Skip to content
2000
  • E-ISSN:
side by side viewer icon HTML

Abstract

Background:

In clinical practice, Preoperative differentiation between hepatocellular carcinoma and intrahepatic cholangiocarcinoma is challenging but critical for treatment decisions.

Objective:

This study investigated the discriminatory power of the stretched-exponential model and fractional-order calculus model parameters for hepatocellular carcinoma versus intrahepatic cholangiocarcinoma in orthotopic xenograft nude mice.

Methods:

Prototype orthotopic xenograft models of hepatocellular carcinoma and intrahepatic cholangiocarcinoma were developed using 20 nude mice divided into two groups and separately transplanted with MHCC97H and HUCCT1 cells. Readout-segmented diffusion-weighted imaging with multiple b-values (0-2000 s/mm2) was obtained using a 3.0-T magnetic resonance imaging scanner. The apparent diffusion coefficient was calculated using the mono-exponential model. The distributed diffusion coefficient and intravoxel water molecular diffusion heterogeneity (α) were calculated using the stretched-exponential model. The diffusion coefficient (D), fractional-order derivative in space (β), and spatial parameter (μ) were calculated using the fractional-order calculus model. The liver and tumor specimens of nude mice were immunostained after euthanasia to clarify the liver cancer type. Differences in diffusion-related parameters between the groups were evaluated using Mann-Whitney U-test and univariate logistic analysis. Receiver operating characteristic curves were used to assess the diagnostic efficacy of each parameter. <0.05 was deemed significant.

Results:

α, D, and β were significant discriminators between the groups. The area under the curve for these three variables was 0.890, 0.830, and 0.870, respectively, with cutoff values of 0.491, 0.435, and 0.782, respectively.

Conclusion:

The stretched-exponential model parameters α and the fractional-order calculus model parameters D and β showed high diagnostic efficacy in discriminating intrahepatic cholangiocarcinoma from hepatocellular carcinoma in orthotopic xenograft nude mouse models.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/1573405619666230322123117
2023-04-03
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e220323214867.html?itemId=/content/journals/cmim/10.2174/1573405619666230322123117&mimeType=html&fmt=ahah

References

  1. OrcuttS.T. AnayaD.A. Liver resection and surgical strategies for management of primary liver cancer.Cancer Contr.201825110.1177/107327481774462129327594
    [Google Scholar]
  2. KimS.Y. Preoperative radiologic evaluation of cholangiocarcinoma.Korean J. Gastroenterol.201769315916310.4166/kjg.2017.69.3.15928329917
    [Google Scholar]
  3. TamadaT. SoneT. JoY. YamamotoA. ItoK. Diffusion-weighted MRI and its role in prostate cancer.NMR Biomed.2014271253810.1002/nbm.295623712781
    [Google Scholar]
  4. BleyT.A. WiebenO. UhlM. Diffusion-weighted MR imaging in musculoskeletal radiology: Applications in trauma, tumors, and inflammation.Magn. Reson. Imaging Clin. N. Am.200917226327510.1016/j.mric.2009.01.00519406358
    [Google Scholar]
  5. KitazumeY. TsuchiyaJ. TakenakaK. OhtsukaK. KimuraK. WatanabeR. FujiokaT. FujiiT. WatanabeM. TateisiU. High b-value computed diffusion-weighted imaging for differentiating bowel inflammation in Crohn’s disease.Eur. J. Radiol.202013310936210.1016/j.ejrad.2020.10936233129103
    [Google Scholar]
  6. NagarajaN. Diffusion weighted imaging in acute ischemic stroke: A review of its interpretation pitfalls and advanced diffusion imaging application.J. Neurol. Sci.202142511743510.1016/j.jns.2021.11743533836457
    [Google Scholar]
  7. MinJ.H. KimY.K. ChoiS.Y. JeongW.K. LeeW.J. HaS.Y. AhnS. AhnH.S. Differentiation between cholangiocarcinoma and hepatocellular carcinoma with target sign on diffusion-weighted imaging and hepatobiliary phase gadoxetic acid-enhanced MR imaging: Classification tree analysis applying capsule and septum.Eur. J. Radiol.20179211010.1016/j.ejrad.2017.04.00828624005
    [Google Scholar]
  8. Le BihanD. Apparent diffusion coefficient and beyond: What diffusion MR imaging can tell us about tissue structure.Radiology2013268231832210.1148/radiol.1313042023882093
    [Google Scholar]
  9. IimaM. Le BihanD. Clinical intravoxel incoherent motion and diffusion MR imaging: Past, present, and future.Radiology20162781133210.1148/radiol.201515024426690990
    [Google Scholar]
  10. JensenJ.H. HelpernJ.A. RamaniA. LuH. KaczynskiK. Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging.Magn. Reson. Med.20055361432144010.1002/mrm.2050815906300
    [Google Scholar]
  11. SuhY.J. KimM.J. ChoiJ.Y. ParkM.S. KimK.W. Preoperative prediction of the microvascular invasion of hepatocellular carcinoma with diffusion-weighted imaging.Liver Transpl.201218101171117810.1002/lt.2350222767394
    [Google Scholar]
  12. WangW.T. YangL. YangZ.X. HuX.X. DingY. YanX. FuC.X. GrimmR. ZengM.S. RaoS.X. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging.Radiology2018286257158010.1148/radiol.201717051528937853
    [Google Scholar]
  13. GranataV. FuscoR. AmatoD.M. AlbinoV. PatroneR. IzzoF. PetrilloA. Beyond the vascular profile: Conventional DWI, IVIM and kurtosis in the assessment of hepatocellular carcinoma.Eur. Rev. Med. Pharmacol. Sci.202024137284729332706066
    [Google Scholar]
  14. PengJ. ZhengJ. YangC. WangR. ZhouY. TaoY.Y. GongX.Q. WangW.C. ZhangX.M. YangL. Intravoxel incoherent motion diffusion-weighted imaging to differentiate hepatocellular carcinoma from intrahepatic cholangiocarcinoma.Sci. Rep.2020101771710.1038/s41598‑020‑64804‑932382050
    [Google Scholar]
  15. BennettK.M. SchmaindaK.M. BennettR.T. RoweD.B. LuH. HydeJ.S. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model.Magn. Reson. Med.200350472773410.1002/mrm.1058114523958
    [Google Scholar]
  16. ZhouX.J. GaoQ. AbdullahO. MaginR.L. Studies of anomalous diffusion in the human brain using fractional order calculus.Magn. Reson. Med.201063356256910.1002/mrm.2228520187164
    [Google Scholar]
  17. ParkJ.H. SeoN. ChungY.E. KimS.U. ParkY.N. ChoiJ.Y. ParkM.S. KimM.J. Noninvasive evaluation of liver fibrosis: Comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography.Eur. Radiol.20213174813482310.1007/s00330‑020‑07600‑333439321
    [Google Scholar]
  18. SeoN. ChungY.E. ParkY.N. KimE. HwangJ. KimM.J. Liver fibrosis: Stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI.Eur. Radiol.20182872812282210.1007/s00330‑017‑5292‑z29404771
    [Google Scholar]
  19. NodaY. GoshimaS. FujimotoK. AkamineY. KajitaK. KawaiN. MatsuoM. Comparison of the diagnostic value of mono-exponential, bi-exponential, and stretched exponential signal models in diffusion-weighted MR imaging for differentiating benign and malignant hepatic lesions.Magn. Reson. Med. Sci.2021201697510.2463/mrms.mp.2019‑015132161202
    [Google Scholar]
  20. KimH.C. SeoN. ChungY.E. ParkM.S. ChoiJ.Y. KimM.J. Characterization of focal liver lesions using the stretched exponential model: comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging.Eur. Radiol.20192995111512010.1007/s00330‑019‑06048‑430796578
    [Google Scholar]
  21. ZhangJ. SuoS. LiuG. ZhangS. ZhaoZ. XuJ. WuG. Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-weighted imaging in differentiation of renal solid masses.Korean J. Radiol.201920579180010.3348/kjr.2018.047430993930
    [Google Scholar]
  22. SuoS. YinY. GengX. ZhangD. HuaJ. ChengF. ChenJ. ZhuangZ. CaoM. XuJ. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: Evaluation with mono-, bi-, and stretched-exponential models.J. Transl. Med.202119123610.1186/s12967‑021‑02886‑334078388
    [Google Scholar]
  23. ChenJ. GuoY. GuoY. Preoperative assessment of microvascular invasion of hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging with a fractional order calculus model: A pilot study.Magn. Reson. Imaging20219511011710.1016/j.mri.2021.09.00334506910
    [Google Scholar]
  24. BickelhauptS. SteudleF. PaechD. MlynarskaA. KuderT.A. LedererW. DanielH. FreitagM. DelormeS. SchlemmerH.P. LaunF.B. On a fractional order calculus model in diffusion weighted breast imaging to differentiate between malignant and benign breast lesions detected on X-ray screening mammography.PLoS One2017124e017607710.1371/journal.pone.017607728453516
    [Google Scholar]
  25. FengC. WangY. DanG. ZhongZ. KaramanM.M. LiZ. HuD. ZhouX.J. Evaluation of a fractional-order calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma.Eur. Radiol.202232289090010.1007/s00330‑021‑08203‑234342693
    [Google Scholar]
  26. KaramanM.M. TangL. LiZ. SunY. LiJ.Z. ZhouX.J. in vivo assessment of Lauren classification for gastric adenocarcinoma using diffusion MRI with a fractional order calculus model.Eur. Radiol.20213185659566810.1007/s00330‑021‑07694‑333616764
    [Google Scholar]
  27. LiuG. LuY. DaiY. XueK. YiY. XuJ. WuD. WuG. Comparison of mono-exponential, bi-exponential, kurtosis, and fractional-order calculus models of diffusion-weighted imaging in characterizing prostate lesions in transition zone.Abdom. Radiol.20214662740275010.1007/s00261‑020‑02903‑x33388809
    [Google Scholar]
  28. ShiB. XueK. YinY. Grading of clear cell renal cell carcinoma using diffusion MRI with a fractional order calculus model.Acta Radiol.202316914213035040361
    [Google Scholar]
  29. SuiY. XiongY. JiangJ. KaramanM.M. XieK.L. ZhuW. ZhouX.J. Differentiation of low- and high-grade gliomas using high b-value diffusion imaging with a non-Gaussian diffusion model.AJNR Am. J. Neuroradiol.20163791643164910.3174/ajnr.A483627256851
    [Google Scholar]
  30. TangL. SuiY. ZhongZ. DamenF.C. LiJ. ShenL. SunY. ZhouX.J. Non-Gaussian diffusion imaging with a fractional order calculus model to predict response of gastrointestinal stromal tumor to second-line sunitinib therapy.Magn. Reson. Med.20187931399140610.1002/mrm.2679828643387
    [Google Scholar]
  31. ChenW. ZhuL.N. DaiY.M. JiangJ.S. BuS.S. XuX.Q. WuF.Y. Differentiation of salivary gland tumor using diffusion-weighted imaging with a fractional order calculus model.Br. J. Radiol.20209311132020005210.1259/bjr.2020005232649236
    [Google Scholar]
  32. McVeighL.E. WijetungaI. IngramN. MarstonG. PrasadR. MarkhamA.F. ColettaP.L. Development of orthotopic tumour models using ultrasound-guided intrahepatic injection.Sci. Rep.201991990410.1038/s41598‑019‑46410‑631289364
    [Google Scholar]
  33. SunJ. ZhangX.P. LiX.T. TangL. CuiY. ZhangX.Y. SunY.S. Applicable apparent diffusion coefficient of an orthotopic mouse model of gastric cancer by improved clinical MRI diffusion weighted imaging.Sci. Rep.201441607210.1038/srep0607225123166
    [Google Scholar]
  34. TangL. ZhouX.J. Diffusion MRI of cancer: From low to high b-values.J. Magn. Reson. Imaging2019491234010.1002/jmri.2629330311988
    [Google Scholar]
  35. HuangX.Y. HuangZ.L. XuY.H. HuangX.Y. ZhouJ. YeS.L. TangZ.Y. ZhengQ. [Effects of MIM-B gene on invasive and metastatic potentials of human hepatocellular carcinoma MHCC97H cells].Zhonghua Gan Zang Bing Za Zhi2010181291591921205477
    [Google Scholar]
  36. MohamedF.E.Z. JalanR. MinogueS. AndreolaF. HabtesionA. HallA. WinstanleyA. DaminkS.O. MalagóM. DaviesN. LuongT.V. DhillonA. MookerjeeR. DharD. Al-JehaniR.M. Inhibition of TLR7 and TLR9 reduces human cholangiocarcinoma cell proliferation and tumor development.Dig. Dis. Sci.20226751806182110.1007/s10620‑021‑06973‑933939146
    [Google Scholar]
  37. LiY. TianB. YangJ. ZhaoL. WuX. YeS.L. LiuY.K. TangZ.Y. Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics.J. Cancer Res. Clin. Oncol.2004130846046810.1007/s00432‑004‑0564‑915146329
    [Google Scholar]
  38. BaiY. LinY. TianJ. ShiD. ChengJ. HaackeE.M. HongX. MaB. ZhouJ. WangM. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging.Radiology2016278249650410.1148/radiol.201514217326230975
    [Google Scholar]
  39. QuailD.F. JoyceJ.A. Microenvironmental regulation of tumor progression and metastasis.Nat. Med.201319111423143710.1038/nm.339424202395
    [Google Scholar]
  40. ÜnalE. Sedakat IdilmanI. AkataD. ÖzmenM.N. KarçaaltıncabaM. Microvascular invasion in hepatocellular carcinoma.Diagn. Interv. Radiol.201622212513210.5152/dir.2015.1512526782155
    [Google Scholar]
  41. SuiY. WangH. LiuG. DamenF.W. WanamakerC. LiY. ZhouX.J. Differentiation of low- and high-grade pediatric brain tumors with high b-value diffusion-weighted MR imaging and a fractional order calculus model.Radiology2015277248949610.1148/radiol.201514215626035586
    [Google Scholar]
  42. PayabvashS. Quantitative diffusion magnetic resonance imaging in head and neck tumors.Quant. Imaging Med. Surg.20188101052106510.21037/qims.2018.10.1430598882
    [Google Scholar]
/content/journals/cmim/10.2174/1573405619666230322123117
Loading
/content/journals/cmim/10.2174/1573405619666230322123117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test