40. MengY. MacIntoshB.J. ShirzadiZ. KissA. BethuneA. HeynC. MithaniK. HamaniC. BlackS.E. HynynenK. LipsmanN. Resting state functional connectivity changes after MR-guided focused ultrasound mediated blood-brain barrier opening in patients with Alzheimer’s disease.Neuroimage201920020027528010.1016/j.neuroimage.2019.06.06031254646
    [Google Scholar]
  41. SabinN.D. CheungY.T. ReddickW.E. BhojwaniD. LiuW. GlassJ.O. BrinkmanT.M. HwangS.N. SrivastavaD. PuiC.H. RobisonL.L. HudsonM.M. KrullK.R. The impact of persistent leukoencephalopathy on brain white matter microstructure in long-term survivors of acute lymphoblastic leukemia treated with chemotherapy only.AJNR Am. J. Neuroradiol.201839101919192510.3174/ajnr.A579130213807
    [Google Scholar]
  42. BaiR LiZ SunC HsuYC LiangH BasserP Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain.Neuroimage2020219117039
    [Google Scholar]
  43. DouW. LinC.Y.E. DingH. ShenY. DouC. QianL. WenB. WuB. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies.Quant. Imaging Med. Surg.20199101747176610.21037/qims.2019.10.0331728316
    [Google Scholar]
  44. XuX. YadavN.N. KnutssonL. HuaJ. KalyaniR. HallE. LaterraJ. BlakeleyJ. StrowdR. PomperM. BarkerP. ChanK.W.Y. LiuG. McMahonM.T. StevensR.D. van ZijlP.C.M. Dynamic glucose-enhanced (DGE) MRI: Translation to human scanning and first results in glioma patients.Tomography20151210511410.18383/j.tom.2015.0017526779568
    [Google Scholar]
  45. ArifW.M. ElsingaP.H. Gasca-SalasC. VersluisM. Martínez-FernándezR. DierckxR.A.J.O. BorraR.J.H. LuurtsemaG. Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography.J. Control. Release202032432430331610.1016/j.jconrel.2020.05.02032428519
    [Google Scholar]
  46. AlonsoA. Ultrasound-induced blood-brain barrier opening for drug delivery.Front Neurol. Neurosci.20153610611510.1159/00036624225531667
    [Google Scholar]
  47. CarpentierA CanneyM VignotA Clinical trial of blood-brain barrier disruption by pulsed ultrasound.Sci. Transl. Med.20168343343re210.1126/scitranslmed.aaf6086
    [Google Scholar]
  48. GaoP. ChenQ. HuJ. LinY. LinJ. GuoQ. YueH. ZhouY. ZengL. LiJ. DingG. GuoG. Effect of ultra-wide-band electromagnetic pulses on blood-brain barrier permeability in rats.Mol. Med. Rep.20202242775278210.3892/mmr.2020.1138232945403
    [Google Scholar]
/content/journals/cmim/10.2174/1573405620666230428115403
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test