Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Gastric cancer (GC) represents a significant global health burden, ranking as the fifth most common malignancy and the fourth leading cause of cancer-related death worldwide. Despite recent advancements in GC treatment, the five-year survival rate for advanced-stage GC patients remains low. Consequently, there is an urgent need to identify novel drug targets and develop effective therapies. However, traditional drug discovery approaches are associated with high costs, time-consuming processes, and a high failure rate, posing challenges in meeting this critical need. In recent years, there has been a rapid increase in the utilization of artificial intelligence (AI) algorithms and big data in drug discovery, particularly in cancer research. AI has the potential to improve the drug discovery process by analyzing vast and complex datasets from multiple sources, enabling the prediction of compound efficacy and toxicity, as well as the optimization of drug candidates. This review provides an overview of the latest AI algorithms and big data employed in drug discovery for GC. Additionally, we examine the various applications of AI in this field, with a specific focus on therapeutic discovery. Moreover, we discuss the challenges, limitations, and prospects of emerging AI methods, which hold significant promise for advancing GC research in the future.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230913105829
2023-09-26
2025-03-31
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. ThriftA.P. El-SeragH.B. Burden of gastric cancer.Clin. Gastroenterol. Hepatol.202018353454231362118
    [Google Scholar]
  3. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  4. JoshiS.S. BadgwellB.D. Current treatment and recent progress in gastric cancer.CA Cancer J. Clin.202171326427933592120
    [Google Scholar]
  5. SextonR.E. Al HallakM.N. DiabM. AzmiA.S. Gastric cancer: A comprehensive review of current and future treatment strategies.Cancer Metastasis Rev.20203941179120310.1007/s10555‑020‑09925‑332894370
    [Google Scholar]
  6. CaiH. LiM. DengR. WangM. ShiY. Advances in molecular biomarkers research and clinical application progress for gastric cancer immunotherapy.Biomark. Res.20221016710.1186/s40364‑022‑00413‑036042469
    [Google Scholar]
  7. LiX. XuJ. XieJ. YangW. Research progress in targeted therapy and immunotherapy for gastric cancer.Chin. Med. J.2022135111299131310.1097/CM9.000000000000218535830242
    [Google Scholar]
  8. CataneseS. LordickF. Targeted and immunotherapy in the era of personalised gastric cancer treatment.Best Pract. Res. Clin. Gastroenterol.202150-5110173810.1016/j.bpg.2021.10173833975679
    [Google Scholar]
  9. LiuF. HuangC. XuZ. SuX. ZhaoG. YeJ. DuX. HuangH. HuJ. LiG. YuP. LiY. SuoJ. ZhaoN. ZhangW. LiH. HeH. SunY. Morbidity and mortality of laparoscopic vs open total gastrectomy for clinical stage I gastric cancer.JAMA Oncol.20206101590159710.1001/jamaoncol.2020.315232815991
    [Google Scholar]
  10. KimR. AnM. LeeH. MehtaA. HeoY.J. KimK.M. LeeS.Y. MoonJ. KimS.T. MinB.H. KimT.J. RhaS.Y. KangW.K. ParkW.Y. KlempnerS.J. LeeJ. Early tumor–immune microenvironmental remodeling and response to first-line fluoropyrimidine and platinum chemotherapy in advanced gastric cancer.Cancer Discov.2022124984100110.1158/2159‑8290.CD‑21‑088834933901
    [Google Scholar]
  11. HutterC. ZenklusenJ.C. The cancer genome atlas: Creating lasting value beyond its data.Cell2018173228328510.1016/j.cell.2018.03.04229625045
    [Google Scholar]
  12. MerzV. ZecchettoC. SimionatoF. CavaliereA. CasalinoS. PavaranaM. GiacopuzziS. BencivengaM. TomezzoliA. SantoroR. FedeleV. ContarelliS. RossiI. GiacomazziS. PasquatoM. PiazzolaC. MilleriS. de ManzoniG. MelisiD. A phase II trial of the FGFR inhibitor pemigatinib in patients with metastatic esophageal–gastric junction/gastric cancer trastuzumab resistant: the FiGhTeR trial.Ther. Adv. Med. Oncol.20201210.1177/175883592093788932684989
    [Google Scholar]
  13. AjaniJ.A. D’AmicoT.A. BentremD.J. ChaoJ. CookeD. CorveraC. DasP. EnzingerP.C. EnzlerT. FantaP. FarjahF. GerdesH. GibsonM.K. HochwaldS. HofstetterW.L. IlsonD.H. KeswaniR.N. KimS. KleinbergL.R. KlempnerS.J. LacyJ. LyQ.P. MatkowskyjK.A. McNamaraM. MulcahyM.F. OutlawD. ParkH. PerryK.A. PimientoJ. PoultsidesG.A. ReznikS. RosesR.E. StrongV.E. SuS. WangH.L. WiesnerG. WillettC.G. YakoubD. YoonH. McMillianN. PluchinoL.A. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202220216719210.6004/jnccn.2022.000835130500
    [Google Scholar]
  14. National guidelines for diagnosis and treatment of gastric cancer 2022 in China (English version).Chin. J. Cancer Res.202234320723710.21147/j.issn.1000‑9604.2022.03.0435873885
    [Google Scholar]
  15. ScottL.J. Apatinib: A review in advanced gastric cancer and other advanced cancers.Drugs201878774775810.1007/s40265‑018‑0903‑929663291
    [Google Scholar]
  16. LiJ. QinS. XuJ. XiongJ. WuC. BaiY. LiuW. TongJ. LiuY. XuR. WangZ. WangQ. OuyangX. YangY. BaY. LiangJ. LinX. LuoD. ZhengR. WangX. SunG. WangL. ZhengL. GuoH. WuJ. XuN. YangJ. ZhangH. ChengY. WangN. ChenL. FanZ. SunP. YuH. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction.J. Clin. Oncol.201634131448145410.1200/JCO.2015.63.599526884585
    [Google Scholar]
  17. XieJ. FuL. JinL. Immunotherapy of gastric cancer: Past, future perspective and challenges.Pathol. Res. Pract.202121815332210.1016/j.prp.2020.15332233422778
    [Google Scholar]
  18. TakeiS. KawazoeA. ShitaraK. The new era of immunotherapy in gastric cancer.Cancers.2022144105410.3390/cancers1404105435205802
    [Google Scholar]
  19. ShitaraK. ÖzgüroğluM. BangY.J. Di BartolomeoM. MandalàM. RyuM.H. FornaroL. OlesińskiT. CaglevicC. ChungH.C. MuroK. GoekkurtE. MansoorW. McDermottR.S. Shacham-ShmueliE. ChenX. MayoC. KangS.P. OhtsuA. FuchsC.S. LerzoG. O’ConnorJ.M. MendezG.A. LynamJ. TebbuttN. WongM. StricklandA. KarapetisC. GoldsteinD. VaseyP. Van LaethemJ-L. Van CutsemE. BerryS. VincentM. MullerB. ReyF. ZambranoA. GuerraJ. KroghM. BaeksgaardL. YilmazM. ElmeA. MagiA. AuvinenP. AlankoT. MoehlerM. KunzmannV. SeufferleinT. Thuss-PatienceP. GoekkurtE. HoehlerT. HaagG. Al-BatranS-E. CastroH. LopezK. Aguilar VasquezM. SandovalM. LamK.O. CuffeS. KellyC. GevaR. Shacham-ShmueliE. HubertA. BenyA. BrennerB. GiuseppeA. FalconeA. MaielloE. PassalacquaR. MontesarchioV. HaraH. ChinK. NishinaT. KomatsuY. MachidaN. HironakaS. SatohT. TamuraT. SugimotoN. ChoH. OmuroY. KatoK. GotoM. HyodoI. YoshidaK. BabaH. EsakiT. FuruseJ. Wan MohammedW.Z. Hernandez HernandezC. Casas GarciaJ. Dominguez AndradeA. ClarkeK. HjortlandG. GlenjenN. KubiatowskiT. JacekJ. WojtukiewiczM. LazarevS. LancukhayY. AfanasayevS. MoiseyenkoV. KostorovV. ProtsenkoS. ShirinkinV. SakaevaD. FadeevaN. YongW.P. NgC.H.M. RobertsonB. RapaportB. CohenG. DreostiL. RuffP. JacobsC. LandersG. SzpakW. RohS-Y. LeeJ. KimY.H. BangY-J. ChungH.C. RyuM-H. Alsina MaquedaM. Longo MunozF. Cervantes AguilarA. Aranda AguilarE. Garcia AlfonsoP. RiveraF. Feliu BatleJ. Pazo CidR. YehK-H. ChenJ-S. ChaoY. YenC-J. ÖzgüroğluM. KaraO. YalcinS. HochhauserD. ChauI. BensonA. ShankaranV. ShaibW. PhilipP. SharmaV. SiegelR. SunW. WainbergZ. GeorgeB. BullockA. MyrickS. FaruolJ. SiegelR. LarsonT. BecerraC. RatnamS. RichardsD.A. RicheS.L. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial.Lancet.20183921014212313310.1016/S0140‑6736(18)31257‑129880231
    [Google Scholar]
  20. FuchsC.S. DoiT. JangR.W. MuroK. SatohT. MachadoM. SunW. JalalS.I. ShahM.A. MetgesJ.P. GarridoM. GolanT. MandalaM. WainbergZ.A. CatenacciD.V. OhtsuA. ShitaraK. GevaR. BleekerJ. KoA.H. KuG. PhilipP. EnzingerP.C. BangY.J. LevitanD. WangJ. RosalesM. DalalR.P. YoonH.H. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer.JAMA Oncol.201845e18001310.1001/jamaoncol.2018.001329543932
    [Google Scholar]
  21. VemulaD. JayasuryaP. SushmithaV. KumarY.N. BhandariV. CADD, AI and ML in drug discovery: A comprehensive review.Eur. J. Pharm. Sci.202318110632410.1016/j.ejps.2022.10632436347444
    [Google Scholar]
  22. ZhongW.Z. ZhouS.F. Molecular science for drug development and biomedicine.Int. J. Mol. Sci.20141511200722007810.3390/ijms15112007225375190
    [Google Scholar]
  23. XiaoX. MinJ.L. LinW.Z. LiuZ. ChengX. ChouK.C. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach.J. Biomol. Struct. Dyn.201533102221223310.1080/07391102.2014.99871025513722
    [Google Scholar]
  24. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  25. HassanzadehP. AtyabiF. DinarvandR. The significance of artificial intelligence in drug delivery system design.Adv. Drug Deliv. Rev.2019151-15216919010.1016/j.addr.2019.05.00131071378
    [Google Scholar]
  26. AshburnT.T. ThorK.B. Drug repositioning: Identifying and developing new uses for existing drugs.Nat. Rev. Drug Discov.20043867368310.1038/nrd146815286734
    [Google Scholar]
  27. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimers Dement.20173465165710.1016/j.trci.2017.10.00529255791
    [Google Scholar]
  28. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.01226928437
    [Google Scholar]
  29. KontoyianniM. Docking and virtual screening in drug discovery.Methods Mol. Biol.2017164725526610.1007/978‑1‑4939‑7201‑2_1828809009
    [Google Scholar]
  30. MorrisC.J. SternJ.A. StarkB. ChristophersonM. Della CorteD. MILCDock: Machine learning enhanced consensus docking for virtual screening in drug discovery.J. Chem. Inf. Model.202262225342535010.1021/acs.jcim.2c0070536342217
    [Google Scholar]
  31. ChenB. GarmireL. CalvisiD.F. ChuaM.S. KelleyR.K. ChenX. Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202017423825110.1038/s41575‑019‑0240‑931900465
    [Google Scholar]
  32. CarpenterK.A. HuangX. Machine learning-based virtual screening and its applications to Alzheimer’s drug discovery: A review.Curr. Pharm. Des.201824283347335810.2174/138161282466618060712403829879881
    [Google Scholar]
  33. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions.Med. Res. Rev.20214131427147310.1002/med.2176433295676
    [Google Scholar]
  34. SungJ.Y. CheongJ.H. Machine learning predictor of immune checkpoint blockade response in gastric cancer.Cancers.20221413319110.3390/cancers1413319135804967
    [Google Scholar]
  35. LiZ. ZhangD. DaiY. DongJ. WuL. LiY. ChengZ. DingY. LiuZ. Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: A pilot study.Chin. J. Cancer Res.201830440641410.21147/j.issn.1000‑9604.2018.04.0330210220
    [Google Scholar]
  36. GilaniN. Arabi BelaghiR. AftabiY. FaramarziE. EdgünlüT. SomiM.H. Identifying potential miRNA biomarkers for gastric cancer diagnosis using machine learning variable selection approach.Front. Genet.20221277945510.3389/fgene.2021.77945535082831
    [Google Scholar]
  37. WangX.X. DingY. WangS.W. DongD. LiH.L. ChenJ. HuH. LuC. TianJ. ShanX.H. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer.Cancer Imaging20202018310.1186/s40644‑020‑00358‑333228815
    [Google Scholar]
  38. ChenY. WeiK. LiuD. XiangJ. WangG. MengX. PengJ. A machine learning model for predicting a major response to neoadjuvant chemotherapy in advanced gastric cancer.Front. Oncol.20211167545810.3389/fonc.2021.67545834141620
    [Google Scholar]
  39. ChenQ. WangY. LiuY. XiB. ESRRG, ATP4A, and ATP4B as diagnostic biomarkers for gastric cancer: A bioinformatic analysis based on machine learning.Front. Physiol.20221390552310.3389/fphys.2022.90552335812327
    [Google Scholar]
  40. ZhangG. XueZ. YanC. WangJ. LuoH. A novel biomarker identification approach for gastric cancer using gene expression and DNA methylation dataset.Front. Genet.20211264437810.3389/fgene.2021.64437833868380
    [Google Scholar]
  41. XieR. LiuL. LuX. HeC. LiG. Identification of the diagnostic genes and immune cell infiltration characteristics of gastric cancer using bioinformatics analysis and machine learning.Front. Genet.202313106752410.3389/fgene.2022.106752436685898
    [Google Scholar]
  42. ChenT. ZhangC. LiuY. ZhaoY. LinD. HuY. YuJ. LiG. A gastric cancer LncRNAs model for MSI and survival prediction based on support vector machine.BMC Genomics201920184610.1186/s12864‑019‑6135‑x31722674
    [Google Scholar]
  43. Perez-CastilloY. Sánchez-RodríguezA. TejeraE. Cruz-MonteagudoM. BorgesF. CordeiroM.N.D.S. Le-Thi-ThuH. Pham-TheH. A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents.PLoS One2018132e019217610.1371/journal.pone.019217629420638
    [Google Scholar]
  44. KoriM. GovE. Bioinformatics prediction and machine learning on gene expression data identifies novel gene candidates in gastric cancer.Genes.20221312223310.3390/genes1312223336553500
    [Google Scholar]
  45. SundarR. Barr KumarakulasingheN. Huak ChanY. YoshidaK. YoshikawaT. MiyagiY. RinoY. MasudaM. GuanJ. SakamotoJ. TanakaS. TanA.L.K. HoppeM.M. JeyasekharanA.D. NgC.C.Y. De SimoneM. GrabschH.I. LeeJ. OshimaT. TsuburayaA. TanP. Machine-learning model derived gene signature predictive of paclitaxel survival benefit in gastric cancer: Results from the randomised phase III SAMIT trial.Gut.202271467668510.1136/gutjnl‑2021‑32406033980610
    [Google Scholar]
  46. TerranovaN. FrenchJ. DaiH. WiensM. KhandelwalA. Ruiz-GarciaA. ManitzJ. HeydebreckA. RuisiM. ChinK. GirardP. VenkatakrishnanK. Pharmacometric modeling and machine learning analyses of prognostic and predictive factors in the JAVELIN Gastric 100 phase III trial of avelumab.CPT Pharmacometrics Syst. Pharmacol.202211333334710.1002/psp4.1275434971492
    [Google Scholar]
  47. HuX. WuL. YaoY. MaJ. LiX. ShenH. LiuL. DaiH. WangW. ChuX. ShengC. YangM. ZhengH. SongF. ChenK. LiuB. The integrated landscape of eRNA in gastric cancer reveals distinct immune subtypes with prognostic and therapeutic relevance.iScience2022251010507510.1016/j.isci.2022.10507536157578
    [Google Scholar]
  48. ChenX. MaoD. LiD. LiW. WeiH. DengC. ChenH. ZhangC. Identification and validation of a PD-L1-related signature from mass spectrometry in gastric cancer.J. Cancer Res. Clin. Oncol.202314995871588410.1007/s00432‑022‑04529‑636592213
    [Google Scholar]
  49. YaoxingH. DanchunY. XiaojuanS. ShumanJ. QingqingY. LinJ. Identification of novel susceptible genes of gastric cancer based on integrated omics data.Front. Cell Dev. Biol.2021971202010.3389/fcell.2021.71202034354996
    [Google Scholar]
  50. LiC. YuH. SunY. ZengX. ZhangW. Identification of the hub genes in gastric cancer through weighted gene co-expression network analysis.PeerJ20219e1068210.7717/peerj.1068233717664
    [Google Scholar]
  51. LiB. ZhangF. NiuQ. LiuJ. YuY. WangP. ZhangS. ZhangH. WangZ. A molecular classification of gastric cancer associated with distinct clinical outcomes and validated by an XGBoost-based prediction model.Mol. Ther. Nucleic Acids20233122424010.1016/j.omtn.2022.12.01436700042
    [Google Scholar]
  52. WangH. WuJ. LingR. LiF. YangQ. HeJ. LeiX. WuC. ZhangG. ZhengB. PengY. ZhangY. ChenH. YeG. LiG. Fibroblast-derived LPP as a biomarker for treatment response and therapeutic target in gastric cancer.Mol. Ther. Oncolytics20222454756010.1016/j.omto.2022.01.00835229032
    [Google Scholar]
  53. ZhaoL. TengQ. LiuY. ChenH. ChongW. DuF. XiaoK. SangY. MaC. CuiJ. ShangL. ZhangR. Machine learning-based identification of a novel prognosis-related long noncoding RNA signature for gastric cancer.Front. Cell Dev. Biol.202210101776710.3389/fcell.2022.101776736438557
    [Google Scholar]
  54. NieT. LiuD. AiS. HeY. YangM. ChenJ. YuanZ. LiuY. A radiomics nomogram analysis based on CT images and clinical features for preoperative Lauren classification in gastric cancer.Jpn. J. Radiol.202241440140836370327
    [Google Scholar]
  55. XieN. BaiY. QiaoL. BaiY. WuJ. LiY. JiangM. XuB. NiZ. YuanT. ShiY. WuK. XuF. WangJ. DongL. LiuN. ARL4C might serve as a prognostic factor and a novel therapeutic target for gastric cancer: Bioinformatics analyses and biological experiments.J. Cell. Mol. Med.20212584014402710.1111/jcmm.1636633724652
    [Google Scholar]
  56. HinataM. UshikuT. Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning.Sci. Rep.20211112263610.1038/s41598‑021‑02168‑434811485
    [Google Scholar]
  57. LiuZ. JiangZ. WuN. ZhouG. WangX. Classification of gastric cancers based on immunogenomic profiling.Transl. Oncol.202114110088810.1016/j.tranon.2020.10088833096337
    [Google Scholar]
  58. KanavatiF. IchiharaS. RambeauM. IizukaO. ArihiroK. TsunekiM. Deep learning models for gastric signet ring cell carcinoma classification in whole slide images.Technol. Cancer Res. Treat.20212010.1177/1533033821102790134191660
    [Google Scholar]
  59. JangH.J. LeeA. KangJ. SongI.H. LeeS.H. Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach.World J. Gastroenterol.202127447687770410.3748/wjg.v27.i44.768734908807
    [Google Scholar]
  60. ChenY. SunZ. ChenW. LiuC. ChaiR. DingJ. LiuW. FengX. ZhouJ. ShenX. HuangS. XuZ. The immune subtypes and landscape of gastric cancer and to predict based on the whole-slide images using deep learning.Front. Immunol.20211268599210.3389/fimmu.2021.68599234262565
    [Google Scholar]
  61. JeongY. ChoC.E. KimJ.E. LeeJ. KimN. JungW.Y. SungJ. KimJ.H. LeeY.J. JungJ. PyoJ. SongJ. ParkJ. MoonK.M. AhnS. Deep learning model to predict Epstein–Barr virus associated gastric cancer in histology.Sci. Rep.20221211846610.1038/s41598‑022‑22731‑x36323712
    [Google Scholar]
  62. ZakrzewskiF. de BackW. WeigertM. WenkeT. ZeugnerS. ManteyR. SperlingC. FriedrichK. RoederI. AustD. BarettonG. HönscheidP. Automated detection of the HER2 gene amplification status in fluorescence in situ hybridization images for the diagnostics of cancer tissues.Sci. Rep.201991823110.1038/s41598‑019‑44643‑z31160649
    [Google Scholar]
  63. ZhengX. WangR. ZhangX. SunY. ZhangH. ZhaoZ. ZhengY. LuoJ. ZhangJ. WuH. HuangD. ZhuW. ChenJ. CaoQ. ZengH. LuoR. LiP. LanL. YunJ. XieD. ZhengW.S. LuoJ. CaiM. A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology.Nat. Commun.2022131279010.1038/s41467‑022‑30459‑535589792
    [Google Scholar]
  64. KatherJ.N. PearsonA.T. HalamaN. JägerD. KrauseJ. LoosenS.H. MarxA. BoorP. TackeF. NeumannU.P. GrabschH.I. YoshikawaT. BrennerH. Chang-ClaudeJ. HoffmeisterM. TrautweinC. LueddeT. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.Nat. Med.20192571054105610.1038/s41591‑019‑0462‑y31160815
    [Google Scholar]
  65. BaW. WangS. ShangM. ZhangZ. WuH. YuC. XingR. WangW. WangL. LiuC. ShiH. SongZ. Assessment of deep learning assistance for the pathological diagnosis of gastric cancer.Mod. Pathol.20223591262126810.1038/s41379‑022‑01073‑z35396459
    [Google Scholar]
  66. JangH.J. SongI.H. LeeS.H. Deep learning for automatic subclassification of gastric carcinoma using whole-slide histopathology images.Cancers.20211315381110.3390/cancers1315381134359712
    [Google Scholar]
  67. FlinnerN. GretserS. QuaasA. BankovK. StollA. HeckmannL.E. MayerR.S. DoeringC. DemesM.C. BuettnerR. RueschoffJ. WildP.J. Deep learning based on hematoxylin–eosin staining outperforms immunohistochemistry in predicting molecular subtypes of gastric adenocarcinoma.J. Pathol.2022257221822610.1002/path.587935119111
    [Google Scholar]
  68. CristescuR. LeeJ. NebozhynM. KimK.M. TingJ.C. WongS.S. LiuJ. YueY.G. WangJ. YuK. YeX.S. DoI.G. LiuS. GongL. FuJ. JinJ.G. ChoiM.G. SohnT.S. LeeJ.H. BaeJ.M. KimS.T. ParkS.H. SohnI. JungS.H. TanP. ChenR. HardwickJ. KangW.K. AyersM. HongyueD. ReinhardC. LobodaA. KimS. AggarwalA. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes.Nat. Med.201521544945610.1038/nm.385025894828
    [Google Scholar]
  69. GuoY.A. ChangM.M. HuangW. OoiW.F. XingM. TanP. SkanderupA.J. Mutation hotspots at CTCF binding sites coupled to chromosomal instability in gastrointestinal cancers.Nat. Commun.201891152010.1038/s41467‑018‑03828‑229670109
    [Google Scholar]
  70. ChenK. YangD. LiX. SunB. SongF. CaoW. BratD.J. GaoZ. LiH. LiangH. ZhaoY. ZhengH. LiM. BucknerJ. PattersonS.D. YeX. ReinhardC. BhathenaA. JoshiD. MischelP.S. CroceC.M. WangY.M. RaghavakaimalS. LiH. LuX. PanY. ChangH. BaS. LuoL. CaveneeW.K. ZhangW. HaoX. Mutational landscape of gastric adenocarcinoma in Chinese: Implications for prognosis and therapy.Proc. Natl. Acad. Sci.201511241107111210.1073/pnas.142264011225583476
    [Google Scholar]
  71. RashkinS.R. GraffR.E. KachuriL. ThaiK.K. AlexeeffS.E. BlatchinsM.A. CavazosT.B. CorleyD.A. EmamiN.C. HoffmanJ.D. JorgensonE. KushiL.H. MeyersT.J. Van Den EedenS.K. ZivE. HabelL.A. HoffmannT.J. SakodaL.C. WitteJ.S. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts.Nat. Commun.2020111442310.1038/s41467‑020‑18246‑632887889
    [Google Scholar]
  72. Bauer-MehrenA. RautschkaM. SanzF. FurlongL.I. DisGeNET: A Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks.Bioinformatics201026222924292610.1093/bioinformatics/btq53820861032
    [Google Scholar]
  73. BhattacharyaS. AndorfS. GomesL. DunnP. SchaeferH. PontiusJ. BergerP. DesboroughV. SmithT. CampbellJ. ThomsonE. MonteiroR. GuimaraesP. WaltersB. WiserJ. ButteA.J. ImmPort: Disseminating data to the public for the future of immunology.Immunol. Res.2014582-323423910.1007/s12026‑014‑8516‑124791905
    [Google Scholar]
  74. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  75. JiangP. GuS. PanD. FuJ. SahuA. HuX. LiZ. TraughN. BuX. LiB. LiuJ. FreemanG.J. BrownM.A. WucherpfennigK.W. LiuX.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat. Med.201824101550155810.1038/s41591‑018‑0136‑130127393
    [Google Scholar]
  76. PintoJ.P. KalathurR.K. OliveiraD.V. BarataT. MachadoR.S.R. MachadoS. Pacheco-LeyvaI. DuarteI. FutschikM.E. StemChecker: A web-based tool to discover and explore stemness signatures in gene sets.Nucleic Acids Res.201543W1W72W7710.1093/nar/gkv52926007653
    [Google Scholar]
  77. HwangS. KimC.Y. YangS. KimE. HartT. MarcotteE.M. LeeI. HumanNet v2: Human gene networks for disease research.Nucleic Acids Res.201947D1D573D58010.1093/nar/gky112630418591
    [Google Scholar]
  78. JeonJ. NimS. TeyraJ. DattiA. WranaJ.L. SidhuS.S. MoffatJ. KimP.M. A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening.Genome Med.2014675710.1186/s13073‑014‑0057‑725165489
    [Google Scholar]
  79. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  80. TripathiN. GoshishtM.K. SahuS.K. AroraC. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review.Mol. Divers.20212531643166410.1007/s11030‑021‑10237‑z34110579
    [Google Scholar]
  81. ChoiS. ParkS. KimH. KangS.Y. AhnS. KimK.M. Gastric cancer: Mechanisms, biomarkers, and therapeutic approaches.Biomedicines202210354310.3390/biomedicines1003054335327345
    [Google Scholar]
  82. LaurénP. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma.Acta Pathol. Microbiol. Scand.1965641314910.1111/apm.1965.64.1.3114320675
    [Google Scholar]
  83. NagtegaalI.D. OdzeR.D. KlimstraD. ParadisV. RuggeM. SchirmacherP. WashingtonK.M. CarneiroF. CreeI.A. The 2019 WHO classification of tumours of the digestive system.Histopathology202076218218810.1111/his.1397531433515
    [Google Scholar]
  84. MeierA.N.K. HewittL.C. EarleS. YoshikawaT. OshimaT. MiyagiY. HussR. SchmidtG. GrabschH.I. Comprehensive molecular characterization of gastric adenocarcinoma.Nature2014513751720220910.1038/nature1348025079317
    [Google Scholar]
  85. IizukaO. KanavatiF. KatoK. RambeauM. ArihiroK. TsunekiM. Deep learning models for histopathological classification of gastric and colonic epithelial tumours.Sci. Rep.2020101150410.1038/s41598‑020‑58467‑932001752
    [Google Scholar]
  86. FuB. ZhangM. HeJ. CaoY. GuoY. WangR. StoHisNet: A hybrid multi-classification model with CNN and transformer for gastric pathology images.Comput. Methods Programs Biomed.202222110692410.1016/j.cmpb.2022.10692435671603
    [Google Scholar]
  87. IshiiH. SasakiH. AoyagiK. YamazakiT. Classification of gastric cancer subtypes using ICA, MLR and Bayesian network.Stud. Health Technol. Inform.2013192101423920788
    [Google Scholar]
  88. MutiH.S. HeijL.R. KellerG. KohlrussM. LangerR. DislichB. CheongJ.H. KimY.W. KimH. KookM.C. CunninghamD. AllumW.H. LangleyR.E. NankivellM.G. QuirkeP. HaydenJ.D. WestN.P. IrvineA.J. YoshikawaT. OshimaT. HussR. GrosserB. RovielloF. d’IgnazioA. QuaasA. AlakusH. TanX. PearsonA.T. LueddeT. EbertM.P. JägerD. TrautweinC. GaisaN.T. GrabschH.I. KatherJ.N. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: A retrospective multicentre cohort study.Lancet Digit. Health2021310e654e66410.1016/S2589‑7500(21)00133‑334417147
    [Google Scholar]
  89. SaldanhaO.L. MutiH.S. GrabschH.I. LangerR. DislichB. KohlrussM. KellerG. van TreeckM. HewittK.J. KolbingerF.R. VeldhuizenG.P. BoorP. FoerschS. TruhnD. KatherJ.N. Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning.Gastric Cancer202326226427410.1007/s10120‑022‑01347‑036264524
    [Google Scholar]
  90. ZhangB. YaoK. XuM. WuJ. ChengC. Deep learning predicts ebv status in gastric cancer based on spatial patterns of lymphocyte infiltration.Cancers.20211323600210.3390/cancers1323600234885112
    [Google Scholar]
  91. XiangR. SongW. RenJ. WuJ. FuJ. FuT. Identification of stem cell-related subtypes and risk scoring for gastric cancer based on stem genomic profiling.Stem Cell Res. Ther.202112156310.1186/s13287‑021‑02633‑x34717747
    [Google Scholar]
  92. LiB. ShinH. GulbekyanG. PustovalovaO. NikolskyY. HopeA. BessarabovaM. SchuM. Kolpakova-HartE. MerbergD. DornerA. TrepicchioW.L. Development of a drug-response modeling framework to identify cell line derived translational biomarkers that can predict treatment outcome to erlotinib or sorafenib.PLoS One2015106e013070010.1371/journal.pone.013070026107615
    [Google Scholar]
  93. van GoolA.J. BietrixF. CaldenhovenE. ZatloukalK. SchererA. LittonJ.E. MeijerG. BlombergN. SmithA. MonsB. HeringaJ. KootW.J. SmitM.J. HajduchM. RijndersT. UssiA. Bridging the translational innovation gap through good biomarker practice.Nat. Rev. Drug Discov.201716958758810.1038/nrd.2017.7228450744
    [Google Scholar]
  94. KrausV.B. Biomarkers as drug development tools: discovery, validation, qualification and use.Nat. Rev. Rheumatol.201814635436210.1038/s41584‑018‑0005‑929760435
    [Google Scholar]
  95. MatsuokaT. YashiroM. Biomarkers of gastric cancer: Current topics and future perspective.World J. Gastroenterol.201824262818283210.3748/wjg.v24.i26.281830018477
    [Google Scholar]
  96. BEST (Biomarkers, EndpointS, and other Tools) Resource.Silver Spring (MD): Food and Drug Administration (US): National Institutes of Health (US)Bethesda (MD)2016
    [Google Scholar]
  97. CaliffR.M. Biomarker definitions and their applications.Exp. Biol. Med.2018243321322110.1177/153537021775008829405771
    [Google Scholar]
  98. WangY. WangJ. HuY. ShangguanJ. SongQ. XuJ. WangH. XueM. WangL. ZhangY. Identification of key biomarkers for STAD using filter feature selection approaches.Sci. Rep.20221211985410.1038/s41598‑022‑21760‑w36400805
    [Google Scholar]
  99. LiuB. ChenL. HuangH. HuangH. JinH. FuC. Prognostic and immunological value of gnb4 in gastric cancer by analyzing TCGA database.Dis. Markers2022202211610.1155/2022/780364235756485
    [Google Scholar]
  100. SchmidtM.F. miRNA targeting drugs: The next blockbusters?Methods Mol. Biol.2017151732210.1007/978‑1‑4939‑6563‑2_127924471
    [Google Scholar]
  101. O’BrienJ. HayderH. ZayedY. PengC. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol.2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  102. SartorelliV. LauberthS.M. Enhancer RNAs are an important regulatory layer of the epigenome.Nat. Struct. Mol. Biol.202027652152810.1038/s41594‑020‑0446‑032514177
    [Google Scholar]
  103. DongC. RaoN. DuW. GaoF. LvX. WangG. ZhangJ. mRBioM: An algorithm for the identification of potential mRNA biomarkers from complete transcriptomic profiles of gastric adenocarcinoma.Front. Genet.20211267961210.3389/fgene.2021.67961234386038
    [Google Scholar]
  104. RaoV.S. SrinivasK. SujiniG.N. KumarG.N.S. Protein-protein interaction detection: Methods and analysis.Int. J. Proteomics2014201411210.1155/2014/14764824693427
    [Google Scholar]
  105. YuD. LimJ. WangX. LiangF. XiaoG. Enhanced construction of gene regulatory networks using hub gene information.BMC Bioinformatics201718118610.1186/s12859‑017‑1576‑128335719
    [Google Scholar]
  106. ScottD.E. BaylyA.R. AbellC. SkidmoreJ. Small molecules, big targets: drug discovery faces the protein–protein interaction challenge.Nat. Rev. Drug Discov.201615853355010.1038/nrd.2016.2927050677
    [Google Scholar]
  107. AzzaritoV. LongK. MurphyN.S. WilsonA.J. Inhibition of α-helix-mediated protein–protein interactions using designed molecules.Nat. Chem.20135316117310.1038/nchem.156823422557
    [Google Scholar]
  108. MaheshwariS. BrylinskiM. Template-based identification of protein–protein interfaces using eFindSitePPI.Methods201693647110.1016/j.ymeth.2015.07.01726235816
    [Google Scholar]
  109. DuX. SunS. HuC. YaoY. YanY. ZhangY. DeepPPI: Boosting prediction of protein–protein interactions with deep neural networks.J. Chem. Inf. Model.20175761499151010.1021/acs.jcim.7b0002828514151
    [Google Scholar]
  110. XieZ. DengX. ShuK. Prediction of protein–protein interaction sites using convolutional neural network and improved data sets.Int. J. Mol. Sci.202021246710.3390/ijms2102046731940793
    [Google Scholar]
  111. SunF. ZhangC. AiS. LiuZ. LuX. Identification of hub genes in gastric cancer by integrated bioinformatics analysis.Transl. Cancer Res.20211062831284010.21037/tcr‑20‑354035116593
    [Google Scholar]
  112. FernandesT.G. DiogoM.M. ClarkD.S. DordickJ.S. CabralJ.M.S. High-throughput cellular microarray platforms: Applications in drug discovery, toxicology and stem cell research.Trends Biotechnol.200927634234910.1016/j.tibtech.2009.02.00919398140
    [Google Scholar]
  113. MohrR. ÖzdirikB. KnorrJ. WreeA. DemirM. TackeF. RoderburgC. In vivo models for cholangiocarcinoma—what can we learn for human disease?Int. J. Mol. Sci.20202114499310.3390/ijms2114499332679791
    [Google Scholar]
  114. KhaQ.H. HoQ.T. LeN.Q.K. Identifying SNARE proteins using an alignment-free method based on multiscan convolutional neural network and PSSM profiles.J. Chem. Inf. Model.202262194820482610.1021/acs.jcim.2c0103436166351
    [Google Scholar]
  115. TsakuN.Z. KosarajuS.C. AqilaT. MasumM. SongD.H. MondalA.M. KohH.M. KangM. In Texture-based deep learning for effective histopathological cancer image classification. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)201997397710.1109/BIBM47256.2019.8983226
    [Google Scholar]
  116. SirinukunwattanaK. RazaS.E.A. TsangY-W. SneadD.R.J. CreeI.A. RajpootN.M. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images.IEEE Trans. Med. Imaging20163551196120610.1109/TMI.2016.252580326863654
    [Google Scholar]
  117. WangS. YangD.M. RongR. ZhanX. XiaoG. Pathology image analysis using segmentation deep learning algorithms.Am. J. Pathol.201918991686169810.1016/j.ajpath.2019.05.00731199919
    [Google Scholar]
  118. WeiJ.W. TafeL.J. LinnikY.A. VaickusL.J. TomitaN. HassanpourS. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks.Sci. Rep.201991335810.1038/s41598‑019‑40041‑730833650
    [Google Scholar]
  119. ZhuX. YaoJ. ZhuF. HuangJ. In Wsisa: Making survival prediction from whole slide histopathological images Proceedings of the IEEE conference on computer vision and pattern recognition21-26 July 2017Honolulu, HI, USA 20177234724210.1109/CVPR.2017.725
    [Google Scholar]
  120. AlzubaidiL. ZhangJ. HumaidiA.J. Al-DujailiA. DuanY. Al-ShammaO. SantamaríaJ. FadhelM.A. Al-AmidieM. FarhanL. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions.J. Big Data2021815310.1186/s40537‑021‑00444‑833816053
    [Google Scholar]
  121. SunM. ZhangG. DangH. QiX. ZhouX. ChangQ. Accurate gastric cancer segmentation in digital pathology images using deformable convolution and multi-scale embedding networks.IEEE Access20197755307554110.1109/ACCESS.2019.2918800
    [Google Scholar]
  122. LiY. LiX. XieX. ShenL. In deep learning based gastric cancer identification. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)2018182185
    [Google Scholar]
  123. SongZ. ZouS. ZhouW. HuangY. ShaoL. YuanJ. GouX. JinW. WangZ. ChenX. DingX. LiuJ. YuC. KuC. LiuC. SunZ. XuG. WangY. ZhangX. WangD. WangS. XuW. DavisR.C. ShiH. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning.Nat. Commun.2020111429410.1038/s41467‑020‑18147‑832855423
    [Google Scholar]
  124. WangX. ChenY. GaoY. ZhangH. GuanZ. DongZ. ZhengY. JiangJ. YangH. WangL. HuangX. AiL. YuW. LiH. DongC. ZhouZ. LiuX. YuG. Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning.Nat. Commun.2021121163710.1038/s41467‑021‑21674‑733712598
    [Google Scholar]
  125. HanZ. LanJ. WangT. HuZ. HuangY. DengY. ZhangH. WangJ. ChenM. JiangH. LeeR.G. GaoQ. DuM. TongT. ChenG. A deep learning quantification algorithm for HER2 scoring of gastric cancer.Front. Neurosci.20221687722910.3389/fnins.2022.87722935706692
    [Google Scholar]
  126. GarciaE. HermozaR. CastanonC.B. CanoL. CastilloM. CastanñedaC. In automatic lymphocyte detection on gastric cancer ihc images using deep learning. 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)2017200204
    [Google Scholar]
  127. SharmaH. ZerbeN. KlempertI. HellwichO. HufnaglP. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.Comput. Med. Imaging Graph.20176121310.1016/j.compmedimag.2017.06.00128676295
    [Google Scholar]
  128. ShenY. KeJ. In A deformable CRF model for histopathology whole-slide image classification International Conference on Medical Image Computing and Computer-Assisted Intervention202010.1007/978‑3‑030‑59722‑1_48
    [Google Scholar]
  129. KosarajuS.C. HaoJ. KohH.M. KangM. Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis.Methods202017931310.1016/j.ymeth.2020.05.01232442672
    [Google Scholar]
  130. HuY. SuF. DongK. WangX. ZhaoX. JiangY. LiJ. JiJ. SunY. Deep learning system for lymph node quantification and metastatic cancer identification from whole-slide pathology images.Gastric Cancer202124486887710.1007/s10120‑021‑01158‑933484355
    [Google Scholar]
  131. MatsushimaJ. SatoT. OhnishiT. YoshimuraY. MizutaniH. KotoS. IkedaJ. KanoM. MatsubaraH. HayashiH. The use of deep learning-based computer diagnostic algorithm for detection of lymph node metastases of gastric adenocarcinoma.Int. J. Surg. Pathol.2022271066896922111347510.1177/1066896922111347535898183
    [Google Scholar]
  132. MeierA. NekollaK. HewittL.C. EarleS. YoshikawaT. OshimaT. MiyagiY. HussR. SchmidtG. GrabschH.I. Hypothesis-free deep survival learning applied to the tumour microenvironment in gastric cancer.J. Pathol. Clin. Res.20206427328210.1002/cjp2.17032592447
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230913105829
Loading
/content/journals/cmc/10.2174/0929867331666230913105829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test