- Home
- A-Z Publications
- Current Medicinal Chemistry
- Previous Issues
- Volume 30, Issue 7, 2023
Current Medicinal Chemistry - Volume 30, Issue 7, 2023
Volume 30, Issue 7, 2023
-
-
An Extensive Review on β-lactamase Enzymes and their Inhibitors
Authors: Vidhu Agarwal, Akhilesh Tiwari and Pritish Varadwajβ-lactam antibiotics treat bacterial infections very effectively, but overuse and misuse have led to resistance. β-lactamase enzymes hydrolyze β-lactam antibiotics and are the primary cause of resistance in bacteria. Bacteria evolve and clinically mutate to produce such β -lactamase enzymes, which could hydrolyze newly discovered antibiotics. Therefore, carbapenems are considered to be the last resort for antimicrobial treatment. Further, different inhibitors have been discovered to fight these evolving and mutating β- lactamase enzyme resistance. These inhibitors are given in combination with the β-lactam antibiotics to treat bacterial infections effectively. But in due course of time, it has been observed that bacteria develop resistance against this combination. This is an extensive review that discusses different classes of β-lactamase enzymes, their mechanism of action, and the role of critical structural elements like loops and catalytically relevant mutations. Such mutations and structural modifications result in expanding the spectrum of activity, making these β-lactamase enzymes resistant to the newly discovered β-lactam antibiotics and their inhibitors. Detailed knowledge of such mutations, catalytically relevant structural modifications, related kinetics, and action mechanisms could help develop new inhibitors effectively. Further, a detailed discussion of available inhibitors against each class of β-lactamase enzymes is also present.
-
-
-
Non-surgical In Vivo Germ Cell-mediated Gene Editing by CRISPR Mutagenic Chain Reaction with the Aid of Magnetic Nanoparticles
Authors: Maryam V. Lasemi and Amirhossein SahebkarGene therapy via germline cells leads to a permanent genetic modification. The promise of this method is due to its potential for providing a stable therapeutic effect for all who inherit the gene of interest. If germinal therapy is successfully performed, it can eliminate certain diseases from the family and the population. The feasibility of genetic modification in the human germline raises several controversial and bioethical issues. However, gene transfer via male and female germinal cells has been recently explored in animal models. Previous studies have shown that delivering DNA to the testes followed by electroporation is relatively successful in producing germline-mediated alterations. Since this method includes surgical procedures, non-surgical, safer, and less timeconsuming methods would be ideal. Herein, we discuss a potential approach for nonsurgical in vivo germ cell-mediated gene editing by CRISPR mutagenic chain reaction with the aid of magnetic nanoparticles.
-
-
-
Resveratrol Effects on Molecular Pathways and MicroRNAs in Gastrointestinal Cancers
Authors: Amirhossein Davoodvandi, Pouya M. Sharif, Parisa Maleki Dana and Zatollah AsemiGastrointestinal (GI) cancers are one of the most prevalent types of neoplasms worldwide. The incidence of GI cancers is increasing rapidly. Despite all advances in the management of GI cancers, treatment options for these disorders are still limited and there are no effective therapeutic approaches. Hence, finding new treatment strategies seems to be necessary to decrease mortality in patients with such cancers. The application of natural products has found a prominent role in the management of some neoplastic disorders. Resveratrol is a phytochemical found in various fruits and plants such as red grapes and tea. Recently, the effects of resveratrol on the microRNAs in the management of some neoplastic disorders have been investigated. This review is aimed to illustrate the molecular pathways related to resveratrol and evaluate the impacts of resveratrol on the different microRNAs in the milieu of the prevention and treatment of GI cancers.
-
-
-
FGF23 Actions in CKD-MBD and other Organs During CKD
More LessFibroblast growth factor 23 (FGF23) is a new endocrine product discovered in the past decade. In addition to being related to bone diseases, it has also been found to be related to kidney metabolism and parathyroid metabolism, especially as a biomarker and a key factor to be used in kidney diseases. FGF23 is upregulated as early as the second and third stages of chronic kidney disease (CKD) in response to relative phosphorus overload. The early rise of FGF23 has a protective effect on the body and is essential for maintaining phosphate balance. However, with the decline in renal function, eGFR (estimated glomerular filtration rate) declines, and the phosphorus excretion effect caused by FGF23 is weakened. It eventually leads to a variety of complications, such as bone disease (Chronic Kidney Disease-Mineral and Bone Metabolism Disorder), vascular calcification (VC), and more. Monoclonal antibodies against FGF23 are currently used to treat genetic diseases with increased FGF23. CKD is also a state of increased FGF23. This article reviews the current role of FGF23 in CKD and discusses the crosstalk between various organs under CKD conditions and FGF23. Studying the effect of hyperphosphatemia on different organs of CKD is important. The prospect of FGF23 for therapy is also discussed.
-
-
-
The Potential Therapeutic Impact of Metformin in Glioblastoma Multiforme
In terms of frequency and aggressiveness, glioblastoma multiforme (GBM) is undoubtedly the most frequent and fatal primary brain tumor. Despite advances in clinical management, the response to current treatments is dismal, with a 2-year survival rate varying between 6 and 12 percent. Metformin, a derivative of biguanide widely used in treating type 2 diabetes, has been shown to extend the lifespan of patients with various malignancies. There is limited evidence available on the long-term survival of GBM patients who have taken metformin. This research examined the literature to assess the connection between metformin's anticancer properties and GBM development. Clinical findings, together with the preclinical data from animal models and cell lines, are included in the present review. This comprehensive review covers not only the association of hyperactivation of the AMPK pathway with the anticancer activity of metformin but also other mechanisms underpinning its role in apoptosis, cell proliferation, metastasis, as well as its chemo-radio-sensitizing behavior against GBM. Current challenges and future directions for developments and applications of metformin-based therapeutics are also discussed.
-
-
-
IGF2BP3 Worsens Lung Cancer through Modifying Long Non-coding RNA CERS6-AS1/microRNA-1202 Axis
Authors: An Yan, Xiaowei Song, Bao Liu and Kaibin ZhuBackground: Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) can epigenetically regulate lung cancer progression, but its regulatory mechanism in the disease lacks sufficient exploration. Objective: The study was conducted to probe the regulatory function of IGF2BP3 in lung cancer via modulating the long non-coding RNA CERS6-AS1/microRNA-1202 (CERS6- AS1/miR-1202) axis. Methods: Clinical samples were collected to evaluate IGF2BP3, CERS6-AS1, miR-1202 and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) levels. The interactions among IGF2BP3, CERS6-AS1, miR-1202 and GDPD5 were assessed. IGF2BP3-, CERS6-AS1-, and miR-1202-related constructs were transfected into lung cancer cells to determine cell biological functions. Cell tumor formation ability was further detected in vivo. Results: High expression of IGF2BP3, CERS6-AS1 and GDPD5, and low expression of miR-1202 levels were witnessed in lung cancer tissues. Suppression of IGF2BP3 restrained lung cancer progression. IGF2BP3 positively modulated CERS6-AS1 to regulate miR-1202-targeted GDPD5. Inhibition of CERS6-AS1 or promotion of miR-1202 depressed lung cancer aggravation. CERS6-AS1 silencing or miR-1202 overexpression reversed the impacts induced by IGF2BP3 on lung cancer. Conclusion: IGF2BP3 facilitates the development of lung cancer cells via binding to the CERS6-AS1 promoter and down-regulating miR-1202, which may be related to GDPD5 upregulation.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
-
Volume 7 (2000)