Skip to content
2000
  • E-ISSN:

Abstract

Background:

Generative adversarial networks (GANs) have demonstrated superior data generation capabilities compared to other methods, making them popular for use in medical image applications. These features have intrigued researchers in the medical imaging field, resulting in a swift implementation of these techniques in various conventional and novel applications such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. A comprehensive review of recent medical imaging breakthroughs will benefit researchers interested in this field. In this review, we aimed to introduce the origin, principle, and extended forms of GANs and summarize the state-of-the-art progress of GAN-based medical image processing methods.

Methods:

We searched the literature for studies on Google Scholar and PubMed using the keywords “Segmentation,” “Classification,” “medical image,” and “generative adversarial network.” Specifically, the initial search revealed 5423 publications after the removal of duplicated and non-accessible full-text publications. Then, after the title and abstract screening, 680 underwent full-text screening. Finally, 121 studies were included in our final analysis after full-text screening.

Results:

The date range of the studies covered in this review is from January 1, 2017, to the present. After a thorough screening and qualification assessment, 121 studies involving GAN-based applications in seven areas of medical images were included in the final methodological review. These areas included synthesis, classification, segmentation, conversion, reconstruction, denoising, and lesion detection. We further classified and summarized these papers into clinical applications, classification methods, and imaging modalities.

Conclusion:

We thoroughly examined the latest research progress of GAN-based medical image augmentation. These techniques effectively alleviate the challenge of limited training samples for medical image diagnosis and treatment models. Furthermore, several critical issues associated with GANs, such as pattern collapse, instability, and lack of interpretability, require attention in future research.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/0115734056258198230920042358
2023-10-19
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e15734056258198.html?itemId=/content/journals/cmim/10.2174/0115734056258198230920042358&mimeType=html&fmt=ahah

References

  1. GoodfellowI. Pouget-AbadieJ. MirzaM. Generative adversarial networks.27th International Conference on Neural Information Processing Systems201426728010.1145/3422622
    [Google Scholar]
  2. KebailiA. Lapuyade-LahorgueJ. RuanS. Deep learning approaches for data augmentation in medical imaging: A review.J. Imaging2023948110.3390/jimaging904008137103232
    [Google Scholar]
  3. CelardP. IglesiasE.L. Sorribes-FdezJ.M. RomeroR. VieiraA.S. BorrajoL. A survey on deep learning applied to medical images: From simple artificial neural networks to generative models.Neural Comput. Appl.20233532291232310.1007/s00521‑022‑07953‑436373133
    [Google Scholar]
  4. OsualaR. KushibarK. GarruchoL. LinardosA. SzafranowskaZ. KleinS. GlockerB. DiazO. LekadirK. Data synthesis and adversarial networks: A review and meta-analysis in cancer imaging.Med. Image Anal.20238410270410.1016/j.media.2022.10270436473414
    [Google Scholar]
  5. GarceaF. SerraA. LambertiF. MorraL. Data augmentation for medical imaging: A systematic literature review.Comput. Biol. Med.202315210639110.1016/j.compbiomed.2022.10639136549032
    [Google Scholar]
  6. ChenY. YangX.H. WeiZ. HeidariA.A. ZhengN. LiZ. ChenH. HuH. ZhouQ. GuanQ. Generative adversarial networks in medical image augmentation: A review.Comput. Biol. Med.202214410538210.1016/j.compbiomed.2022.10538235276550
    [Google Scholar]
  7. Bond-TaylorS. LeachA. LongY. WillcocksC.G. Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.IEEE Trans. Pattern Anal. Mach. Intell.202244117327734710.1109/TPAMI.2021.311666834591756
    [Google Scholar]
  8. AlamirM. AlghamdiM. The Role of generative adversarial network in medical image analysis: An in-depth survey.ACM Comput. Surv.202355513610.1145/3527849
    [Google Scholar]
  9. XuT. ZhangP. HuangQ. Deep learning ensembles for melanoma recognition in dermoscopy images.IEEE Conference on Computer Vision and Pattern Recognition08 September 2017201813162410.48550/arXiv.1711.10485
    [Google Scholar]
  10. LedigC. TheisL. HuszárF. Photo-realistic single image super-resolution using a generative adversarial network.IEEE Conference on Computer Vision and Pattern Recognition21-26 July 2017Honolulu, HI, USA201746819010.1109/CVPR.2017.19
    [Google Scholar]
  11. ZhuJ.Y. ParkT. IsolaP. Unpaired image-to-image translation using cycle-consistent adversarial networks.IEEE International Conference on Computer Vision22-29 October 2017Venice, Italy201722233210.1109/ICCV.2017.244
    [Google Scholar]
  12. JoseL. LiuS. RussoC. NadortA. Di IevaA. Generative adversarial networks in digital pathology and histopathological image processing: A review.J. Pathol. Inform.20211214310.4103/jpi.jpi_103_2034881098
    [Google Scholar]
  13. WangR. BashyamV. YangZ. YuF. TassopoulouV. ChintapalliS.S. SkampardoniI. SreepadaL.P. SahooD. NikitaK. AbdulkadirA. WenJ. DavatzikosC. Applications of generative adversarial networks in neuroimaging and clinical neuroscience.Neuroimage202326911989810.1016/j.neuroimage.2023.11989836702211
    [Google Scholar]
  14. WolterinkJ.M. MukhopadhyayA. LeinerT. VoglT.J. BucherA.M. IšgumI. Generative adversarial networks: A primer for radiologists.Radiographics202141384085710.1148/rg.202120015133891522
    [Google Scholar]
  15. HanT. WuJ. LuoW. WangH. JinZ. QuL. Review of generative adversarial networks in mono- and cross-modal biomedical image registration.Front. Neuroinform.20221693323010.3389/fninf.2022.93323036483313
    [Google Scholar]
  16. HoyezH. SchockaertC. RambachJ. MirbachB. StrickerD. Unsupervised image-to-image translation: A review.Sensors20222221854010.3390/s2221854036366238
    [Google Scholar]
  17. YiX. WaliaE. BabynP. Unsupervised and semi-supervised learning with categorical generative adversarial networks assisted by wasserstein distance for dermoscopy image classification.arXiv:1511.063902018
    [Google Scholar]
  18. HanC. KitamuraY. KudoA. Synthesizing diverse lung nodules wherever massively: 3D multi-conditional gan-based ct image augmentation for object detection.2019 International Conference on 3D Vision (3DV)16-19 September 2019Quebec City, QC, Canada201910.1109/3DV.2019.00085
    [Google Scholar]
  19. TekchandaniH. VermaS. LondheN. Performance improvement of mediastinal lymph node severity detection using GAN and Inception network.Comput. Methods Programs Biomed.202019410547810.1016/j.cmpb.2020.10547832447144
    [Google Scholar]
  20. ZhaoM WangL ChenJ Craniomaxillofacial bony structures segmentation from MRI with deep-supervision adversarial learning.International Conference on Medical Image Computing and Computer-Assisted Intervention201872072710.1007/978‑3‑030‑00937‑3_82
    [Google Scholar]
  21. ChenX. LianC. WangL. DengH. FungS.H. NieD. ThungK.H. YapP.T. GatenoJ. XiaJ.J. ShenD. One-shot generative adversarial learning for MRI segmentation of craniomaxillofacial bony structures.IEEE Trans. Med. Imaging202039378779610.1109/TMI.2019.293540931425025
    [Google Scholar]
  22. KazeminiaS. BaurC. KuijperA. van GinnekenB. NavabN. AlbarqouniS. MukhopadhyayA. GANs for medical image analysis.Artif. Intell. Med.202010910193810.1016/j.artmed.2020.10193834756215
    [Google Scholar]
  23. AsarS. JalalpourS. AyoubiF. PRISMA; preferred reporting items for systematic reviews and meta-analyses.Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Rafsanjan2016151688010.1371/journal.pmed.1000097
    [Google Scholar]
  24. PanZ. YuW. YiX. KhanA. YuanF. ZhengY. Recent progress on generative adversarial networks (GANs): A survey.IEEE Access20197363223633310.1109/ACCESS.2019.2905015
    [Google Scholar]
  25. RadfordA. MetzL. ChintalaS. Unsupervised representation learning with deep convolutional generative adversarial networks.arXiv:1511.064342015
    [Google Scholar]
  26. MirzaM. OsinderoS. Conditional generative adversarial nets.arXiv:1411.17842014
    [Google Scholar]
  27. ChenX. DuanY. HouthooftR. Infogan: Interpretable representation learning by information maximizing generative adversarial nets.Adv. Neural Inf. Process. Syst.2016292172218010.48550/arXiv.1606.03657
    [Google Scholar]
  28. OdenaA. OlahC. ShlensJ. In Conditional image synthesis with auxiliary classifier gans International Conference on Machine Learning201726425110.48550/arXiv.1610.09585
    [Google Scholar]
  29. IsolaP. ZhuJ.Y. ZhouT. Image-to-image translation with conditional adversarial networks.IEEE Conference on Computer Vision and Pattern Recognition21-26 July 2017Honolulu, HI, USA201711253410.1109/CVPR.2017.632
    [Google Scholar]
  30. ArjovskyM. ChintalaS. BottouL Wasserstein gan.arXiv:1701.078752017
    [Google Scholar]
  31. MaoX. LiQ. XieH. Least squares generative adversarial networks.IEEE International Conference on Computer Vision22-29 October 2017Venice, Italy2017279480210.1109/ICCV.2017.304
    [Google Scholar]
  32. ValentineF.A. A Lipschitz condition preserving extension for a vector function.Am. J. Math.1945671839310.2307/2371917
    [Google Scholar]
  33. SalimansT. GoodfellowI. ZarembaW. Improved techniques for training gans.Adv. Neural Inf. Process. Syst.2016292234224210.48550/arXiv.1606.03498
    [Google Scholar]
  34. GurumurthyS. KiranS.R. VenkateshB.R. Xception: Deep learning with depthwise separable convolutions.IEEE Conference on Computer Vision and Pattern Recognition21-26 July 2017Honolulu, HI, USA20171667410.1109/CVPR.2017.525
    [Google Scholar]
  35. ZhouZ. CaiH. RongS. Activation maximization generative adversarial nets.arXiv:1703.020002017
    [Google Scholar]
  36. HeuselM. RamsauerH. UnterthinerT. GANs trained by a two time-scale update rule converge to a nash equilibrium.31st Annual Conference on Neural Information Processing Systems (NIPS 2017)201766294010.48550/arXiv.1706.08500
    [Google Scholar]
  37. KimS. JangH. HongS. HongY.S. BaeW.C. KimS. HwangD. Fat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization.Med. Image Anal.20217310219810.1016/j.media.2021.10219834403931
    [Google Scholar]
  38. HiasaY. OtakeY. TakaoM. MatsuokaT. TakashimaK. CarassA. PrinceJ.L. SuganoN. SatoY. In cross-modality image synthesis from unpaired data using CycleGAN. Lect. Notes Comput. Sci.201811037September314110.1007/978‑3‑030‑00536‑8_4
    [Google Scholar]
  39. OulbachaR. KadouryS. 202010.1109/ISBI45749.2020.9098421
  40. YingX. GuoH. MaK. X2CT-GAN: Reconstructing CT from biplanar x-rays with generative adversarial networks.IEEE Conference on Computer Vision and Pattern Recognition2019106192810.1109/CVPR.2019.01087
    [Google Scholar]
  41. ArmaniousK. JiangC. FischerM. KüstnerT. HeppT. NikolaouK. GatidisS. YangB. MedGAN: Medical image translation using GANs.Comput. Med. Imaging Graph.20207910168410.1016/j.compmedimag.2019.10168431812132
    [Google Scholar]
  42. Shokraei FardA. ReutensD.C. VeghV. From CNNs to GANs for cross-modality medical image estimation.Comput. Biol. Med.202214610555610.1016/j.compbiomed.2022.10555635504221
    [Google Scholar]
  43. BagciU. UdupaJ.K. MendhirattaN. FosterB. XuZ. YaoJ. ChenX. MolluraD.J. Joint segmentation of anatomical and functional images: Applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images.Med. Image Anal.201317892994510.1016/j.media.2013.05.00423837967
    [Google Scholar]
  44. HamghalamM. WangT. LeiB. High tissue contrast image synthesis via multistage attention-GAN: Application to segmenting brain MR scans.Neural Netw.2020132435210.1016/j.neunet.2020.08.01432861913
    [Google Scholar]
  45. YangH. SunJ. CarassA. ZhaoC. LeeJ. XuZ. PrinceJ. In Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN.Lect. Notes Comput. Sci.20181104517418210.1007/978‑3‑030‑00889‑5_20
    [Google Scholar]
  46. ZhangZz. YangL. ZhengYf. Translating and segmenting multimodal medical volumes with cycle- and shape-consistency generative adversarial network.IEEE Conference on Computer Vision and Pattern Recognition201892425110.1109/CVPR.2018.00963
    [Google Scholar]
  47. XuJ. LiuH. Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging.Phys. Med. Biol.2019641818501610.1088/1361‑6560/ab310331292287
    [Google Scholar]
  48. ApostolopoulosI.D. PapathanasiouN.D. ApostolopoulosD.J. PanayiotakisG.S. Applications of generative adversarial networks (GANs) in positron emission tomography (PET) imaging: A review.Eur. J. Nucl. Med. Mol. Imaging202249113717373910.1007/s00259‑022‑05805‑w35451611
    [Google Scholar]
  49. LuoY. ZhouL. ZhanB. FeiY. ZhouJ. WangY. ShenD. Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis.Med. Image Anal.20227710233510.1016/j.media.2021.10233534979432
    [Google Scholar]
  50. HuS. LeiB. WangS. WangY. FengZ. ShenY. Bidirectional mapping generative adversarial networks for brain MR to PET synthesis.IEEE Trans. Med. Imaging202241114515710.1109/TMI.2021.310701334428138
    [Google Scholar]
  51. KinahanP.E. TownsendD.W. BeyerT. SashinD. Attenuation correction for a combined 3D PET/CT scanner.Med. Phys.199825102046205310.1118/1.5983929800714
    [Google Scholar]
  52. ColsherJ.G. HsiehJ. ThibaultJ.B. X-ray spectrum estimation from transmission measurements using the expectation maximization method.IEEE Nuclear Science Symposium Conference Record200855061110.1109/NSSMIC.2008.4774499
    [Google Scholar]
  53. NieD TrulloR LianJ Medical image synthesis with context-aware generative adversarial networks.International Conference on Medical Image Computing and Computer-Assisted Intervention201741742510.1007/978‑3‑319‑66179‑7_48
    [Google Scholar]
  54. ZhangH. LiH. DillmanJ.R. ParikhN.A. HeL. Multi-contrast MRI image synthesis using switchable cycle-consistent generative adversarial networks.Diagnostics.202212481610.3390/diagnostics1204081635453864
    [Google Scholar]
  55. ZhaoJ. LiD. KassamZ. HoweyJ. ChongJ. ChenB. LiS. Tripartite-GAN: Synthesizing liver contrast-enhanced MRI to improve tumor detection.Med. Image Anal.20206310166710.1016/j.media.2020.10166732375101
    [Google Scholar]
  56. DaiX. LeiY. FuY. CurranW.J. LiuT. MaoH. YangX. Multimodal MRI synthesis using unified generative adversarial networks.Med. Phys.202047126343635410.1002/mp.1453933053202
    [Google Scholar]
  57. HaglerD.J.Jr HattonS. CornejoM.D. MakowskiC. FairD.A. DickA.S. SutherlandM.T. CaseyB.J. BarchD.M. HarmsM.P. WattsR. BjorkJ.M. GaravanH.P. HilmerL. PungC.J. SicatC.S. KupermanJ. BartschH. XueF. HeitzegM.M. LairdA.R. TrinhT.T. GonzalezR. TapertS.F. RiedelM.C. SquegliaL.M. HydeL.W. RosenbergM.D. EarlE.A. HowlettK.D. BakerF.C. SoulesM. DiazJ. de LeonO.R. ThompsonW.K. NealeM.C. HertingM. SowellE.R. AlvarezR.P. HawesS.W. SanchezM. BodurkaJ. BreslinF.J. MorrisA.S. PaulusM.P. SimmonsW.K. PolimeniJ.R. van der KouweA. NenckaA.S. GrayK.M. PierpaoliC. MatochikJ.A. NoronhaA. AklinW.M. ConwayK. GlantzM. HoffmanE. LittleR. LopezM. PariyadathV. WeissS.R.B. Wolff-HughesD.L. DelCarmen-WigginsR. Feldstein EwingS.W. Miranda-DominguezO. NagelB.J. PerroneA.J. SturgeonD.T. GoldstoneA. PfefferbaumA. PohlK.M. ProutyD. UbanK. BookheimerS.Y. DaprettoM. GalvanA. BagotK. GieddJ. InfanteM.A. JacobusJ. PatrickK. ShillingP.D. DesikanR. LiY. SugrueL. BanichM.T. FriedmanN. HewittJ.K. HopferC. SakaiJ. TanabeJ. CottlerL.B. NixonS.J. ChangL. CloakC. ErnstT. ReevesG. KennedyD.N. HeeringaS. PeltierS. SchulenbergJ. SripadaC. ZuckerR.A. IaconoW.G. LucianaM. CalabroF.J. ClarkD.B. LewisD.A. LunaB. SchirdaC. BrimaT. FoxeJ.J. FreedmanE.G. MruzekD.W. MasonM.J. HuberR. McGladeE. PrescotA. RenshawP.F. Yurgelun-ToddD.A. AllgaierN.A. DumasJ.A. IvanovaM. PotterA. FlorsheimP. LarsonC. LisdahlK. CharnessM.E. FuemmelerB. HettemaJ.M. MaesH.H. SteinbergJ. AnokhinA.P. GlaserP. HeathA.C. MaddenP.A. Baskin-SommersA. ConstableR.T. GrantS.J. DowlingG.J. BrownS.A. JerniganT.L. DaleA.M. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study.Neuroimage201920211609110.1016/j.neuroimage.2019.11609131415884
    [Google Scholar]
  58. ZhanB. LiD. WuX. ZhouJ. WangY. Multi-modal mri image synthesis via gan with multi-scale gate mergence.IEEE J. Biomed. Health Inform.2022261172610.1109/JBHI.2021.308886634125692
    [Google Scholar]
  59. JosephJ. BijiI. BabuN. PournamiP.N. JayarajP.B. PuzhakkalN. SabuC. PatelV. Fan beam CT image synthesis from cone beam CT image using nested residual UNet based conditional generative adversarial network.Physical and Engineering Sciences in Medicine202346270371710.1007/s13246‑023‑01244‑536943626
    [Google Scholar]
  60. QiM. LiY. WuA. JiaQ. LiB. SunW. DaiZ. LuX. ZhouL. DengX. SongT. Multi‐sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI‐only radiotherapy.Med. Phys.20204741880189410.1002/mp.1407532027027
    [Google Scholar]
  61. KoikeY. AkinoY. SumidaI. ShiomiH. MizunoH. YagiM. IsohashiF. SeoY. SuzukiO. OgawaK. Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy.J. Radiat. Res.20206119210310.1093/jrr/rrz06331822894
    [Google Scholar]
  62. ClarkK. VendtB. SmithK. FreymannJ. KirbyJ. KoppelP. MooreS. PhillipsS. MaffittD. PringleM. TarboxL. PriorF. The Cancer imaging archive (TCIA): Maintaining and operating a public information repository.J. Digit. Imaging20132661045105710.1007/s10278‑013‑9622‑723884657
    [Google Scholar]
  63. ZhaoB. ChengT. ZhangX. WangJ. ZhuH. ZhaoR. LiD. ZhangZ. YuG. CT synthesis from MR in the pelvic area using Residual Transformer Conditional GAN.Comput. Med. Imaging Graph.202310310215010.1016/j.compmedimag.2022.10215036493595
    [Google Scholar]
  64. NyholmT. SvenssonS. AnderssonS. JonssonJ. SohlinM. GustafssonC. KjellénE. SöderströmK. AlbertssonP. BlomqvistL. ZackrissonB. OlssonL.E. GunnlaugssonA. MR and CT data with multiobserver delineations of organs in the pelvic area-Part of the Gold Atlas project.Med. Phys.20184531295130010.1002/mp.1274829322528
    [Google Scholar]
  65. ZhouX. CaiW. CaiJ. XiaoF. QiM. LiuJ. ZhouL. LiY. SongT. Multimodality MRI synchronous construction based deep learning framework for MRI-guided radiotherapy synthetic CT generation.Comput. Biol. Med.202316210705410.1016/j.compbiomed.2023.10705437290389
    [Google Scholar]
  66. SunB. JiaS. JiangX. JiaF. Double U-Net CycleGAN for 3D MR to CT image synthesis.Int. J. CARS202218114915610.1007/s11548‑022‑02732‑x35984606
    [Google Scholar]
  67. WangJ. WuQ.M.J. PourpanahF. DC-cycleGAN: Bidirectional CT-to-MR synthesis from unpaired data.Comput. Med. Imaging Graph.202310810224910.1016/j.compmedimag.2023.10224937290374
    [Google Scholar]
  68. HanX. MR-based synthetic CT generation using a deep convolutional neural network method.Med. Phys.20174441408141910.1002/mp.1215528192624
    [Google Scholar]
  69. DongX. LeiY. TianS. WangT. PatelP. CurranW.J. JaniA.B. LiuT. YangX. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network.Radiother. Oncol.201914119219910.1016/j.radonc.2019.09.02831630868
    [Google Scholar]
  70. LeiY. DongX. TianZ. LiuY. TianS. WangT. JiangX. PatelP. JaniA.B. MaoH. CurranW.J. LiuT. YangX. CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network.Med. Phys.202047253054010.1002/mp.1393331745995
    [Google Scholar]
  71. Ben-CohenA. KlangE. RaskinS.P. SofferS. Ben-HaimS. KonenE. AmitaiM.M. GreenspanH. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection.Eng. Appl. Artif. Intell.20197818619410.1016/j.engappai.2018.11.013
    [Google Scholar]
  72. KostakogluL. AgressH.Jr GoldsmithS.J. Clinical role of FDG PET in evaluation of cancer patients.Radiographics200323231534010.1148/rg.23202570512640150
    [Google Scholar]
  73. WangY. ZhouL. WangM. ShaoC. ShiL. YangS. ZhangZ. FengM. ShanF. LiuL. Combination of generative adversarial network and convolutional neural network for automatic subcentimeter pulmonary adenocarcinoma classification.Quant. Imaging Med. Surg.20201061249126410.21037/qims‑19‑98232550134
    [Google Scholar]
  74. SajjadM. RamzanF. KhanM.U.G. RehmanA. KolivandM. FatiS.M. BahajS.A. Deep convolutional generative adversarial network for Alzheimer’s disease classification using positron emission tomography ( PET ) and synthetic data augmentation.Microsc. Res. Tech.202184123023303410.1002/jemt.2386134245203
    [Google Scholar]
  75. AhmadB. JunS. PaladeV. YouQ. MaoL. ZhongjieM. Improving skin cancer classification using heavy-tailed student t-distribution in generative adversarial networks (TED-GAN).Diagnostics.20211111214710.3390/diagnostics1111214734829494
    [Google Scholar]
  76. OnishiY. TeramotoA. TsujimotoM. TsukamotoT. SaitoK. ToyamaH. ImaizumiK. FujitaH. Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes.Radiological Phys. Technol.202013216016910.1007/s12194‑020‑00564‑532358643
    [Google Scholar]
  77. LahiriA. AyushK. Kumar BiswasP. Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale miscroscopy images: Automated vessel segmentation in retinal fundus image as test case.IEEE Conference on Computer Vision and Pattern Recognition201742810.1109/CVPRW.2017.110
    [Google Scholar]
  78. LecouatB. ChangK. FooC-S Semi-supervised deep learning for abnormality classification in retinal images.arXiv:1812.078322018
    [Google Scholar]
  79. MoradiM. MadaniA. KarargyrisA. Syeda-MahmoodT.F. In Chest x-ray generation and data augmentation for cardiovascular abnormality classification, Medical Imaging 2018.Image Processing201811-135710.1117/12.2293971
    [Google Scholar]
  80. GaoX. ShiF. ShenD. LiuM. Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in Alzheimer’s Disease.IEEE J. Biomed. Health Inform.2022261364310.1109/JBHI.2021.309772134280112
    [Google Scholar]
  81. QuanT.M. ThanhH.M. HuyT.D. XPGAN: X-Ray projected generative adversarial network for improving Covid-19 Image Classification.2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)13-16 April 2021Nice, France202110.1109/ISBI48211.2021.9434159
    [Google Scholar]
  82. ChenW. YuS. MaK. JiW. BianC. ChuC. ShenL. ZhengY. TW-GAN: Topology and width aware GAN for retinal artery/vein classification.Med. Image Anal.20227710234010.1016/j.media.2021.10234035124367
    [Google Scholar]
  83. MeshginiS. MutepfeF. KalejahiB.K. DanishvarS. Generative adversarial network image synthesis method for skin lesion generation and classification.J. Med. Signals Sens.202111423725210.4103/jmss.JMSS_53_2034820296
    [Google Scholar]
  84. MuramatsuC. NishioM. GotoT. OiwaM. MoritaT. YakamiM. KuboT. TogashiK. FujitaH. Improving breast mass classification by shared data with domain transformation using a generative adversarial network.Comput. Biol. Med.202011910369810.1016/j.compbiomed.2020.10369832339129
    [Google Scholar]
  85. SaffariN. RashwanH.A. Abdel-NasserM. Kumar SinghV. ArenasM. ManginaE. HerreraB. PuigD. Fully automated breast density segmentation and classification using deep learning.Diagnostics.2020101198810.3390/diagnostics1011098833238512
    [Google Scholar]
  86. OnishiY. TeramotoA. TsujimotoM. TsukamotoT. SaitoK. ToyamaH. ImaizumiK. FujitaH. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks.Int. J. CARS202015117317810.1007/s11548‑019‑02092‑z31732864
    [Google Scholar]
  87. ZhangJ. YangK. ShenZ. SangS. YuanZ. HaoR. ZhangQ. CaiM. End-to-end automatic classification of retinal vessel based on generative adversarial networks with improved u-net.Diagnostics.2023136114810.3390/diagnostics1306114836980456
    [Google Scholar]
  88. Heenaye-Mamode KhanM. Gooda Sahib-KaudeerN. DayalenM. MahomedalyF. SinhaG.R. NagwanshiK.K. TaylorA. Multi-class skin problem classification using deep generative adversarial network (DGAN).Comput. Intell. Neurosci.2022202211310.1155/2022/179747135419047
    [Google Scholar]
  89. LioP.A. NghiemP. Interactive atlas of dermoscopy.J. Am. Acad. Dermatol.200450580780810.1016/j.jaad.2003.07.029
    [Google Scholar]
  90. AhmadB. SunJ. YouQ. PaladeV. MaoZ. Brain tumor classification using a combination of variational autoencoders and generative adversarial networks.Biomedicines202210222324110.3390/biomedicines1002022335203433
    [Google Scholar]
  91. ChengJ. HuangW. CaoS. YangR. YangW. YunZ. WangZ. FengQ. Enhanced performance of brain tumor classification via tumor region augmentation and partition.PLoS One20151010e014038110.1371/journal.pone.014038126447861
    [Google Scholar]
  92. PawarS.P. TalbarS.N. Two-stage hybrid approach of deep learning networks for interstitial lung disease classification.BioMed Res. Int.2022202211010.1155/2022/734090235155680
    [Google Scholar]
  93. DepeursingeA. VargasA. PlatonA. GeissbuhlerA. PolettiP.A. MüllerH. Building a reference multimedia database for interstitial lung diseases.Comput. Med. Imaging Graph.201236322723810.1016/j.compmedimag.2011.07.00321803548
    [Google Scholar]
  94. BarshooiA.H. AmirkhaniA. A novel data augmentation based on Gabor filter and convolutional deep learning for improving the classification of COVID-19 chest X-Ray images.Biomed. Signal Process. Control20227210332610.1016/j.bspc.2021.10332634777557
    [Google Scholar]
  95. CohenJ.P. MorrisonP. DaoL. Covid-19 image data collection: Prospective predictions are the future.MELBA.20202138
    [Google Scholar]
  96. IrvinJ. RajpurkarP. KoM. Proceedings of the AAAI conference on artificial intelligence20195907
    [Google Scholar]
  97. ChenY. LinY. XuX. DingJ. LiC. ZengY. XieW. HuangJ. Multi-domain medical image translation generation for lung image classification based on generative adversarial networks.Comput. Methods Programs Biomed.202322910720010.1016/j.cmpb.2022.10720036525713
    [Google Scholar]
  98. YildizE. ArslanA.T. Yildiz TasA. AcerA.F. DemirS. SahinA. Erol BarkanaD. Generative adversarial network based automatic segmentation of corneal subbasal nerves on in vivo confocal microscopy images.Transl. Vis. Sci. Technol.20211063310.1167/tvst.10.6.3334038501
    [Google Scholar]
  99. ChenJ. YangG. KhanH. ZhangH. ZhangY. ZhaoS. MohiaddinR. WongT. FirminD. KeeganJ. JAS-GAN: Generative adversarial network based joint atrium and scar segmentations on unbalanced atrial targets.IEEE J. Biomed. Health Inform.202226110311410.1109/JBHI.2021.307746933945491
    [Google Scholar]
  100. YuanW. WeiJ. WangJ. MaQ. TasdizenT. Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images.Med. Image Anal.202064810173110.1016/j.media.2020.10173132544841
    [Google Scholar]
  101. XunS. LiD. ZhuH. ChenM. WangJ. LiJ. ChenM. WuB. ZhangH. ChaiX. JiangZ. ZhangY. HuangP. Generative adversarial networks in medical image segmentation: A review.Comput. Biol. Med.202214010506310.1016/j.compbiomed.2021.10506334864584
    [Google Scholar]
  102. XueY. XuT. ZhangH. LongL.R. HuangX. SegAN: adversarial network with multi-scale L1 loss for medical image segmentation.Neuroinformatics2018163-438339210.1007/s12021‑018‑9377‑x29725916
    [Google Scholar]
  103. DelannoyQ. PhamC.H. CazorlaC. Tor-DíezC. DolléG. MeunierH. BednarekN. FabletR. PassatN. RousseauF. SegSRGAN: Super-resolution and segmentation using generative adversarial networks — Application to neonatal brain MRI.Comput. Biol. Med.202012010375510.1016/j.compbiomed.2020.10375532421654
    [Google Scholar]
  104. LiB. YouX. WangJ. PengQ. YinS. QiR. RenQ. HongZ. IAS‐NET: Joint intraclassly adaptive GAN and segmentation network for unsupervised cross‐domain in neonatal brain MRI segmentation.Med. Phys.202148116962697510.1002/mp.1521234494276
    [Google Scholar]
  105. La RosaF. YuT. BarqueroG. ThiranJ.P. GranzieraC. Bach CuadraM. MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients.Comput. Biol. Med.202113210429710.1016/j.compbiomed.2021.10429733711559
    [Google Scholar]
  106. ChengG. JiH. HeL. Correcting and reweighting false label masks in brain tumor segmentation.Med. Phys.202148116917710.1002/mp.1448032974920
    [Google Scholar]
  107. DelisleP.L. Anctil-RobitailleB. DesrosiersC. LombaertH. Realistic image normalization for multi-Domain segmentation.Med. Image Anal.20217410219110.1016/j.media.2021.10219134509168
    [Google Scholar]
  108. KuangH. MenonB.K. QiuW. Automated stroke lesion segmentation in non-contrast CT scans using dense multi-path contextual generative adversarial network.Phys. Med. Biol.2020652121501310.1088/1361‑6560/aba16632604080
    [Google Scholar]
  109. SilleR. ChoudhuryT. SharmaA. ChauhanP. TomarR. SharmaD. A novel generative adversarial network-based approach for automated brain tumour segmentation.Medicina.202359111910.3390/medicina5901011936676743
    [Google Scholar]
  110. NiuK. LiX. ZhangL. YanZ. YuW. LiangP. WangY. LinC.P. ZhangH. GuoC. LiK. QianT. Improving segmentation reliability of multi-scanner brain images using a generative adversarial network.Quant. Imaging Med. Surg.20221231775178610.21037/qims‑21‑65335284270
    [Google Scholar]
  111. HuangL. ZhuE. ChenL. WangZ. ChaiS. ZhangB. A transformer-based generative adversarial network for brain tumor segmentation.Front. Neurosci.202216105494810.3389/fnins.2022.105494836532274
    [Google Scholar]
  112. ZhuL. HeQ. HuangY. ZhangZ. ZengJ. LuL. KongW. ZhouF. DualMMP-GAN: Dual-scale multi-modality perceptual generative adversarial network for medical image segmentation.Comput. Biol. Med.202214410538710.1016/j.compbiomed.2022.10538735305502
    [Google Scholar]
  113. JeihouniP. DehzangiO. AmireskandariA. RezaiA. NasrabadiN.M. Multisdgan: Translation of oct images to superresolved segmentation labels using multi-discriminators in multi-stages.IEEE J. Biomed. Health Inform.20222641614162710.1109/JBHI.2021.311026534516380
    [Google Scholar]
  114. KamranS.A. HossainK.F. TavakkoliA. RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs Using a Novel Multi-scale Generative Adversarial Network.International Conference on Medical Image Computing and Computer-Assisted Intervention2021344410.1007/978‑3‑030‑87237‑3_4
    [Google Scholar]
  115. ShankaranarayanaS.M. RamK. MitraK. SivaprakasamM. In Joint optic disc and cup segmentation using fully convolutional and adversarial networks, Fetal.Lect. Notes Comput. Sci.20171055416817610.1007/978‑3‑319‑67561‑9_19
    [Google Scholar]
  116. LuoL. XueD. PanF. FengX. Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning.Int. J. CARS202116690591410.1007/s11548‑021‑02373‑633963969
    [Google Scholar]
  117. SchleglT. SeeböckP. WaldsteinS.M. Schmidt-ErfurthU. LangsG. In Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. Lect. Notes Comput. Sci.20171026514615710.1007/978‑3‑319‑59050‑9_12
    [Google Scholar]
  118. WangJ. LiW. ChenY. FangW. KongW. HeY. ShiG. Weakly supervised anomaly segmentation in retinal OCT images using an adversarial learning approach.Biomed. Opt. Express20211284713472910.1364/BOE.42680334513220
    [Google Scholar]
  119. ChiuS.J. AllinghamM.J. MettuP.S. CousinsS.W. IzattJ.A. FarsiuS. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.Biomed. Opt. Express2015641172119410.1364/BOE.6.00117225909003
    [Google Scholar]
  120. KermanyD.S. GoldbaumM. CaiW. ValentimC.C.S. LiangH. BaxterS.L. McKeownA. YangG. WuX. YanF. DongJ. PrasadhaM.K. PeiJ. TingM.Y.L. ZhuJ. LiC. HewettS. DongJ. ZiyarI. ShiA. ZhangR. ZhengL. HouR. ShiW. FuX. DuanY. HuuV.A.N. WenC. ZhangE.D. ZhangC.L. LiO. WangX. SingerM.A. SunX. XuJ. TafreshiA. LewisM.A. XiaH. ZhangK. Identifying medical diagnoses and treatable diseases by image-based deep learning.Cell2018172511221131.e910.1016/j.cell.2018.02.01029474911
    [Google Scholar]
  121. TangY. WangS. QuY. CuiZ. ZhangW. Consistency and adversarial semi-supervised learning for medical image segmentation.Comput. Biol. Med.202316110701810.1016/j.compbiomed.2023.10701837216776
    [Google Scholar]
  122. DouQ. OuyangC. ChenC. Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial lossarXiv:1804.10916201810.24963/ijcai.2018/96
    [Google Scholar]
  123. DongS LuoG WangK VoxelAtlasGAN: 3D left ventricle segmentation on echocardiography with atlas guided generation and voxel-to-voxel discrimination.International Conference on Medical Image Computing and Computer-Assisted Intervention201862262910.1007/978‑3‑030‑00937‑3_71
    [Google Scholar]
  124. DecourtC. DuongL. Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI.Comput. Biol. Med.202012310388410.1016/j.compbiomed.2020.10388432658792
    [Google Scholar]
  125. CuiH. YuwenC. JiangL. XiaY. ZhangY. Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation.Comput. Biol. Med.202113610472610.1016/j.compbiomed.2021.10472634371318
    [Google Scholar]
  126. LiuJ. XieH. ZhangS. GuL. Multi-sequence myocardium segmentation with cross-constrained shape and neural network-based initialization.Comput. Med. Imaging Graph.201971495710.1016/j.compmedimag.2018.11.00130500758
    [Google Scholar]
  127. AndreopoulosA. TsotsosJ.K. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI.Med. Image Anal.200812333535710.1016/j.media.2007.12.00318313974
    [Google Scholar]
  128. YangX. ZhangY. LoB. WuD. LiaoH. ZhangY.T. DBAN: Adversarial network with multi-scale features for cardiac MRI segmentation.IEEE J. Biomed. Health Inform.20212562018202810.1109/JBHI.2020.302846333006934
    [Google Scholar]
  129. ShiX. DuT. ChenS. ZhangH. GuanC. XuB. UENet: A novel generative adversarial network for angiography image segmentation.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.20202020July1612161510.1109/EMBC44109.2020.917533433018303
    [Google Scholar]
  130. GilbertA. MarciniakM. RoderoC. LamataP. SamsetE. McleodK. Generating synthetic labeled data from existing anatomical models: An example with echocardiography segmentation.IEEE Trans. Med. Imaging202140102783279410.1109/TMI.2021.305180633444134
    [Google Scholar]
  131. HanL. HuangY. DouH. WangS. AhamadS. LuoH. LiuQ. FanJ. ZhangJ. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.Comput. Methods Programs Biomed.202018910527510.1016/j.cmpb.2019.10527531978805
    [Google Scholar]
  132. ZhaiD. HuB. GongX. ZouH. LuoJ. ASS-GAN: Asymmetric semi-supervised GAN for breast ultrasound image segmentation.Neurocomputing202249320421610.1016/j.neucom.2022.04.021
    [Google Scholar]
  133. TanJ. JingL. HuoY. LiL. AkinO. TianY. LGAN: Lung segmentation in CT scans using generative adversarial network.Comput. Med. Imaging Graph.20218710181710.1016/j.compmedimag.2020.10181733278767
    [Google Scholar]
  134. DaiW. DongN. WangZ. LiangX. ZhangH. XingE.P. In Scan: Structure correcting adversarial network for organ segmentation in chest x-rays. Lect. Notes Comput. Sci.201811045September26327310.1007/978‑3‑030‑00889‑5_30
    [Google Scholar]
  135. TrulloR. PetitjeanC. DubrayB. RuanS. Multiorgan segmentation using distance-aware adversarial networks.J. Med. Imaging.201961110.1117/1.JMI.6.1.01400130662925
    [Google Scholar]
  136. YapM.H. PonsG. MartíJ. GanauS. SentisM. ZwiggelaarR. DavisonA.K. MartiR. PonsG. MartiJ. GanauS. SentisM. ZwiggelaarR. DavisonA.K. MartiR. Automated breast ultrasound lesions detection using convolutional neural networks.IEEE J. Biomed. Health Inform.20182241218122610.1109/JBHI.2017.273187328796627
    [Google Scholar]
  137. HeR. XuS. LiuY. Three-dimensional liver image segmentation using generative adversarial networks based on featFrontiers in Medicineure restoration.Front. Med.2022879496910.3389/fmed.2021.79496935071275
    [Google Scholar]
  138. XingJ. LiZ. WangB. QiY. YuB. ZanjaniF.G. ZhengA. DuitsR. TanT. Lesion segmentation in ultrasound using semi-pixel-wise cycle generative adversarial nets.IEEE/ACM Trans. Comput. Biol. Bioinformatics20211862555256510.1109/TCBB.2020.297847032149651
    [Google Scholar]
  139. StiehlB. LauriaM. SinghraoK. GoldinJ. BarjaktarevicI. LowD. SanthanamA. Scalable quorum-based deep neural networks with adversarial learning for automated lung lobe segmentation in fast helical free-breathing CTs.Int. J. CARS202116101775178410.1007/s11548‑021‑02454‑634378122
    [Google Scholar]
  140. Al-DhabyaniW. GomaaM. KhaledH. FahmyA. Dataset of breast ultrasound images.Data Brief20202810486310.1016/j.dib.2019.10486331867417
    [Google Scholar]
  141. HuangQ. HuangY. LuoY. YuanF. LiX. Segmentation of breast ultrasound image with semantic classification of superpixels.Med. Image Anal.20206110165710.1016/j.media.2020.10165732032899
    [Google Scholar]
  142. Piotrzkowska-WróblewskaH. Dobruch-SobczakK. ByraM. NowickiA. Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions.Med. Phys.201744116105610910.1002/mp.1253828859252
    [Google Scholar]
  143. LiuY. YangF. YangY. A partial convolution generative adversarial network for lesion synthesis and enhanced liver tumor segmentation.J. Appl. Clin. Med. Phys.2023244e1392710.1002/acm2.1392736800255
    [Google Scholar]
  144. ParkS. LeeK.H. KoB. KimN. Unsupervised anomaly detection with generative adversarial networks in mammography.Sci. Rep.2023131292510.1038/s41598‑023‑29521‑z36805637
    [Google Scholar]
  145. ShanT. YingY. SongG. Automatic kidney segmentation method based on an enhanced generative adversarial network.Diagnostics.2023137135810.3390/diagnostics1307135837046576
    [Google Scholar]
  146. LiY. ZhaoG. ZhangQ. LinY. WangM. SAP‐cGAN: Adversarial learning for breast mass segmentation in digital mammogram based on superpixel average pooling.Med. Phys.20214831157116710.1002/mp.1467133340125
    [Google Scholar]
  147. KesslerD.A. MacKayJ.W. CroweV.A. HensonF.M.D. GravesM.J. GilbertF.J. KaggieJ.D. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.Comput. Med. Imaging Graph.20208610179310.1016/j.compmedimag.2020.10179333075675
    [Google Scholar]
  148. KanC.N.E. Gilat-SchmidtT. YeD.H. Enhancing reproductive organ segmentation in pediatric CT via adversarial learning.SPIE Proceedings2021115961210.1117/12.2582127
    [Google Scholar]
  149. WeiQ. HanJ. JiaY. ZhuL. ZhangS. LuY. YangB. TangS. An approach for fully automatic femoral neck-shaft angle evaluation on radiographs.Rev. Sci. Instrum.202091101370610.1063/1.508973832012644
    [Google Scholar]
  150. ZhangZ. ZhaoT. GayH. ZhangW. SunB. ARPM‐net: A novel CNN‐based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.Med. Phys.202148122723710.1002/mp.1458033151620
    [Google Scholar]
  151. SultanaS RobinsonA SongDY CNN-based hierarchical coarse-to-fine segmentation of pelvic CT images for prostate cancer radiotherapy.SPIE ProceedingsHouston, Texas, United States202010.1117/12.2549979
    [Google Scholar]
  152. LeiY. WangT. TianS. FuY. PatelP. JaniA.B. CurranW.J. LiuT. YangX. Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks.Phys. Med. Biol.202166808500710.1088/1361‑6560/abf2f933780918
    [Google Scholar]
  153. GajS. YangM. NakamuraK. LiX. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.Magn. Reson. Med.202084143744910.1002/mrm.2811131793071
    [Google Scholar]
  154. GongH. LiuJ. ChenB. LiS. ResAttenGAN: Simultaneous segmentation of multiple spinal structures on axial lumbar MRI image using residual attention and adversarial learning.Artif. Intell. Med.202212410224310.1016/j.artmed.2022.10224335115128
    [Google Scholar]
  155. UzunovaH. EhrhardtJ. HandelsH. Memory-efficient GAN-based domain translation of high resolution 3D medical images.Comput. Med. Imaging Graph.20208610180110.1016/j.compmedimag.2020.10180133130418
    [Google Scholar]
  156. KearneyV. ZiemerB.P. PerryA. WangT. ChanJ.W. MaL. MorinO. YomS.S. SolbergT.D. Attention-aware discrimination for MR-to-CT image translation using cycle-consistent generative adversarial networks.Radiol. Artif. Intell.202022e19002710.1148/ryai.202019002733937817
    [Google Scholar]
  157. HinaultP. GardinI. GouelP. DecazesP. ThureauS. VeresezanO. SouchayH. VeraP. GensanneD. Characterization of positioning uncertainties in PET‐CT‐MR trimodality solutions for radiotherapy.J. Appl. Clin. Med. Phys.2022237e1361710.1002/acm2.1361735481611
    [Google Scholar]
  158. ChenJ. WeiJ. LiR. TarGAN: Target-aware generative adversarial networks for multi-modality medical image translation.International Conference on Medical Image Computing and Computer-Assisted Intervention2021243310.1007/978‑3‑030‑87231‑1_3
    [Google Scholar]
  159. GutierrezA. TuladharA. WilmsM. RajashekarD. HillM.D. DemchukA. GoyalM. FiehlerJ. ForkertN.D. Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients.Int. J. CARS202318582783610.1007/s11548‑022‑02828‑436607506
    [Google Scholar]
  160. DenckJ. GuehringJ. MaierA. RothgangE. MR-contrast-aware image-to-image translations with generative adversarial networks.Int. J. CARS202116122069207810.1007/s11548‑021‑02433‑x34148167
    [Google Scholar]
  161. LiuX. XingF. El FakhriG. A unified conditional disentanglement framework for multimodal brain mr image translation.2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)13-16 April 2021Nice, France202110.1109/ISBI48211.2021.9433897
    [Google Scholar]
  162. DemchukA.M. GoyalM. MenonB.K. EesaM. RyckborstK.J. KamalN. PatilS. MishraS. AlmekhlafiM. RandhawaP.A. RoyD. WillinskyR. MontaneraW. SilverF.L. ShuaibA. RempelJ. JovinT. FreiD. SapkotaB. ThorntonJ.M. PoppeA. TampieriD. LumC. WeillA. SajobiT.T. HillM.D. Endovascular treatment for Small Core and Anterior circulation Proximal occlusion with Emphasis on minimizing CT to recanalization times (ESCAPE) trial: methodology.Int. J. Stroke201510342943810.1111/ijs.1242425546514
    [Google Scholar]
  163. JafariM.H. GirgisH. Van WoudenbergN. MoulsonN. LuongC. FungA. BalthazaarS. JueJ. TsangM. NairP. GinK. RohlingR. AbolmaesumiP. TsangT. Cardiac point-of-care to cart-based ultrasound translation using constrained CycleGAN.Int. J. CARS202015587788610.1007/s11548‑020‑02141‑y32314226
    [Google Scholar]
  164. GaudetJ. WaechterJ. McLaughlinK. FerlandA. GodinezT. BandsC. BoucherP. LockyerJ. Focused critical care echocardiography: Development and evaluation of an image acquisition assessment tool.Crit. Care Med.2016446e329e33510.1097/CCM.000000000000162026825858
    [Google Scholar]
  165. WangC.J. RostN.S. GollandP. Spatial-intensity transform GANs for high fidelity medical image-to-image translation.International Conference on Medical Image Computing and Computer-Assisted Intervention202074975910.1007/978‑3‑030‑59713‑9_72
    [Google Scholar]
  166. EhrhardtJ JacobF HandelsH Comparison of post-hoc normalization approaches for ct-based lung emphysema index quantification.Bildverarbeitung für die Medizin20164449
    [Google Scholar]
  167. BazanganiF. RichardF.J.P. GhattasB. GuedjE. FDG-PET to T1 weighted MRI translation with 3d elicit generative adversarial network (E-GAN).Sensors.20222212464010.3390/s2212464035746422
    [Google Scholar]
  168. SuwanraksaC. BridhikittiJ. LiamsuwanT. ChaichuleeS. CBCT-to-CT translation using registration-based generative adversarial networks in patients with head and neck cancer.Cancers2023157201710.3390/cancers1507201737046678
    [Google Scholar]
  169. ShaulR. DavidI. ShitritO. Riklin RavivT. Subsampled brain MRI reconstruction by generative adversarial neural networks.Med. Image Anal.20206510174710.1016/j.media.2020.10174732593933
    [Google Scholar]
  170. WangJ. ChenY. WuY. Enhanced generative adversarial network for 3D brain MRI super-resolution.arXiv:1907.048352020
    [Google Scholar]
  171. LiW. HeY. KongW. GaoF. WangJ. ShiG. Enhancement of retinal image from line-scanning ophthalmoscope using generative adversarial networks.IEEE Access20197998309984110.1109/ACCESS.2019.2930329
    [Google Scholar]
  172. MaJ. YuJ. LiuS. ChenL. LiX. FengJ. ChenZ. ZengS. LiuX. ChengS. PathSRGAN: Multi-supervised super-resolution for cytopathological images using generative adversarial network.IEEE Trans. Med. Imaging20203992920293010.1109/TMI.2020.298083932175859
    [Google Scholar]
  173. MahapatraD. BozorgtabarB. Retinal vasculature segmentation using local saliency maps and generative adversarial networks for image super resolution.arXiv:1710.047832017
    [Google Scholar]
  174. MoranM.B.H. FariaM.D.B. GiraldiG.A. BastosL.F. ConciA. Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs.Comput. Biol. Med.202112910413910.1016/j.compbiomed.2020.10413933271400
    [Google Scholar]
  175. LiY. LiJ. MaF. DuS. LiuY. High quality and fast compressed sensing MRI reconstruction via edge-enhanced dual discriminator generative adversarial network.Magn. Reson. Imaging20217712413610.1016/j.mri.2020.12.01133359427
    [Google Scholar]
  176. ZhaoX. YangT. LiB. ZhangX. SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction.Comput. Biol. Med.202315310651310.1016/j.compbiomed.2022.10651336603439
    [Google Scholar]
  177. KetolaJ.H.J. HeinoH. JuntunenM.A.K. NieminenM.T. SiltanenS. InkinenS.I. Generative adversarial networks improve interior computed tomography angiography reconstruction.Biomed. Phys. Eng. Express20217606504110.1088/2057‑1976/ac31cb34673559
    [Google Scholar]
  178. ZhangY. HuD. ZhaoQ. QuanG. LiuJ. LiuQ. ZhangY. CoatrieuxG. ChenY. YuH. CLEAR: Comprehensive learning enabled adversarial reconstruction for subtle structure enhanced low-dose CT imaging.IEEE Trans. Med. Imaging202140113089310110.1109/TMI.2021.309780834270418
    [Google Scholar]
  179. LiY. SpeidelM.A. FrançoisC.J. ChenG.H. Radiation dose reduction in CT myocardial perfusion imaging using SMART-RECON.IEEE Trans. Med. Imaging201736122557256810.1109/TMI.2017.274752128866488
    [Google Scholar]
  180. XiaoY. ChenC. WangL. YuJ. FuX. ZouY. LinZ. WangK. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction.Phys. Med. Biol.2023681313500710.1088/1361‑6560/acdc7e37285848
    [Google Scholar]
  181. FuY. DongS. NiuM. XueL. GuoH. HuangY. XuY. YuT. ShiK. YangQ. ShiY. ZhangH. TianM. ZhuoC. AIGAN: Attention–encoding integrated generative adversarial network for the reconstruction of low-dose CT and low-dose PET images.Med. Image Anal.20238610278710.1016/j.media.2023.10278736933386
    [Google Scholar]
  182. ZhangF. CaiN. WuJ. CenG. WangH. ChenX. Image denoising method based on a deep convolution neural network.IET Image Process.201812448549310.1049/iet‑ipr.2017.0389
    [Google Scholar]
  183. ChenJ. ChenJ. ChaoH. Image blind denoising with generative adversarial network based noise modeling. IEEE Conference on Computer Vision and Pattern Recognition18-23 June 2018, Salt Lake City, UT, USA201831556410.1109/CVPR.2018.00333
    [Google Scholar]
  184. LiY. ZhangK. ShiW. MiaoY. JiangZ. A novel medical image denoising method based on conditional generative adversarial network.Comput. Math. Methods Med.2021202111110.1155/2021/997401734621329
    [Google Scholar]
  185. KulathilakeK.A.S.H. AbdullahN.A. BandaraA.M.R.R. LaiK.W. InNetGAN: Inception network-based generative adversarial network for denoising low-dose computed tomography.J. Healthc. Eng.2021202112010.1155/2021/997576234552709
    [Google Scholar]
  186. WolterinkJ.M. LeinerT. ViergeverM.A. IsgumI. Generative adversarial networks for noise reduction in low-dose CT.IEEE Trans. Med. Imaging201736122536254510.1109/TMI.2017.270898728574346
    [Google Scholar]
  187. YiX. BabynP. Sharpness-aware low-dose CT denoising using conditional generative adversarial network.J. Digit. Imaging201831565566910.1007/s10278‑018‑0056‑029464432
    [Google Scholar]
  188. GaoM. FesslerJ.A. ChanH.P. Deep convolutional neural network with adversarial training for denoising digital breast tomosynthesis images.IEEE Trans. Med. Imaging20214071805181610.1109/TMI.2021.306689633729933
    [Google Scholar]
  189. HegazyM.A.A. ChoM.H. LeeS.Y. Image denoising by transfer learning of generative adversarial network for dental CT.Biomed. Phys. Eng. Express20206505502410.1088/2057‑1976/abb06833444255
    [Google Scholar]
  190. LiZ. ShiW. XingQ. MiaoY. HeW. YangH. JiangZ. Low-dose CT image denoising with improving WGAN and hybrid loss function.Comput. Math. Methods Med.2021202111410.1155/2021/297310834484414
    [Google Scholar]
  191. XieQ. MaZ. ZhuL. FanF. MengX. GaoX. ZhuJ. Multi-task generative adversarial network for retinal optical coherence tomography image denoising.Phys. Med. Biol.202368404500210.1088/1361‑6560/ac944a36137542
    [Google Scholar]
  192. Leyuan Fang Shutao Li McNabbR.P. Qing Nie KuoA.N. TothC.A. IzattJ.A. FarsiuS. Fast acquisition and reconstruction of optical coherence tomography images via sparse representation.IEEE Trans. Med. Imaging201332112034204910.1109/TMI.2013.227190423846467
    [Google Scholar]
  193. FangL. LiS. NieQ. IzattJ.A. TothC.A. FarsiuS. Sparsity based denoising of spectral domain optical coherence tomography images.Biomed. Opt. Express20123592794210.1364/BOE.3.00092722567586
    [Google Scholar]
  194. ChiuS.J. IzattJ.A. O’ConnellR.V. WinterK.P. TothC.A. FarsiuS. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images.Invest. Ophthalmol. Vis. Sci.2012531536110.1167/iovs.11‑764022039246
    [Google Scholar]
  195. KustersK.C. Zavala-MondragónL.A. BescósJ.O. Estimation of relationships between transducer placements and peripheral propagation in cartilage conduction.2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)01-05 November 2021, Mexico202110.1109/EMBC46164.2021.9629600
    [Google Scholar]
  196. WangG. HuX. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.Comput. Biol. Med.202113510462510.1016/j.compbiomed.2021.10462534246157
    [Google Scholar]
  197. LeeJ. JeonJ. HongY. JeongD. JangY. JeonB. BaekH.J. ChoE. ShimH. ChangH.J. Generative adversarial network with radiomic feature reproducibility analysis for computed tomography denoising.Comput. Biol. Med.202315910693110.1016/j.compbiomed.2023.10693137116238
    [Google Scholar]
  198. YuX GeC LiM Multiscale denoising generative adversarial network for speckle reduction in optical coherence tomography images.J Med Imaging202310202400610.1117/1.JMI.10.2.024006
    [Google Scholar]
  199. ZhaoF. LiuM. GaoZ. JiangX. WangR. ZhangL. Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising.Comput. Biol. Med.202316110702910.1016/j.compbiomed.2023.10702937230021
    [Google Scholar]
  200. TanC. YangM. YouZ. ChenH. ZhangY. A selective kernel-based cycle-consistent generative adversarial network for unpaired low-dose CT denoising.Precis. Clin. Med.202252pbac01110.1093/pcmedi/pbac01135694718
    [Google Scholar]
  201. YiX. WaliaE. BabynP. Generative adversarial network in medical imaging: A review.Med. Image Anal.20195810155210.1016/j.media.2019.10155231521965
    [Google Scholar]
  202. MotamedS. RogallaP. KhalvatiF. RANDGAN: Randomized generative adversarial network for detection of COVID-19 in chest X-ray.Sci. Rep.2021111860210.1038/s41598‑021‑87994‑233883609
    [Google Scholar]
  203. FujiokaT. KubotaK. MoriM. KikuchiY. KatsutaL. KimuraM. YamagaE. AdachiM. OdaG. NakagawaT. KitazumeY. TateishiU. Efficient anomaly detection with generative adversarial network for breast ultrasound imaging.Diagnostics202010745610.3390/diagnostics1007045632635547
    [Google Scholar]
  204. GuanQ. ChenY. WeiZ. HeidariA.A. HuH. YangX.H. ZhengJ. ZhouQ. ChenH. ChenF. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN.Comput. Biol. Med.202214510544410.1016/j.compbiomed.2022.10544435421795
    [Google Scholar]
  205. KarakanisS. LeontidisG. Lightweight deep learning models for detecting COVID-19 from chest X-ray images.Comput. Biol. Med.202113010418110.1016/j.compbiomed.2020.10418133360271
    [Google Scholar]
  206. MotamedS. KhalvatiF. Improved genotype-guided deep radiomics signatures for recurrence prediction of non-small cell lung cancer.2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)01-05 November 2021,Mexico202110.1109/EMBC46164.2021.9630473
    [Google Scholar]
  207. KermanyD. ZhangK. GoldbaumM. Labeled optical coherence tomography (oct) and chest x-ray images for classification.Mendeley data2018
    [Google Scholar]
  208. XieH. LiuY. LeiH. SongT. YueG. DuY. WangT. ZhangG. LeiB. Adversarial learning-based multi-level dense-transmission knowledge distillation for AP-ROP detection.Med. Image Anal.20238410272510.1016/j.media.2022.10272536527770
    [Google Scholar]
  209. ZhengC. YeH. YangJ. FeiP. QiuY. XieX. WangZ. ChenJ. ZhaoP. Development and clinical validation of semi-supervised generative adversarial networks for detection of retinal disorders in optical coherence tomography images using small dataset.Asia Pac. J. Ophthalmol. (Phila.)202211321922610.1097/APO.000000000000049835342179
    [Google Scholar]
  210. CreswellA. WhiteT. DumoulinV. ArulkumaranK. SenguptaB. BharathA.A. Generative adversarial networks: An overview.IEEE Signal Process. Mag.2018351536510.1109/MSP.2017.2765202
    [Google Scholar]
  211. KarimiD. NirG. FazliL. BlackP.C. GoldenbergL. SalcudeanS.E. Deep learning-based gleason grading of prostate cancer from histopathology images—role of multiscale decision aggregation and data augmentation.IEEE J. Biomed. Health Inform.20202451413142610.1109/JBHI.2019.294464331567104
    [Google Scholar]
  212. LoecherM. PerottiL.E. EnnisD.B. Using synthetic data generation to train a cardiac motion tag tracking neural network.Med. Image Anal.20217410222310.1016/j.media.2021.10222334555661
    [Google Scholar]
  213. ChenC. HammernikK. OuyangC. Cooperative training and latent space data augmentation for robust medical image segmentation.International Conference on Medical Image Computing and Computer-Assisted Intervention.202114915910.1007/978‑3‑030‑87199‑4_14
    [Google Scholar]
  214. WangR. ZhengG. CyCMIS: Cycle-consistent Cross-domain Medical Image Segmentation via diverse image augmentation.Med. Image Anal.20227610232810.1016/j.media.2021.10232834920236
    [Google Scholar]
/content/journals/cmim/10.2174/0115734056258198230920042358
Loading
/content/journals/cmim/10.2174/0115734056258198230920042358
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test