Skip to content
2000
  • E-ISSN:
side by side viewer icon HTML

Abstract

Most neurodegenerative diseases such as Alzheimer's and Parkinson's are life-threatening, critical, and incurable affecting mainly the elderly population. Early diagnosis is challenging as disease phenotype is very crucial for predicting, preventing the progression, and effective drug discovery. In the last few years, Deep learning (DL) based neural networks are the state-of-the-art models deployed in industries and academics across different areas like natural language processing, image analysis, speech recognition, audio classification, and many more It has been slowly realized that they have a high potential in medical image analysis and diagnostics and medical management in general. As this field is vast and expanding rapidly, we have put focused on existing DL-based models to detect Alzheimer’s and Parkinson's in particular. This study gives a summary of related medical examinations for these diseases. Frameworks and applications of many deep learning models have been discussed. We have given precise notes on pre-processing techniques used by various studies for MRI image analysis. An overview of the application of DL-based models in different stages of medical image analysis has been conferred. It has been realized from the review that more studies are focused on Alzheimer's compared to Parkinson's disease Additionally, we have tabulated the various public datasets available for these diseases. We have highlighted the potential use of a novel biomarker for the early diagnosis of these disorders. Also, some challenges and issues in implementing deep learning techniques for the detection of these diseases have been addressed. Finally, We concluded with some future research directions regarding deep learning techniques for diagnosis of the above diseases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/1573405620666230328113721
2023-05-25
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e280323215043.html?itemId=/content/journals/cmim/10.2174/1573405620666230328113721&mimeType=html&fmt=ahah

References

  1. World Health OrganizationThe top 10 causes of death.2018Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  2. HardyJ SelkoeD J The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics.science20022975580353610.1126/science.1072994
    [Google Scholar]
  3. BatemanR.J. XiongC. BenzingerT.L.S. FaganA.M. GoateA. FoxN.C. MarcusD.S. CairnsN.J. XieX. BlazeyT.M. HoltzmanD.M. SantacruzA. BucklesV. OliverA. MoulderK. AisenP.S. GhettiB. KlunkW.E. McDadeE. MartinsR.N. MastersC.L. MayeuxR. RingmanJ.M. RossorM.N. SchofieldP.R. SperlingR.A. SallowayS. MorrisJ.C. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease.N. Engl. J. Med.2012367979580410.1056/NEJMoa120275322784036
    [Google Scholar]
  4. BlennowK. MattssonN. SchöllM. HanssonO. ZetterbergH. Amyloid biomarkers in Alzheimer’s disease.Trends Pharmacol. Sci.201536529730910.1016/j.tips.2015.03.00225840462
    [Google Scholar]
  5. De StrooperB. KarranE. The cellular phase of Alzheimer’s disease.Cell2016164460361510.1016/j.cell.2015.12.05626871627
    [Google Scholar]
  6. A ArmstrongR. Risk factors for Alzheimer’s disease.Folia Neuropathol.20195728710510.5114/fn.2019.8592931556570
    [Google Scholar]
  7. KoronyoY. BiggsD. BarronE. BoyerD.S. PearlmanJ.A. AuW.J. KileS.J. BlancoA. FuchsD.T. AshfaqA. FrautschyS. ColeG.M. MillerC.A. HintonD.R. VerdoonerS.R. BlackK.L. Koronyo-HamaouiM. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease.JCI Insight2017216e9362110.1172/jci.insight.9362128814675
    [Google Scholar]
  8. Koronyo-HamaouiM. KoronyoY. LjubimovA.V. MillerC.A. KoM.K. BlackK.L. SchwartzM. FarkasD.L. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model.Neuroimage201154Suppl. 1S204S21710.1016/j.neuroimage.2010.06.02020550967
    [Google Scholar]
  9. La MorgiaC. Ross-CisnerosF.N. KoronyoY. HannibalJ. GallassiR. CantalupoG. SambatiL. PanB.X. TozerK.R. BarboniP. ProviniF. AvanziniP. CarbonelliM. PelosiA. ChuiH. LiguoriR. BaruzziA. Koronyo-HamaouiM. SadunA.A. CarelliV. Melanopsin retinal ganglion cell loss in Alzheimer disease.Ann. Neurol.20167919010910.1002/ana.2454826505992
    [Google Scholar]
  10. MillerD.B. O’CallaghanJ.P. Biomarkers of Parkinson’s disease: Present and future.Metabolism2015643Suppl. 1S40S4610.1016/j.metabol.2014.10.03025510818
    [Google Scholar]
  11. JohnsonC.O. NguyenM. RothG.A. NicholsE. AlamT. AbateD. Abd-AllahF. AbdelalimA. AbrahaH.N. Abu-RmeilehN.M.E. AdebayoO.M. AdeoyeA.M. AgarwalG. AgrawalS. AichourA.N. AichourI. AichourM.T.E. AlahdabF. AliR. Alvis-GuzmanN. AnberN.H. AnjomshoaM. ArablooJ. ArauzA. ÄrnlövJ. AroraA. AwasthiA. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BasuS. BelachewA.B. BelaynehY.M. BennettD.A. BensenorI.M. BhattacharyyaK. BiadgoB. BijaniA. BikbovB. Bin SayeedM.S. ButtZ.A. Cahuana-HurtadoL. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. CastroF. Catalá-LópezF. ChaiahY. ChiangP.P-C. ChoiJ-Y.J. ChristensenH. ChuD-T. CortinovisM. DamascenoA.A.M. DandonaL. DandonaR. DaryaniA. DavletovK. de CourtenB. De la Cruz-GóngoraV. DegefaM.G. DharmaratneS.D. DiazD. DubeyM. DukenE.E. EdessaD. EndresM. FaraonE.J.A. FarzadfarF. FernandesE. FischerF. FlorL.S. GanjiM. GebreA.K. GebremichaelT.G. GetaB. GezaeK.E. GillP.S. GnedovskayaE.V. Gómez-DantésH. GoulartA.C. GrossoG. GuoY. GuptaR. Haj-MirzaianA. Haj-MirzaianA. HamidiS. HankeyG.J. HassenH.Y. HayS.I. HegazyM.I. HeidariB. HerialN.A. HosseiniM.A. HostiucS. IrvaniS.S.N. IslamS.M.S. JahanmehrN. JavanbakhtM. JhaR.P. JonasJ.B. JozwiakJ.J. JürissonM. KahsayA. KalaniR. KalkondeY. KamilT.A. KanchanT. KarchA. KarimiN. Karimi-SariH. KasaeianA. KassaT.D. KazemeiniH. KefaleA.T. KhaderY.S. KhalilI.A. KhanE.A. KhangY-H. KhubchandaniJ. KimD. KimY.J. KisaA. KivimäkiM. KoyanagiA. KrishnamurthiR.K. KumarG.A. LafranconiA. LewingtonS. LiS. LoW.D. LopezA.D. LorkowskiS. LotufoP.A. MackayM.T. MajdanM. MajdzadehR. MajeedA. MalekzadehR. ManafiN. MansourniaM.A. MehndirattaM.M. MehtaV. MengistuG. MeretojaA. MeretojaT.J. MiazgowskiB. MiazgowskiT. MillerT.R. MirrakhimovE.M. MohajerB. MohammadY. Mohammadoo-khorasaniM. MohammedS. MohebiF. MokdadA.H. MokhayeriY. MoradiG. MorawskaL. Moreno VelásquezI. MousaviS.M. MuhammedO.S.S. MuruetW. NaderiM. NaghaviM. NaikG. NascimentoB.R. NegoiR.I. NguyenC.T. NguyenL.H. NirayoY.L. NorrvingB. NoubiapJ.J. Ofori-AsensoR. OgboF.A. OlagunjuA.T. OlagunjuT.O. OwolabiM.O. PandianJ.D. PatelS. PericoN. PiradovM.A. PolinderS. PostmaM.J. PoustchiH. PrakashV. QorbaniM. RafieiA. RahimF. RahimiK. Rahimi-MovagharV. RahmanM. RahmanM.A. ReisC. RemuzziG. RenzahoA.M.N. RicciS. RobertsN.L.S. RobinsonS.R. RoeverL. RoshandelG. SabbaghP. SafariH. SafariS. SafiriS. SahebkarA. Salehi ZahabiS. SamyA.M. SantaluciaP. SantosI.S. SantosJ.V. Santric MilicevicM.M. SartoriusB. SawantA.R. SchutteA.E. SepanlouS.G. ShafieesabetA. ShaikhM.A. Shams-BeyranvandM. SheikhA. ShethK.N. ShibuyaK. ShigematsuM. ShinM-J. ShiueI. SiabaniS. SobaihB.H. SposatoL.A. SutradharI. SylajaP.N. SzoekeC.E.I. Te AoB.J. TemsahM-H. TemsahO. ThriftA.G. TonelliM. Topor-MadryR. TranB.X. TranK.B. TruelsenT.C. TsadikA.G. UllahI. UthmanO.A. VaduganathanM. ValdezP.R. VasankariT.J. VasanthanR. VenketasubramanianN. VosoughiK. VuG.T. WaheedY. WeiderpassE. WeldegwergsK.G. WestermanR. WolfeC.D.A. WondafrashD.Z. XuG. YadollahpourA. YamadaT. YatsuyaH. YimerE.M. YonemotoN. YousefifardM. YuC. ZaidiZ. ZamaniM. ZarghiA. ZhangY. ZodpeyS. FeiginV.L. VosT. MurrayC.J.L. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918543945810.1016/S1474‑4422(19)30034‑130871944
    [Google Scholar]
  12. SariE.S. KocR. YaziciA. SahinG. ErmisS.S. Ganglion cell-inner plexiform layer thickness in patients with Parkinson disease and association with disease severity and duration.J. Neuroophthalmol.201535211712110.1097/WNO.000000000000020325485861
    [Google Scholar]
  13. InzelbergR. RamirezJ.A. NisipeanuP. OphirA. Retinal nerve fiber layer thinning in Parkinson disease.Vision Res.200444242793279710.1016/j.visres.2004.06.00915342223
    [Google Scholar]
  14. AltintaşÖ. IşeriP. ÖzkanB. ÇağlarY. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease.Doc. Ophthalmol.2008116213714610.1007/s10633‑007‑9091‑817962989
    [Google Scholar]
  15. MoschosM.M. TagarisG. MarkopoulosL. MargetisL. TsapakisS. KanakisM. KoutsandreaC. Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss.Eur. J. Ophthalmol.2011211242910.5301/EJO.2010.131820602324
    [Google Scholar]
  16. La MorgiaC. BarboniP. RizzoG. CarbonelliM. SaviniG. ScaglioneC. CapellariS. BonazzaS. GiannoccaroM.P. Calandra-BuonauraG. LiguoriR. CortelliP. MartinelliP. BaruzziA. CarelliV. Loss of temporal retinal nerve fibers in Parkinson disease: A mitochondrial pattern?Eur. J. Neurol.201320119820110.1111/j.1468‑1331.2012.03701.x22436028
    [Google Scholar]
  17. RohaniM. LangroodiA.S. GhourchianS. FalavarjaniK.G. SoUdiR. ShahidiG. Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease.Neurol. Sci.201334568969310.1007/s10072‑012‑1125‑722661077
    [Google Scholar]
  18. AlbrechtP. MüllerA.K. SüdmeyerM. FerreaS. RingelsteinM. CohnE. AktasO. DietleinT. LappasA. FoersterA. HartungH.P. SchnitzlerA. MethnerA. Optical coherence tomography in parkinsonian syndromes.PLoS One201274e3489110.1371/journal.pone.003489122514688
    [Google Scholar]
  19. TsironiE.E. DastiridouA. KatsanosA. DardiotisE. VelikiS. PatramaniG. ZacharakiF. RalliS. HadjigeorgiouG.M. Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease.BMC Ophthalmol.20121215410.1186/1471‑2415‑12‑5423031247
    [Google Scholar]
  20. SantosM.K. Ferreira JúniorJ.R. WadaD.T. TenórioA.P.M. Nogueira-BarbosaM.H. MarquesP.M.A. Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: Advances in imaging towards to precision medicine.Radiol. Bras.201952638739610.1590/0100‑3984.2019.004932047333
    [Google Scholar]
  21. WasonR. Deep learning: Evolution and expansion.Cogn. Syst. Res.20185270170810.1016/j.cogsys.2018.08.023
    [Google Scholar]
  22. GanaieMA HuM Ensemble deep learning: A review.arXiv2021, preprint
    [Google Scholar]
  23. TripathiM. VibhaD. Reversible dementias.Indian J. Psychiatry200951Suppl1Suppl. 1S52S5510.48550/arXiv.2104.0239521416018
    [Google Scholar]
  24. KirmessK.M. MeyerM.R. HolubaschM.S. KnapikS.S. HuY. JacksonE.N. HarpstriteS.E. VergheseP.B. WestT. FogelmanI. BraunsteinJ.B. YarasheskiK.E. ContoisJ.H. The PrecivityAD™ test: Accurate and reliable LC-MS/MS assays for quantifying plasma amyloid beta 40 and 42 and apolipoprotein E proteotype for the assessment of brain amyloidosis.Clin. Chim. Acta202151926727510.1016/j.cca.2021.05.01134015303
    [Google Scholar]
  25. AraiH. TerajimaM. MiuraM. HiguchiS. MuramatsuT. MachidaN. SeikiH. TakaseS. ClarkC.M. LeeV.M.Y. TrojanowskiJ.Q. SasakiH. Tau in cerebrospinal fluid: A potential diagnostic marker in Alzheimer’s disease.Ann. Neurol.199538464965210.1002/ana.4103804147574462
    [Google Scholar]
  26. EberlingJ.L. JagustW.J. Imaging studies of aging, neurodegenerative disease, and alcoholism.Alcohol Health Res. World199519427928631798061
    [Google Scholar]
  27. JohnsonK.A. FoxN.C. SperlingR.A. KlunkW.E. Brain imaging in Alzheimer disease.Cold Spring Harb. Perspect. Med.201224a00621310.1101/cshperspect.a00621322474610
    [Google Scholar]
  28. ScahillR.I. SchottJ.M. StevensJ.M. RossorM.N. FoxN.C. Mapping the evolution of regional atrophy in Alzheimer’s disease: Unbiased analysis of fluid-registered serial MRI.Proc. Natl. Acad. Sci. USA20029974703470710.1073/pnas.05258739911930016
    [Google Scholar]
  29. HeimB. KrismerF. De MarziR. SeppiK. Magnetic resonance imaging for the diagnosis of Parkinson’s disease.J. Neural Transm.2017124891596410.1007/s00702‑017‑1717‑828378231
    [Google Scholar]
  30. SaeedU. LangA.E. MasellisM. Neuroimaging advances in Parkinson’s disease and atypical Parkinsonian syndromes.Front. Neurol.20201157297610.3389/fneur.2020.57297633178113
    [Google Scholar]
  31. LeeM.H. SmyserC.D. ShimonyJ.S. Resting-state fMRI: A review of methods and clinical applications.AJNR Am. J. Neuroradiol.201334101866187210.3174/ajnr.A326322936095
    [Google Scholar]
  32. SinhaN. FirbankM. O’BrienJ.T. Biomarkers in dementia with Lewy bodies: A review.Int. J. Geriatr. Psychiatry201227544345310.1002/gps.274921721045
    [Google Scholar]
  33. WuP. WangJ. PengS. MaY. ZhangH. GuanY. ZuoC. Metabolic brain network in the Chinese patients with Parkinson’s disease based on 18F-FDG PET imaging.Parkinsonism Relat. Disord.201319662262710.1016/j.parkreldis.2013.02.01323529021
    [Google Scholar]
  34. Arevalo-RodriguezI. SmailagicN. FigulsM.R. CiapponiA. Sanchez-PerezE. Sanchez-PerezE. GiannakouA. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI).Cochrane Database Syst Rev2015310.10021465185810.1002/14651858.CD010783.pub2
    [Google Scholar]
  35. Movement Disorder Society Task Force on Rating Scales for Parkinson’s DiseaseThe unified Parkinson’s disease rating scale (UPDRS): status and recommendations.Mov. Disord.200318773875010.1002/mds.1047312815652
    [Google Scholar]
  36. HoehnMM YahrMD Parkinsonism: Onset, progression, and mortality.Neurology199850231831810.1212/WNL.50.2.318
    [Google Scholar]
  37. QutubuddinA.A. PeggP.O. CifuD.X. BrownR. McNameeS. CarneW. Validating the Berg Balance Scale for patients with Parkinson’s disease: A key to rehabilitation evaluation.Arch. Phys. Med. Rehabil.200586478979210.1016/j.apmr.2004.11.00515827933
    [Google Scholar]
  38. GoetzC.G. TilleyB.C. ShaftmanS.R. StebbinsG.T. FahnS. Martinez-MartinP. PoeweW. SampaioC. SternM.B. DodelR. DuboisB. HollowayR. JankovicJ. KulisevskyJ. LangA.E. LeesA. LeurgansS. LeWittP.A. NyenhuisD. OlanowC.W. RascolO. SchragA. TeresiJ.A. van HiltenJ.J. LaPelleN. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results.Mov. Disord.200823152129217010.1002/mds.2234019025984
    [Google Scholar]
  39. GoetzC.G. NuttJ.G. StebbinsG.T. The Unified Dyskinesia Rating Scale: Presentation and clinimetric profile.Mov. Disord.200823162398240310.1002/mds.2234119025759
    [Google Scholar]
  40. NuttJ.G. BloemB.R. GiladiN. HallettM. HorakF.B. NieuwboerA. Freezing of gait: Moving forward on a mysterious clinical phenomenon.Lancet Neurol.201110873474410.1016/S1474‑4422(11)70143‑021777828
    [Google Scholar]
  41. DeferG.L. WidnerH. MariéR.M. RémyP. LevivierM. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD).Mov. Disord.199914457258410.1002/1531‑8257(199907)14:4<572::AID‑MDS1005>3.0.CO;2‑C10435493
    [Google Scholar]
  42. PodhornaJ. KrahnkeT. ShearM. E HarrisonJ. Alzheimer’s Disease Assessment Scale–Cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s disease: change over time and the effect of enrichment strategies.Alzheimers Res. Ther.201681810.1186/s13195‑016‑0170‑526868820
    [Google Scholar]
  43. SzegedyC ToshevA ErhanD Deep neural networks for object detection.Advances in neural information processing systems2013
    [Google Scholar]
  44. HintonG. Deep belief networks.Scholarpedia J.200945594710.4249/scholarpedia.5947
    [Google Scholar]
  45. SalakhutdinovR. HintonG. Deep boltzmann machines.Artificial intelligence and statistics.PMLR2009448455
    [Google Scholar]
  46. AcharyaU.R. OhS.L. HagiwaraY. TanJ.H. AdamM. GertychA. TanR.S. A deep convolutional neural network model to classify heartbeats.Comput. Biol. Med.20178938939610.1016/j.compbiomed.2017.08.02228869899
    [Google Scholar]
  47. LangeS. RiedmillerM. Deep auto-encoder neural networks in reinforcement learning.2010International Joint Conference on Neural Networks (IJCNN)1810.1109/IJCNN.2010.5596468
    [Google Scholar]
  48. SherstinskyA. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network.Physica D202040413230610.1016/j.physd.2019.132306
    [Google Scholar]
  49. LiuM. ChengD. YanW. Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images.Front. Neuroinform.2018123510.3389/fninf.2018.0003529970996
    [Google Scholar]
  50. BermudezC. PlassardA.J. DavisL.T. NewtonA.T. ResnickS.M. LandmanB.A. Learning implicit brain MRI manifolds with deep learning.Medical Imaging 2018.Image Processing2018Vol. 10574105741L10.1117/12.229351529887659
    [Google Scholar]
  51. FerrucciL. The Baltimore Longitudinal Study of Aging (BLSA): A 50-year-long journey and plans for the future.J Gerontol A Biol Sci Med Sci.200863121416141910.1093/gerona/63.12.141619126858
    [Google Scholar]
  52. TustisonN.J. AvantsB.B. CookP.A. Yuanjie Zheng EganA. YushkevichP.A. GeeJ.C. N4ITK: improved N3 bias correction.IEEE Trans. Med. Imaging20102961310132010.1109/TMI.2010.204690820378467
    [Google Scholar]
  53. OjemannJ.G. AkbudakE. SnyderA.Z. McKinstryR.C. RaichleM.E. ConturoT.E. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts.Neuroimage19976315616710.1006/nimg.1997.02899344820
    [Google Scholar]
  54. RezaA.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement.J. VLSI Signal Process.2004381354410.1023/B:VLSI.0000028532.53893.82
    [Google Scholar]
  55. BasaiaS. AgostaF. WagnerL. CanuE. MagnaniG. SantangeloR. FilippiM. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks.Neuroimage Clin.20192110164510.1016/j.nicl.2018.10164530584016
    [Google Scholar]
  56. BalakrishnanG. ZhaoA. SabuncuM.R. GuttagJ. DalcaA.V. Voxelmorph: A learning framework for deformable medical image registration.IEEE Trans. Med. Imaging20193881788180010.1109/TMI.2019.289753830716034
    [Google Scholar]
  57. EsmaeilzadehS YangY AdeliE End-to-end parkinson disease diagnosis using brain mr-images by 3d-cnn.arXiv201810.48550/arXiv.1806.05233
    [Google Scholar]
  58. SikiöM. HolliK.K. HarrisonL.C. RuottinenH. RossiM. HelminenM.T. RyyminP. PaalavuoR. SoimakallioS. EskolaH.J. ElovaaraI. DastidarP. Parkinson’s disease: Interhemispheric textural differences in MR images.Acad. Radiol.201118101217122410.3389/fnins.2019.0087421784670
    [Google Scholar]
  59. XuJ. JiaoF. HuangY. LuoX. XuQ. LiL. LiuX. ZuoC. WuP. ZhuangX. A fully automatic framework for Parkinson’s Disease diagnosis by multi-modality images.Front. Neurosci.20191387410.3389/fnins.2019.0087431507358
    [Google Scholar]
  60. LiuM. LiF. YanH. WangK. MaY. ShenL. XuM. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease.Neuroimage202020811645910.1016/j.neuroimage.2019.11645931837471
    [Google Scholar]
  61. KorolevS. SafiullinA. BelyaevM. DodonovaY. Residual and plain convolutional neural networks for 3D brain MRI classification.In 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017), aixiv2017170106643YI10.48550/arXiv.1701.06643
    [Google Scholar]
  62. RamzanF. KhanM.U.G. RehmatA. IqbalS. SabaT. RehmanA. MehmoodZ. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks.J. Med. Syst.20204423710.1007/s10916‑019‑1475‑231853655
    [Google Scholar]
  63. IslamJ. ZhangY. A novel deep learning based multi-class classification method for Alzheimer’s disease detection using brain MRI.Brain Informatics 2017; Lecture Notes in Computer Science10654Springer Cham.21322210.1007/978‑3‑319‑70772‑3_0
    [Google Scholar]
  64. LuD. PopuriK. DingG.W. BalachandarR. BegM.F. WeinerM. AisenP. PetersenR. JackC. JagustW. TrojanowkiJ. TogaA. BeckettL. GreenR. SaykinA. MorrisJ. ShawL. KayeJ. QuinnJ. SilbertL. LindB. CarterR. DolenS. SchneiderL. PawluczykS. BecceraM. TeodoroL. SpannB. BrewerJ. VanderswagH. FleisherA. HeidebrinkJ. LordJ. MasonS. AlbersC. KnopmanD. JohnsonK. DoodyR. Villanueva-MeyerJ. ChowdhuryM. RountreeS. DangM. SternY. HonigL. BellK. AncesB. CarrollM. CreechM. FranklinE. MintunM. SchneiderS. OliverA. MarsonD. GrifthR. ClarkD. GeldmacherD. BrockingtonJ. RobersonE. LoveM.N. GrossmanH. MitsisE. ShahR. deToledo-MorrellL. DuaraR. VaronD. GreigM. RobertsP. AlbertM. OnyikeC. D’AgostinoD. KielbS. GalvinJ. CerboneB. MichelC. PogorelecD. RusinekH. de LeonM. GlodzikL. SantiS.D. DoraiswamyP. PetrellaJ. Borges-NetoS. WongT. ColemanE. SmithC. JichaG. HardyP. SinhaP. OatesE. ConradG. PorsteinssonA. GoldsteinB. MartinK. MakinoK. IsmailM. BrandC. MulnardR. ThaiG. Mc-Adams-OrtizC. WomackK. MathewsD. QuicenoM. LeveyA. LahJ. CellarJ. BurnsJ. SwerdlowR. BrooksW. ApostolovaL. TingusK. WooE. SilvermanD. LuP. BartzokisG. Graf-RadfordN. ParfttF. KendallT. JohnsonH. FarlowM. HakeA.M. MatthewsB. BroschJ. HerringS. HuntC. DyckC. CarsonR. MacAvoyM. VarmaP. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. HsiungG-Y.R. FeldmanH. MudgeB. AssalyM. FingerE. PasternackS. RachiskyI. TrostD. KerteszA. BernickC. MunicD. MesulamM-M. LipowskiK. WeintraubS. BonakdarpourB. KerwinD. WuC-K. JohnsonN. SadowskyC. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR. JohnsonK. MarshallG. YesavageJ. TaylorJ. LaneB. RosenA. TinklenbergJ. SabbaghM. BeldenC. JacobsonS. SirrelS. KowallN. KillianyR. BudsonA. NorbashA. JohnsonP.L. ObisesanT. WoldayS. AllardJ. LernerA. OgrockiP. TatsuokaC. FaticaP. FletcherE. MaillardP. OlichneyJ. DeCarliC. CarmichaelO. KitturS. BorrieM. LeeT-Y. BarthaR. JohnsonS. AsthanaS. CarlssonC. PotkinS. PredaA. NguyenD. TariotP. BurkeA. TrncicN. ReederS. BatesV. CapoteH. RainkaM. ScharreD. KatakiM. AdeliA. ZimmermanE. CelminsD. BrownA. PearlsonG. BlankK. AndersonK. FlashmanL. SeltzerM. HynesM. SantulliR. SinkK. GordineerL. WilliamsonJ. GargP. WatkinsF. OttB. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH. MillerB. PerryD. MintzerJ. SpicerK. BachmanD. PomaraN. HernandoR. SarraelA. RelkinN. ChaingG. LinM. RavdinL. SmithA. RajB.A. FargherK. Alzheimer’s Disease Neuroimaging Initiative Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images.Sci. Rep.201881569710.1038/s41598‑018‑22871‑z29632364
    [Google Scholar]
  65. KolliaI. StafylopatisA.G. KolliasS. Predicting Parkinson’s disease using latent information extracted from deep neural networks.2019International Joint Conference on Neural Networks (IJCNN)1810.1109/IJCNN.2019.8851995
    [Google Scholar]
  66. ShindeS. PrasadS. SabooY. KaushickR. SainiJ. PalP.K. IngalhalikarM. Predictive markers for Parkinson’s disease using deep neural nets on neuromelanin sensitive MRI.Neuroimage Clin.20192210174810.1016/j.nicl.2019.10174830870733
    [Google Scholar]
  67. SivaranjiniS. SujathaC.M. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network.Multimedia Tools Appl.20207921-22154671547910.1007/s11042‑019‑7469‑8
    [Google Scholar]
  68. TagarisA. KolliasD. StafylopatisA. TagarisG. KolliasS. Machine learning for neurodegenerative disorder diagnosis—survey of practices and launch of benchmark dataset.Int. J. Artif. Intell. Tools2018273185001110.1142/S0218213018500112
    [Google Scholar]
  69. ChakrabortyS. AichS. KimH.C. Detection of Parkinson’s disease from 3T t1 weighted MRI scans using 3D convolutional neural network.Diagnostics (Basel)202010640210.3390/diagnostics1006040232545609
    [Google Scholar]
  70. UCLMinimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD).Available from: d.drc.ion.ucl.ac.uk/ 10.1016/j.neuroimage.2012.12.044
  71. WeinerM.W. Alzheimer’s Disease Neuroimaging Initiative.2004Available from: https://adni.loni.usc.edu/
  72. OASISOASIS Brains Data.2007Available from: s.org/
  73. EPADThe European prevention of Alzheimer’s Dementia Consortium.Available from: https://ep-ad.org/
  74. MarekK. JenningsD. LaschS. The Parkinson Progression Marker Initiative (PPMI).Prog Neurobiol200795629635
    [Google Scholar]
  75. ChengD. LiuM. FuJ. WangY. Classification of MR brain images by combination of multi-CNNs for AD diagnosis.Ninth international conference on digital image processing (ICDIP 2017)1042010.1117/12.2281808
    [Google Scholar]
  76. ChengD. LiuM. CNNs based multi-modality classification for AD diagnosis. 2017 10th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI)20171510.1109/CISP‑BMEI.2017.8302281
    [Google Scholar]
  77. LiR. ZhangW. SukH.I. Deep learning based imaging data completion for improved brain disease diagnosis. GullandP. HataN BaviilotcC International Conference on Medical Image Computing and Computer-Assisted Intervention2014867530531210.1007/978‑3‑319‑10443‑0_39
    [Google Scholar]
  78. OrtizA. MunillaJ. GórrizJ.M. RamírezJ. Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease.Int. J. Neural Syst.2016267165002510.1142/S012906571650025827478060
    [Google Scholar]
  79. MadusankaN. ChoiH.K. SoJ.H. ChoiB.K. Alzheimer’s Disease classification based on multi-feature fusion.Curr. Med. Imaging Rev.201915216116910.2174/157340561466618101210262631975662
    [Google Scholar]
  80. HaoX. YaoX. YanJ. RisacherS.L. SaykinA.J. ZhangD. ShenL. Identifying multimodal intermediate phenotypes between genetic risk factors and disease status in Alzheimer’s disease.Neuroinformatics201614443945210.1007/s12021‑016‑9307‑827277494
    [Google Scholar]
  81. SarrafS. TofighiG. Alzheimer’s Disease Neuroimaging Initiative. DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI.BioRxiv2016; preprint10.1101/070441
    [Google Scholar]
  82. DolphC.V. AlamM. ShboulZ. SamadM.D. IftekharuddinK.M. Deep learning of texture and structural features for multiclass Alzheimer’s disease classification.2017International Joint Conference on Neural Networks (IJCNN)22596610.1109/IJCNN.2017.7966129
    [Google Scholar]
  83. SarrafS TofighiG Classification of alzheimer’s disease using fmri data and deep learning convolutional neural networks.arXiv2016; preprint10.48550/arXiv.1603.08631
    [Google Scholar]
  84. MathewN.A. VivekR.S. AnurenjanP.R. Early Diagnosis of Alzheimer’s Disease from MRI Images Using PNN.2018 International CET Conference on Control, Communication, and Computing (IC4)2018161410.1109/CETIC4.2018.8530910
    [Google Scholar]
  85. LiH. HabesM. WolkD.A. FanY. A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data.Alzheimers Dement.20191581059107010.1016/j.jalz.2019.02.00731201098
    [Google Scholar]
  86. BäckströmK. NazariM. GuI.Y.H. JakolaA.S. An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images.In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).20181495310.1109/ISBI.2018.8363543
    [Google Scholar]
  87. LuoS. LiX. LiJ. Automatic Alzheimer’s disease recognition from MRI data using deep learning method.Z. Angew. Math. Phys.2017591892189810.4236/jamp.2017.59159
    [Google Scholar]
  88. Yi̇ği̇tA. IşikZ. Applying deep learning models to structural MRI for stage prediction of Alzheimer’s disease.Turk. J. Electr. Eng. Comput. Sci.202028119621010.3906/elk‑1904‑172
    [Google Scholar]
  89. FarooqA. AnwarS. AwaisM. RehmanS. A deep CNN based multi-class classification of Alzheimer’s disease using MRI.2017IEEE International Conference on Imaging systems and techniques (IST)1610.1109/IST.2017.8261460
    [Google Scholar]
  90. PereiraH.R. FonsecaJ.M. FerreiraH.A. Combination of medical imaging and demographic data for Parkinson’s disease diagnosis. DoCEIS.20203394610.1007/978‑3‑030‑45124‑0_32
    [Google Scholar]
  91. BöhleM. EitelF. WeygandtM. RitterK. Layer-wise relevance propagation for explaining dnn decisions in mri-based alzheimer’s disease classification.Front. Aging Neurosci.20191119410.3389/fnagi.2019.0019431417397
    [Google Scholar]
  92. FaturrahmanM. WasitoI. HanifahN. MufidahR. Structural MRI classification for Alzheimer’s disease detection using deep belief network.201711th International Conference on Information & Communication Technology and System (ICTS)374210.1109/ICTS.2017.8265643
    [Google Scholar]
  93. SukH.I. LeeS.W. ShenD. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis.Brain Struct. Funct.2015220284185910.1007/s00429‑013‑0687‑324363140
    [Google Scholar]
  94. PayanA MontanaG. Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks.arXiv2015
    [Google Scholar]
  95. LiuS. LiuS. CaiW. CheH. PujolS. KikinisR. FengD. FulhamM.J. Adni Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease.IEEE Trans. Biomed. Eng.20156241132114010.1109/TBME.2014.237201125423647
    [Google Scholar]
  96. SukH.I. LeeS.W. ShenD. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis.Neuroimage201410156958210.1016/j.neuroimage.2014.06.07725042445
    [Google Scholar]
  97. AderghalK. Benois-PineauJ. AfdelK. CathelineG. FuseMe: Classification of sMRI images by fusion of Deep CNNs in 2D+ ϵ projections. Content-based Multimedia Indexing.201710.1145/3095713.3095749
    [Google Scholar]
  98. VuT.D. YangH.J. NguyenV.Q. OhA.R. KimM.S. Multimodal learning using convolution neural network and Sparse Autoencoder.2017IEEE International Conference on Big Data and Smart Computing (BigComp)3091210.1109/BIGCOMP.2017.7881683
    [Google Scholar]
  99. ZhengX. ShiJ. LiY. LiuX. ZhangQ. Multi-modality stacked deep polynomial network based feature learning for Alzheimer’s disease diagnosis.In 2016 IEEE 13th international symposium on biomedical imaging (ISBI).2016851410.1109/ISBI.2016.7493399
    [Google Scholar]
  100. LiuM. ZhangJ. AdeliE. ShenD. Landmark-based deep multi-instance learning for brain disease diagnosis.Med. Image Anal.20184315716810.1016/j.media.2017.10.00529107865
    [Google Scholar]
  101. GuptaA. AyhanM. MaidaA. Natural image bases to represent neuroimaging data.International conference on machine learning98794
    [Google Scholar]
  102. ChoiH. JinK.H. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging.Behav. Brain Res.201834410310910.1016/j.bbr.2018.02.01729454006
    [Google Scholar]
  103. LiF. TranL. ThungK.H. JiS. ShenD. LiJ. A robust deep model for improved classification of AD/MCI patients.IEEE J. Biomed. Health Inform.20151951610161610.1109/JBHI.2015.242955625955998
    [Google Scholar]
  104. SahaR. Classification of Parkinson’s disease Using MRI data and deep learning convolution neural networks.2019https://dr.lib.iastate.edu/handle/20.500.12876/16781
    [Google Scholar]
/content/journals/cmim/10.2174/1573405620666230328113721
Loading
/content/journals/cmim/10.2174/1573405620666230328113721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test