Skip to content
2000
  • E-ISSN:

Abstract

Background:

Rheumatoid Arthritis Magnetic Resonance Imaging Score (RAMRIS) is usually used for the semi-quantitative evaluation of joint changes in Rheumatoid Arthritis (RA). However, this method cannot evaluate early changes in bone marrow edema (BME).

Objective:

To determine whether T1 mapping of wrist BME predicts early treatment response in RA.

Methods:

This study prospectively enrolled 48 RA patients administered oral anti-rheumatic drugs. MRI of the most severely affected wrist was performed before and after 4 (48 patients) and 8 weeks of treatment (38 patients). Mean T1 values of BME in the lunate, triangular, and capitate bones; RAMRIS for each wrist; Erythrocyte-Sedimentation Rate (ESR); and 28-joint Disease Activity Score (DAS28)-ESR score were analyzed. Patients were divided into responders (4 weeks, 30 patients; 8 weeks, 32 patients) and non-responders (4 weeks, 18 patients; 8 weeks, 6 patients), according to EULAR response criteria. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of T1 values.

Results:

ESR and DAS28-ESR were not correlated with T1 value and RAMRIS at each examination ( > 0.05). Changes in T1 value and DAS28-ESR relative to the baseline were moderately positively correlated with each other at 4 and 8 weeks (r = 0.555 and 0.527, respectively; < 0.05). At 4 weeks, the change and rate of change in T1 value significantly differed between responders and non-responders (-85.63 . -19.92 ms; -12.89% . -2.81%; < 0.05). The optimal threshold of the rate of change in T1 value at 4 weeks for predicting treatment response was -5.32% (area under the ROC curve, 0.833; sensitivity, 0.900; specificity, 0.667).

Conclusion:

T1 mapping provides a new imaging method for monitoring RA lesions; changes in wrist BME T1 values reflect early treatment response.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmim/10.2174/0115734056252909230925060431
2023-10-14
2025-01-10
Loading full text...

Full text loading...

/deliver/fulltext/cmim/20/1/e15734056252909.html?itemId=/content/journals/cmim/10.2174/0115734056252909230925060431&mimeType=html&fmt=ahah

References

  1. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑827156434
    [Google Scholar]
  2. AletahaD. SmolenJ.S. Diagnosis and management of rheumatoid arthritis.JAMA2018320131360137210.1001/jama.2018.1310330285183
    [Google Scholar]
  3. SinghJ.A. HossainA. Tanjong GhogomuE. MudanoA.S. MaxwellL.J. BuchbinderR. Lopez-OlivoM.A. Suarez-AlmazorM.E. TugwellP. WellsG.A. Biologics or tofacitinib for people with rheumatoid arthritis unsuccessfully treated with biologics: a systematic review and network meta-analysis.Cochrane Libr.201720173CD01259110.1002/14651858.CD01259128282491
    [Google Scholar]
  4. CavalliG. FavalliE.G. Biologic discontinuation strategies and outcomes in patients with rheumatoid arthritis.Expert Rev. Clin. Immunol.201915121313132210.1080/1744666X.2020.168697631663390
    [Google Scholar]
  5. ColebatchA.N. EdwardsC.J. ØstergaardM. van der HeijdeD. BalintP.V. D’AgostinoM.A. ForslindK. GrassiW. HaavardsholmE.A. HaugebergG. JurikA.G. LandewéR.B.M. NaredoE. O’ConnorP.J. OstendorfB. PotočkiK. SchmidtW.A. SmolenJ.S. SokolovicS. WattI. ConaghanP.G. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis.Ann. Rheum. Dis.201372680481410.1136/annrheumdis‑2012‑20315823520036
    [Google Scholar]
  6. ØstergaardM. BoesenM. Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography.Radiol. Med. (Torino)2019124111128114110.1007/s11547‑019‑01014‑y30880357
    [Google Scholar]
  7. NieuwenhuisW.P. van SteenbergenH.W. StompW. StijnenT. HuizingaT.W. BloemJ.L. van der HeijdeD. ReijnierseM. van der Helm-van MilA.H. The course of bone marrow edema in early undifferentiated arthritis and rheumatoid arthritis: A longitudinal magnetic resonance imaging study at bone level.Arthritis Rheumatol.20166851080108826681086
    [Google Scholar]
  8. HetlandM.L. EjbjergB. Hørslev-PetersenK. JacobsenS. VestergaardA. JurikA.G. Stengaard-PedersenK. JunkerP. LottenburgerT. HansenI. AndersenL.S. TarpU. SkjødtH. PedersenJ.K. MajgaardO. SvendsenA.J. EllingsenT. LindegaardH. ChristensenA.F. ValløJ. TorfingT. NarvestadE. ThomsenH.S. ØstergaardM. CIMESTRA study group MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA).Ann. Rheum. Dis.200968338439010.1136/ard.2008.08824518388160
    [Google Scholar]
  9. HetlandM.L. ØstergaardM. Stengaard-PedersenK. JunkerP. EjbjergB. JacobsenS. EllingsenT. LindegaardH. PødenphantJ. VestergaardA. JurikA.G. KroghN.S. Hørslev-PetersenK. and The CIMESTRA Study Group* Anti-cyclic citrullinated peptide antibodies, 28-joint Disease Activity Score, and magnetic resonance imaging bone oedema at baseline predict 11 years’ functional and radiographic outcome in early rheumatoid arthritis.Scand. J. Rheumatol.20194811810.1080/03009742.2018.146636230101636
    [Google Scholar]
  10. ØstergaardM. PeterfyC. ConaghanP. McQueenF. BirdP. EjbjergB. ShnierR. O’ConnorP. KlarlundM. EmeryP. GenantH. LassereM. EdmondsJ. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system.J. Rheumatol.20033061385138612784422
    [Google Scholar]
  11. ØstergaardM. PeterfyC.G. BirdP. GandjbakhchF. GlinatsiD. EshedI. HaavardsholmE.A. LillegravenS. BøyesenP. EjbjergB. FoltzV. EmeryP. GenantH.K. ConaghanP.G. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: Updated Recommendations by the OMERACT MRI in Arthritis Working Group.J. Rheumatol.201744111706171210.3899/jrheum.16143328811353
    [Google Scholar]
  12. HaavardsholmE.A. ØstergaardM. EjbjergB.J. KvanN.P. UhligT.A. LilleåsF.G. KvienT.K. Reliability and sensitivity to change of the OMERACT rheumatoid arthritis magnetic resonance imaging score in a multireader, longitudinal setting.Arthritis Rheum.200552123860386710.1002/art.2149316320333
    [Google Scholar]
  13. ConaghanP.G. DurezP. AltenR.E. BurmesterG.R. TakP.P. KlareskogL. CatrinaA.I. DiCarloJ. GaillezC. Le BarsM. ZhouX. PeterfyC. Impact of intravenous abatacept on synovitis, osteitis and structural damage in patients with rheumatoid arthritis and an inadequate response to methotrexate: the ASSET randomised controlled trial.Ann. Rheum. Dis.20137281287129410.1136/annrheumdis‑2012‑20161122915624
    [Google Scholar]
  14. ShimizuT. CruzA. TanakaM. MamotoK. PedoiaV. BurghardtA.J. HeilmeierU. LinkT.M. GrafJ. ImbodenJ.B. LiX. Structural changes over a short period are associated with functional assessments in rheumatoid arthritis.J. Rheumatol.201946767668410.3899/jrheum.18049630770506
    [Google Scholar]
  15. PeterfyC. KremerJ. RigbyW. SingerN. BirchwoodC. GillD. ReissW. PeiJ. MichalskaM. Magnetic Resonance Imaging (MRI) results following discontinuation of methotrexate in rheumatoid arthritis treated with subcutaneous tocilizumab: The COMP-ACT MRI substudy.J. Rheumatol.202047332533210.3899/jrheum.18095331154414
    [Google Scholar]
  16. CassinottoC. FeldisM. VergniolJ. MouriesA. CochetH. LapuyadeB. HocqueletA. JuanolaE. FoucherJ. LaurentF. De LedinghenV. MR relaxometry in chronic liver diseases: Comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity.Eur. J. Radiol.20158481459146510.1016/j.ejrad.2015.05.01926032126
    [Google Scholar]
  17. HigashiM. TanabeM. OkadaM. FurukawaM. IidaE. ItoK. Influence of fat deposition on T1 mapping of the pancreas: evaluation by dual-flip-angle MR imaging with and without fat suppression.Radiol. Med. (Torino)202012511610.1007/s11547‑019‑01087‑931562581
    [Google Scholar]
  18. Le SterC. GambarotaG. LasbleizJ. GuillinR. DecauxO. Saint-JalmesH. Breath-hold MR measurements of fat fraction, T 1, and T 2 * of water and fat in vertebral bone marrow.J. Magn. Reson. Imaging201644354955510.1002/jmri.2520526918280
    [Google Scholar]
  19. DalbethN. SmithT. GrayS. DoyleA. AntillP. LoboM. RobinsonE. KingA. CornishJ. ShalleyG. GaoA. McQueenF.M. Cellular characterisation of magnetic resonance imaging bone oedema in rheumatoid arthritis; implications for pathogenesis of erosive disease.Ann. Rheum. Dis.200968227928210.1136/ard.2008.09602418765428
    [Google Scholar]
  20. MengX. WangZ. ZhangX. XuJ. HuY. Rheumatoid arthritis of knee joints: MRI-pathological correlation.Orthop. Surg.201810324725410.1111/os.1238930094941
    [Google Scholar]
  21. LinM. ChenX. YuS. GaoF. MaM. Monitoring the efficacy of tumor necrosis factor alpha antagonists in the treatment of Ankylosing spondylarthritis: a pilot study based on MR relaxometry technique.BMC Med. Imaging202121111710.1186/s12880‑021‑00646‑934330227
    [Google Scholar]
  22. McQueenF.M. StewartN. CrabbeJ. RobinsonE. YeomanS. TanP.L.J. McLeanL. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset.Ann. Rheum. Dis.199857635035610.1136/ard.57.6.3509771209
    [Google Scholar]
  23. LeeK.A. MinS.H. KimT.H. LeeS.H. KimH.R. Magnetic resonance imaging-assessed synovial and bone changes in hand and wrist joints of rheumatoid arthritis patients.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)201934365165910.3904/kjim.2016.27129166759
    [Google Scholar]
  24. AletahaD. NeogiT. SilmanA.J. FunovitsJ. FelsonD.T. BinghamC.O.III BirnbaumN.S. BurmesterG.R. BykerkV.P. CohenM.D. CombeB. CostenbaderK.H. DougadosM. EmeryP. FerraccioliG. HazesJ.M.W. HobbsK. HuizingaT.W.J. KavanaughA. KayJ. KvienT.K. LaingT. MeaseP. MénardH.A. MorelandL.W. NadenR.L. PincusT. SmolenJ.S. Stanislawska-BiernatE. SymmonsD. TakP.P. UpchurchK.S. VencovskýJ. WolfeF. HawkerG. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative.Arthritis Rheum.20106292569258110.1002/art.2758420872595
    [Google Scholar]
  25. Association CR2018 Chinese guideline for the diagnosis and treatment of rheumatoid arthritisZhonghua Nei Ke Za Zhi201857424225129614581
    [Google Scholar]
  26. FransenJ. van RielP.L. The Disease Activity Score and the EULAR response criteria.Clin. Exp. Rheumatol.2005235Suppl. 39S93S9916273792
    [Google Scholar]
  27. ShenB. ChenH. YangD. YolandaO. YuanC. DuA. XuR. GengY. ChenX. LiH. XuG.Y. A structural equation model of health-related quality of life in chinese patients with rheumatoid arthritis.Front. Psychiatry20211271699610.3389/fpsyt.2021.71699634421688
    [Google Scholar]
  28. YuanW. LeiY. TangC. QinF. WenJ. LiC. LingM. HuangJ. ZhangH. LongL. Quantification of bone marrow edema in rheumatoid arthritis by using high-speed T2-corrected multiecho acquisition of 1H magnetic resonance spectroscopy: a feasibility study.Clin. Rheumatol.202140114639464710.1007/s10067‑021‑05764‑x34155572
    [Google Scholar]
  29. KeenanR.T. SwearingenC.J. YaziciY. Erythrocyte sedimentation rate and C-reactive protein levels are poorly correlated with clinical measures of disease activity in rheumatoid arthritis, systemic lupus erythematosus and osteoarthritis patients.Clin. Exp. Rheumatol.200826581481919032813
    [Google Scholar]
  30. AppelH. LoddenkemperC. GrozdanovicZ. EbhardtH. DreimannM. HempfingA. SteinH. Metz-StavenhagenP. RudwaleitM. SieperJ. Correlation of histopathological findings and magnetic resonance imaging in the spine of patients with ankylosing spondylitis.Arthritis Res. Ther.200685R14310.1186/ar203516925803
    [Google Scholar]
  31. FransenJ. van RielP.L.C.M. The disease activity score and the EULAR response criteria.Rheum. Dis. Clin. North Am.2009354745757, vii-viii10.1016/j.rdc.2009.10.00119962619
    [Google Scholar]
  32. MadsenO.R. Stability of clinical outcome measures in rheumatoid arthritis patients with stable disease defined on the basis of the EULAR response criteria.Clin. Rheumatol.201635102403240910.1007/s10067‑016‑3322‑x27283868
    [Google Scholar]
  33. SunnetciK.M. KabaE. Beyazal ÇelikerF. AlkanA. Comparative parotid gland segmentation by using ResNet ‐18 and MobileNetV2 based DeepLab v3+ architectures from magnetic resonance images.Concurr. Comput.2023351e740510.1002/cpe.7405
    [Google Scholar]
  34. SunnetciK.M. AlkanA. Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images.Expert Syst. Appl.202321611943010.1016/j.eswa.2022.11943036570382
    [Google Scholar]
/content/journals/cmim/10.2174/0115734056252909230925060431
Loading
/content/journals/cmim/10.2174/0115734056252909230925060431
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): BME; Bone marrow edema; Magnetic resonance imaging; RAMRIS; Rheumatoid arthritis; T1 mapping
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test