Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The search for effective methods of treatment and prevention of oncological diseases, despite the successes achieved in recent decades, remains one of the most urgent issues in modern medicine. It is known that chemotherapy and radiation therapy are based on the induction of cell death by increasing the intracellular concentration of reactive oxygen species (ROS). To increase the effectiveness of chemo- and radiotherapy, inducing and increasing oxidative stress in tumor cells has been proposed. A new class of promising adjuvants in combination with anticancer therapy, which has already been shown to be effective in preclinical and clinical studies, includes natural and synthetic polyphenols. Polyphenolic compounds not only exhibit antitumor activity but also significantly reduce the resistance of tumor cells to chemo- and radiotherapy. However, almost all chemotherapeutic drugs and regimens of radiation treatment have a damaging toxic effect on normal tissues, which significantly affects the quality of life of patients, and treatment options for managing these side effects are limited. In this regard, some of the most promising agents for the management of toxic side effects are natural polyphenols. This study discusses the possible molecular mechanisms and prospects for the clinical use of natural and synthetic polyphenolic compounds in chemo- and radiotherapy. In addition, the protective role/effect of polyphenols on the effects of chemo- and radiotherapy in tumor patients is discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673284605240301035057
2024-03-06
2025-03-31
Loading full text...

Full text loading...

References

  1. VtorushinS.V. KhristenkoK.Y. ZavyalovaM.V. PerelmuterV.M. LitviakovN.V. DenisovE.V. DulesovaA.Y. CherdyntsevaN.V. The phenomenon of multi-drug resistance in the treatment of malignant tumors.Exp. Oncol.201436314415625265346
    [Google Scholar]
  2. WuQ. YangZ. NieY. ShiY. FanD. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches.Cancer Lett.2014347215916610.1016/j.canlet.2014.03.01324657660
    [Google Scholar]
  3. AssarafY.G. BrozovicA. GonçalvesA.C. JurkovicovaD. LinēA. MachuqueiroM. SaponaraS. Sarmento-RibeiroA.B. XavierC.P.R. VasconcelosM.H. The multi-factorial nature of clinical multidrug resistance in cancer.Drug Resist. Updat.20194610064510.1016/j.drup.2019.10064531585396
    [Google Scholar]
  4. Berríos-CaroE. GiffordD.R. GallaT. Competition delays multi-drug resistance evolution during combination therapy.J. Theor. Biol.202150911052410.1016/j.jtbi.2020.11052433049229
    [Google Scholar]
  5. MaB. XuQ. SongY. GaoP. WangZ. Current issues of preoperative radio(chemo)therapy and its future evolution in locally advanced rectal cancer.Future Oncol.201713272489250110.2217/fon‑2017‑031029124955
    [Google Scholar]
  6. HuangG. PanS.T. ROS-mediated therapeutic strategy in chemo-/radiotherapy of head and neck cancer.Oxid. Med. Cell. Longev.2020202013010.1155/2020/504798732774675
    [Google Scholar]
  7. HesariA. AzizianM. SheikhiA. NesaeiA. SanaeiS. MahinparvarN. DerakhshaniM. HedaytP. GhasemiF. MirzaeiH. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status.Int. J. Cancer201914461215122610.1002/ijc.3194730362511
    [Google Scholar]
  8. ShahcheraghiS.H. ZanguiM. LotfiM. Ghayour-MobarhanM. GhorbaniA. JalianiH.Z. SadeghniaH.R. SahebkarA. Therapeutic potential of curcumin in the treatment of glioblastoma multiforme.Curr. Pharm. Des.201925333334210.2174/138161282566619031312370430864499
    [Google Scholar]
  9. MengX. CaiJ. LiuJ. HanB. GaoF. GaoW. ZhangY. ZhangJ. ZhaoZ. JiangC. Curcumin increases efficiency of γ-irradiation in gliomas by inhibiting Hedgehog signaling pathway.Cell Cycle201716121181119210.1080/15384101.2017.132000028463091
    [Google Scholar]
  10. KuttanG. Hari KumarK.B. GuruvayoorappanC. KuttanR. Antitumor, anti-invasion, and antimetastatic effects of curcumin.Adv. Exp. Med. Biol.200759517318410.1007/978‑0‑387‑46401‑5_617569210
    [Google Scholar]
  11. XuT. GuoP. HeY. PiC. WangY. FengX. HouY. JiangQ. ZhaoL. WeiY. Application of curcumin and its derivatives in tumor multidrug resistance.Phytother. Res.202034102438245810.1002/ptr.669432255545
    [Google Scholar]
  12. ColomerR. SarratsA. LupuR. PuigT. Natural polyphenols and their synthetic analogs as emerging anticancer agents.Curr. Drug Targets201618214715910.2174/138945011766616011211393026758667
    [Google Scholar]
  13. ThotaS. RodriguesD.A. BarreiroE.J. Recent advances in development of polyphenols as anticancer agents.Mini Rev. Med. Chem.201818151265126910.2174/138955751866618022012211329468967
    [Google Scholar]
  14. SufianovaG. GareevI. BeylerliO. WuJ. ShumadalovaA. SufianovA. ChenX. ZhaoS. Modern aspects of the use of natural polyphenols in tumor prevention and therapy.Front. Cell Dev. Biol.202210101143510.3389/fcell.2022.101143536172282
    [Google Scholar]
  15. VladuA.F. FicaiD. EneA.G. FicaiA. Combination therapy using polyphenols: An efficient way to improve antitumoral activity and reduce resistance.Int. J. Mol. Sci.202223181024410.3390/ijms23181024436142147
    [Google Scholar]
  16. YangH. VillaniR.M. WangH. SimpsonM.J. RobertsM.S. TangM. LiangX. The role of cellular reactive oxygen species in cancer chemotherapy.J. Exp. Clin. Cancer Res.201837126610.1186/s13046‑018‑0909‑x30382874
    [Google Scholar]
  17. UpadhyayS. DixitM. Role of polyphenols and other phytochemicals on molecular signaling.Oxid. Med. Cell. Longev.2015201511510.1155/2015/50425326180591
    [Google Scholar]
  18. XiaoZ. WangR. WangX. YangH. DongJ. HeX. YangY. GuoJ. CuiJ. ZhouZ. Impaired function of dendritic cells within the tumor microenvironment.Front. Immunol.202314121362910.3389/fimmu.2023.121362937441069
    [Google Scholar]
  19. Brglez MojzerE. Knez HrnčičM. ŠkergetM. KnezŽ. BrenU. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects.Molecules201621790110.3390/molecules2107090127409600
    [Google Scholar]
  20. RussoG.L. TedescoI. SpagnuoloC. RussoM. Antioxidant polyphenols in cancer treatment: Friend, foe or foil?Semin. Cancer Biol.20174611310.1016/j.semcancer.2017.05.00528511887
    [Google Scholar]
  21. ZhangX. LiuD. LvF. YuB. ShenY. CongH. Recent advances in ruthenium and platinum based supramolecular coordination complexes for antitumor therapy.Colloids Surf. B Biointerfaces201918211037310.1016/j.colsurfb.2019.11037331376689
    [Google Scholar]
  22. GuoQ. JiangE. Recent advances in the application of podophyllotoxin derivatives to fight against multidrug-resistant cancer cells.Curr. Top. Med. Chem.202121191712172410.2174/156802662166621011316332733441065
    [Google Scholar]
  23. RoszkowskiS. Application of polyphenols and flavonoids in oncological therapy.Molecules20232810408010.3390/molecules2810408037241819
    [Google Scholar]
  24. MiyamotoS. LimaR.S. InagueA. VivianiL.G. Electrophilic oxysterols: Generation, measurement and protein modification.Free Radic. Res.202155441644010.1080/10715762.2021.187938733494620
    [Google Scholar]
  25. RajendranP. HoE. WilliamsD.E. DashwoodR.H. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells.Clin. Epigenetics201131410.1186/1868‑7083‑3‑422247744
    [Google Scholar]
  26. AbruzzeseV. MateraI. MartinelliF. CarmosinoM. KoshalP. MilellaL. BisacciaF. OstuniA. Effect of quercetin on ABCC6 transporter: Implication in hepG2 migration.Int. J. Mol. Sci.2021228387110.3390/ijms2208387133918053
    [Google Scholar]
  27. ChimentoA. De LucaA. D’AmicoM. De AmicisF. PezziV. The involvement of natural polyphenols in molecular mechanisms inducing apoptosis in tumor cells: A promising adjuvant in cancer therapy.Int. J. Mol. Sci.2023242168010.3390/ijms2402168036675194
    [Google Scholar]
  28. IslamB. SuhailM. KhanM.K. ZughaibiT.A. AlserihiR.F. ZaidiS.K. TabrezS. Polyphenols as anticancer agents: Toxicological concern to healthy cells.Phytother. Res.202135116063607910.1002/ptr.721634679214
    [Google Scholar]
  29. ZhouY. ZhengJ. LiY. XuD.P. LiS. ChenY.M. LiH.B. Natural polyphenols for prevention and treatment of cancer.Nutrients20168851510.3390/nu808051527556486
    [Google Scholar]
  30. Ávila-GálvezM.Á. García-VillalbaR. Martínez-DíazF. Ocaña-CastilloB. Monedero-SaizT. Torrecillas-SánchezA. AbellánB. González-SarríasA. EspínJ.C. Metabolic profiling of dietary polyphenols and methylxanthines in normal and malignant mammary tissues from breast cancer patients.Mol. Nutr. Food Res.2019639180123910.1002/mnfr.20180123930690879
    [Google Scholar]
  31. BoS. PonzoV. CicconeG. EvangelistaA. SabaF. GoitreI. ProcopioM. PaganoG.F. CassaderM. GambinoR. Six months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind, placebo-controlled trial.Pharmacol. Res.201611189690510.1016/j.phrs.2016.08.01027520400
    [Google Scholar]
  32. EbertN. KenscheA. LöckS. HadiwikartaW.W. HänschA. DörrW. KrauseM. HannigC. BaumannM. Results of a randomized controlled phase III trial: efficacy of polyphenol-containing cystus® tea mouthwash solution for the reduction of mucositis in head and neck cancer patients undergoing external beam radiotherapy.Strahlenther. Onkol.20211971637310.1007/s00066‑020‑01684‑y32970162
    [Google Scholar]
  33. PantuckA.J. LeppertJ.T. ZomorodianN. AronsonW. HongJ. BarnardR.J. SeeramN. LikerH. WangH. ElashoffR. HeberD. AviramM. IgnarroL. BelldegrunA. Phase II study of pomegranate juice for men with rising prostate-specific antigen following surgery or radiation for prostate cancer.Clin. Cancer Res.200612134018402610.1158/1078‑0432.CCR‑05‑229016818701
    [Google Scholar]
  34. KopustinskieneD.M. JakstasV. SavickasA. BernatonieneJ. Flavonoids as anticancer agents.Nutrients202012245710.3390/nu1202045732059369
    [Google Scholar]
  35. RajakP GangulyA Computational study unravels inhibitory potential of epicatechin gallate against inflammatory and pyroptosis-associated mediators in COVID-19.MedComm. – Future Med.202325210.1002/mef2.52
    [Google Scholar]
  36. HiderR.C. LiuZ.D. KhodrH.H. Metal chelation of polyphenols.Methods Enzymol.200133519020310.1016/S0076‑6879(01)35243‑611400368
    [Google Scholar]
  37. RenB. KwahM.X.Y. LiuC. MaZ. ShanmugamM.K. DingL. XiangX. HoP.C.L. WangL. OngP.S. GohB.C. Resveratrol for cancer therapy: Challenges and future perspectives.Cancer Lett.2021515637210.1016/j.canlet.2021.05.00134052324
    [Google Scholar]
  38. PavanA.R. Unraveling the anticancer effect of curcumin and resveratrol.Nutrients201681162827834913
    [Google Scholar]
  39. CasanovaA.G. PrietoM. ColinoC.I. Gutiérrez-MillánC. Ruszkowska-CiastekB. de PazE. MartínÁ. MoralesA.I. López-HernándezF.J. A micellar formulation of quercetin prevents cisplatin nephrotoxicity.Int. J. Mol. Sci.202122272910.3390/ijms2202072933450917
    [Google Scholar]
  40. WangG. ZhangJ. LiuL. SharmaS. DongQ. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl.PLoS One2012712e5176410.1371/journal.pone.005176423240061
    [Google Scholar]
  41. NieZ. ZhangL. ChenW. ZhangY. WangW. HuaR. ZhangT. ZhaoC. GongM. WuH. The protective effects of resveratrol pretreatment in cyclophosphamide-induced rat ovarian injury: An vivo study.Gynecol. Endocrinol.2021371091491910.1080/09513590.2021.188564333594937
    [Google Scholar]
  42. KunnumakkaraA.B. GuhaS. KrishnanS. DiagaradjaneP. GelovaniJ. AggarwalB.B. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products.Cancer Res.20076783853386110.1158/0008‑5472.CAN‑06‑425717440100
    [Google Scholar]
  43. AbuzeidW.M. DavisS. TangA.L. SaundersL. BrennerJ.C. LinJ. FuchsJ.R. LightE. BradfordC.R. PrinceM.E.P. CareyT.E. Sensitization of head and neck cancer to cisplatin through the use of a novel curcumin analog.Arch. Otolaryngol. Head Neck Surg.2011137549950710.1001/archoto.2011.6321576562
    [Google Scholar]
  44. KamatA.M. TharakanS.T. SungB. AggarwalB.B. Curcumin potentiates the antitumor effects of bacillus calmette-guerin against bladder cancer through the downregulation of NF-kappaB and upregulation of TRAIL receptors.Cancer Res.200969238958896610.1158/0008‑5472.CAN‑09‑204519903839
    [Google Scholar]
  45. SinghN. ZaidiD. ShyamH. SharmaR. BalapureA.K. Polyphenols sensitization potentiates susceptibility of MCF-7 and MDA MB-231 cells to Centchroman.PLoS One201276e3773610.1371/journal.pone.003773622768036
    [Google Scholar]
  46. SuganumaM. OkabeS. KaiY. SueokaN. SueokaE. FujikiH. Synergistic effects of (--)-epigallocatechin gallate with (--)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9.Cancer Res.199959144479892181
    [Google Scholar]
  47. LiangG. TangA. LinX. LiL. ZhangS. HuangZ. TangH. LiQ.Q. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer.Int. J. Oncol.2010371111123https://pubmed.ncbi.nlm.nih.gov/2051440320514403
    [Google Scholar]
  48. SharmaH. SenS. SinghN. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer.Cancer Biol. Ther.200549949955https://pubmed.ncbi.nlm.nih.gov/1608219310.4161/cbt.4.9.190816082193
    [Google Scholar]
  49. BanerjeeS. ZhangY. AliS. BhuiyanM. WangZ. ChiaoP.J. PhilipP.A. AbbruzzeseJ. SarkarF.H. Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer.Cancer Res.200565199064907210.1158/0008‑5472.CAN‑05‑133016204081
    [Google Scholar]
  50. ChangP.Y. PengS.F. LeeC.Y. LuC.C. TsaiS.C. ShiehT.M. WuT.S. TuM.G. ChenM.Y. YangJ.S. Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells.Int. J. Oncol.20134341141115010.3892/ijo.2013.205023917396
    [Google Scholar]
  51. TangS.N. FuJ. ShankarS. SrivastavaR.K. EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer.PLoS One201272e3106710.1371/journal.pone.003106722348037
    [Google Scholar]
  52. MenendezJ.A. Vazquez-MartinA. ColomerR. BrunetJ. Carrasco-PancorboA. Garcia-VillalbaR. Fernandez-GutierrezA. Segura-CarreteroA. Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (Herceptin™) in HER2-overexpressing breast cancer cells.BMC Cancer2007718010.1186/1471‑2407‑7‑8017490486
    [Google Scholar]
  53. SuganumaM. KurusuM. SuzukiK. TasakiE. FujikiH. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene.Int. J. Cancer20061191334010.1002/ijc.2180916463383
    [Google Scholar]
  54. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.363522408567
    [Google Scholar]
  55. IkushimaH. Radiation therapy: State of the art and the future.J. Med. Invest.2010571,211110.2152/jmi.57.120299738
    [Google Scholar]
  56. GardnerS.J. KimJ. ChettyI.J. Modern radiation therapy planning and delivery.Hematol. Oncol. Clin. North Am.201933694796210.1016/j.hoc.2019.08.00531668213
    [Google Scholar]
  57. KimD.S. MinK. LeeS.K. Cell cycle dysregulation is associated with 5-Fluorouracil resistance in gastric cancer cells.Anticancer Res.20204063247325410.21873/anticanres.1430632487619
    [Google Scholar]
  58. PrasadS. GuptaS.C. TyagiA.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.Cancer Lett.20173879510510.1016/j.canlet.2016.03.04227037062
    [Google Scholar]
  59. HussainS.M. AdnanM. RasulA. ShahM.A. HussainG. AsrarM. RiazA. SarfrazI. HussainA. KhorsandiK. LaiN.S. Radioprotective role of natural polyphenols: From sources to mechanisms.Anticancer. Agents Med. Chem.2021221303910.2174/187152062166621041909582933874875
    [Google Scholar]
  60. YuH. HaskinsJ.S. SuC. AllumA. HaskinsA.H. SalinasV.A. SunadaS. InoueT. AizawaY. UesakaM. KatoT.A. In vitro screening of radioprotective properties in the novel glucosylated flavonoids.Int. J. Mol. Med.20163851525153010.3892/ijmm.2016.276428025998
    [Google Scholar]
  61. WangQ. XieC. XiS. QianF. PengX. HuangJ. TangF. Radioprotective effect of flavonoids on ionizing radiation-induced brain damage.Molecules20202523571910.3390/molecules2523571933287417
    [Google Scholar]
  62. JagetiaG.C. Antioxidant activity of curcumin protects against the radiation-induced micronuclei formation in cultured human peripheral blood lymphocytes exposed to various doses of γ-Radiation.Int. J. Radiat. Biol.202197448549310.1080/09553002.2021.187694833464136
    [Google Scholar]
  63. SebastiàN. AlmonacidM. VillaescusaJ.I. CerveraJ. SuchE. SillaM.A. SorianoJ.M. MontoroA. Radioprotective activity and cytogenetic effect of resveratrol in human lymphocytes: An in vitro evaluation.Food Chem. Toxicol.20135139139510.1016/j.fct.2012.10.01323099504
    [Google Scholar]
  64. ZhuW. MeiH. JiaL. ZhaoH. LiX. MengX. ZhaoX. XingL. YuJ. Epigallocatechin-3-gallate mouthwash protects mucosa from radiation-induced mucositis in head and neck cancer patients: A prospective, non-randomised, phase 1 trial.Invest. New Drugs20203841129113610.1007/s10637‑019‑00871‑831701429
    [Google Scholar]
  65. LuoH. YangA. SchulteB.A. WargovichM.J. WangG.Y. Resveratrol induces premature senescence in lung cancer cells via ROS-mediated DNA damage.PLoS One201383e6006510.1371/journal.pone.006006523533664
    [Google Scholar]
  66. JohnsonG.E. IvanovV.N. HeiT.K. Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival.Apoptosis200813679080210.1007/s10495‑008‑0212‑y18454317
    [Google Scholar]
  67. MinafraL. PorcinoN. BravatàV. GaglioD. BonanomiM. AmoreE. CammarataF.P. RussoG. MilitelloC. SavocaG. BaglioM. AbbateB. IacovielloG. EvangelistaG. GilardiM.C. BondìM.L. ForteG.I. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells.Sci. Rep.2019911113410.1038/s41598‑019‑47553‑231366901
    [Google Scholar]
  68. DaiY. DeSanoJ.T. MengY. JiQ. LjungmanM. LawrenceT.S. XuL. Celastrol potentiates radiotherapy by impairment of DNA damage processing in human prostate cancer.Int. J. Radiat. Oncol. Biol. Phys.20097441217122510.1016/j.ijrobp.2009.03.05719545787
    [Google Scholar]
  69. DeorukhkarA. AhujaN. MercadoA.L. DiagaradjaneP. RajuU. PatelN. MohindraP. DiepN. GuhaS. KrishnanS. Zerumbone increases oxidative stress in a thiol-dependent ROS -independent manner to increase DNA damage and sensitize colorectal cancer cells to radiation.Cancer Med.20154227829210.1002/cam4.36725450478
    [Google Scholar]
  70. SchwarzK. DobiaschS. NguyenL. SchillingD. CombsS.E. Modification of radiosensitivity by curcumin in human pancreatic cancer cell lines.Sci. Rep.2020101381510.1038/s41598‑020‑60765‑132123256
    [Google Scholar]
  71. AghamiriS. JafarpourA. ZandsalimiF. AghemiriM. ShojaM. Effect of resveratrol on the radiosensitivity of 5- FU in human breast cancer MCF-7 cells.J. Cell. Biochem.20191209156711567710.1002/jcb.2883631069826
    [Google Scholar]
  72. MikamiS. OtaI. MasuiT. UchiyamaT. OkamotoH. KimuraT. TakasawaS. KitaharaT. Resveratrol-induced REG III expression enhances chemo- and radiosensitivity in head and neck cancer in xenograft mice.Oncol. Rep.201942143644210.3892/or.2019.713731059079
    [Google Scholar]
  73. KomorowskaD. GajewskaA. HikiszP. BartoszG. RodackaA. Comparison of the effects of resveratrol and its derivatives on the radiation response of MCF-7 breast cancer cells.Int. J. Mol. Sci.20212217951110.3390/ijms2217951134502426
    [Google Scholar]
  74. LiM. LinL. GuoT. WuY. LinJ. LiuY. YangK. HuC. Curcumin administered in combination with Glu-GNPs induces radiosensitivity in transplanted tumor MDA-MB-231-luc cells in nude mice.BioMed Res. Int.2021202111110.1155/2021/926245334825004
    [Google Scholar]
  75. TanY. WeiX. ZhangW. WangX. WangK. DuB. XiaoJ. Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1.Oncol. Rep.20173731833184110.3892/or.2017.541328184930
    [Google Scholar]
  76. KhoramN.M. BigdeliB. NikoofarA. GoliaeiB. Caffeic acid phenethyl ester increases radiosensitivity of estrogen receptor-positive and -negative breast cancer cells by prolonging radiation-induced DNA damage.J. Breast Cancer2016191182510.4048/jbc.2016.19.1.1827066092
    [Google Scholar]
  77. ShenN. WangT. GanQ. LiuS. WangL. JinB. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity.Food Chem.202238313253110.1016/j.foodchem.2022.13253135413752
    [Google Scholar]
  78. PetrussaE. BraidotE. ZancaniM. PeressonC. BertoliniA. PatuiS. VianelloA. Plant flavonoids--biosynthesis, transport and involvement in stress responses.Int. J. Mol. Sci.2013147149501497310.3390/ijms14071495023867610
    [Google Scholar]
  79. AhmadiS.M. FarhooshR. SharifA. RezaieM. Structure-antioxidant activity relationships of luteolin and catechin.J. Food Sci.202085229830510.1111/1750‑3841.1499431957877
    [Google Scholar]
  80. ChoiY. YuA.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development.Curr. Pharm. Des.201420579380710.2174/13816128200514021416521223688078
    [Google Scholar]
  81. LiuX. ABC family transporters.Adv. Exp. Med. Biol.201911411310010.1007/978‑981‑13‑7647‑4_231571164
    [Google Scholar]
  82. BuechelE.R. PinkettH.W. Transcription factors and ABC transporters: From pleiotropic drug resistance to cellular signaling in yeast.FEBS Lett.2020594233943396410.1002/1873‑3468.1396433089887
    [Google Scholar]
  83. LiY. PaxtonJ.W. The effects of flavonoids on the ABC transporters: Consequences for the pharmacokinetics of substrate drugs.Expert Opin. Drug Metab. Toxicol.20139326728510.1517/17425255.2013.74985823289831
    [Google Scholar]
  84. AlvarezA.I. RealR. PérezM. MendozaG. PrietoJ.G. MerinoG. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response.J. Pharm. Sci.201099259861710.1002/jps.2185119544374
    [Google Scholar]
  85. CallaghanR. LukF. BebawyM. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?Drug Metab. Dispos.201442462363110.1124/dmd.113.05617624492893
    [Google Scholar]
  86. ErinN. GrahovacJ. BrozovicA. EfferthT. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance.Drug Resist. Updat.20205310071510.1016/j.drup.2020.10071532679188
    [Google Scholar]
  87. CuiJ. LiuX. ChowL.M.C. Flavonoids as P-gp inhibitors: A systematic review of SARs.Curr. Med. Chem.201926254799483110.2174/092986732566618100111522530277144
    [Google Scholar]
  88. MohanaS. GanesanM. AgilanB. KarthikeyanR. SritharG. Beaulah MaryR. AnanthakrishnanD. VelmuruganD. Rajendra PrasadN. AmbudkarS.V. Screening dietary flavonoids for the reversal of P-glycoprotein- mediated multidrug resistance in cancer.Mol. Biosyst.20161282458247010.1039/C6MB00187D27216424
    [Google Scholar]
  89. FanX. BaiJ. ZhaoS. HuM. SunY. WangB. JiM. JinJ. WangX. HuJ. LiY. Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein (BCRP): From library screening to biological evaluation to structure-activity relationship.Toxicol. In Vitro 20196110464210.1016/j.tiv.2019.10464231493543
    [Google Scholar]
  90. DasS MajumderT SarkarA MukherjeeP BasuS Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation.Int. J. Biol Macromol.20201651323133010.1016/j.ijbiomac.2020.09.232
    [Google Scholar]
  91. TóthS. SzepesiÁ. Tran-NguyenV.K. SarkadiB. NémetK. FalsonP. Di PietroA. SzakácsG. BoumendjelA. Synthesis and anticancer cytotoxicity of azaaurones overcoming multidrug resistance.Molecules202025376410.3390/molecules2503076432050702
    [Google Scholar]
  92. DawoodK.M. An update on benzofuran inhibitors: A patent review.Expert Opin. Ther. Pat.2019291184187010.1080/13543776.2019.167372731560232
    [Google Scholar]
  93. ThongM.S.Y. van NoordenC.J.F. SteindorfK. ArndtV. Cancer-related fatigue: Causes and current treatment options.Curr. Treat. Options Oncol.20202121710.1007/s11864‑020‑0707‑532025928
    [Google Scholar]
  94. D’AndreaM. BenassiM. StrigariL. Modeling radiotherapy induced normal tissue complications: An overview beyond phenomenological models.Comput. Math. Methods Med.201620161910.1155/2016/279618628044088
    [Google Scholar]
  95. MaY. YangH. PittJ.M. KroemerG. ZitvogelL. Therapy-induced microenvironmental changes in cancer.J. Mol. Med.201694549750810.1007/s00109‑016‑1401‑826931513
    [Google Scholar]
  96. RoyS. TrinchieriG. Microbiota: A key orchestrator of cancer therapy.Nat. Rev. Cancer201717527128510.1038/nrc.2017.1328303904
    [Google Scholar]
  97. LymanG.H. Chemotherapy dose intensity and quality cancer care.Oncology20062014Suppl. 9162517370925
    [Google Scholar]
  98. TangJ.C. FengY.L. LiangX. CaiX.J. Autophagy in 5-fluorouracil therapy in gastrointestinal cancer.Chin. Med. J.2016129445646310.4103/0366‑6999.17606926879020
    [Google Scholar]
  99. MuñizP. Andrés-ZayasC. CarbonellD. ChicanoM. BailénR. OarbeascoaG. Suárez-GonzálezJ. Gómez CenturiónI. DoradoN. GallardoD. AnguitaJ. KwonM. Díez-MartínJ.L. Martínez-LapercheC. BuñoI. Association between gene polymorphisms in the cyclophosphamide metabolism pathway with complications after haploidentical hematopoietic stem cell transplantation.Front. Immunol.202213100295910.3389/fimmu.2022.100295936211438
    [Google Scholar]
  100. CarvalhoC. SantosR. CardosoS. CorreiaS. OliveiraP. SantosM. MoreiraP. Doxorubicin: the good, the bad and the ugly effect.Curr. Med. Chem.200916253267328510.2174/09298670978880331219548866
    [Google Scholar]
  101. QiL. LuoQ. ZhangY. JiaF. ZhaoY. WangF. Advances in toxicological research of the anticancer drug cisplatin.Chem. Res. Toxicol.20193281469148610.1021/acs.chemrestox.9b0020431353895
    [Google Scholar]
  102. FiteniF. PaillardM-J. OrillardE. LefebvreL. NadjafizadehS. SelmaniZ. BenhamidaS. RolandA. BaumannA. VienotA. HouédéN. PivotX. Enterocolitis in patients with cancer treated with docetaxel.Anticancer Res.20183842443244629599375
    [Google Scholar]
  103. TroxellM.L. HigginsJ.P. KambhamN. Antineoplastic treatment and renal injury: An update on renal pathology due to cytotoxic and targeted therapies.Adv. Anat. Pathol.201623531032910.1097/PAP.000000000000012227403615
    [Google Scholar]
  104. WuH. HuangJ. Drug-induced nephrotoxicity: Pathogenic mechanisms, biomarkers and prevention strategies.Curr. Drug Metab.201819755956710.2174/138920021866617110815441929119923
    [Google Scholar]
  105. ShankarA. RoyS. MalikA. JulkaP.K. RathG.K. Prevention of chemotherapy-induced nausea and vomiting in cancer patients.Asian Pac. J. Cancer Prev.201516156207621310.7314/APJCP.2015.16.15.620726434818
    [Google Scholar]
  106. NavariR.M. Nausea and vomiting in advanced cancer.Curr. Treat. Options Oncol.20202121410.1007/s11864‑020‑0704‑832025954
    [Google Scholar]
  107. HegedusF. MathewL.M. SchwartzR.A. Radiation dermatitis: An overview.Int. J. Dermatol.201756990991410.1111/ijd.1337127496623
    [Google Scholar]
  108. BrayF.N. SimmonsB.J. WolfsonA.H. NouriK. Acute and chronic cutaneous reactions to ionizing radiation therapy.Dermatol. Ther.20166218520610.1007/s13555‑016‑0120‑y27250839
    [Google Scholar]
  109. LumniczkyK. SzatmáriT. SáfrányG. Ionizing radiation-induced immune and inflammatory reactions in the brain.Front. Immunol.2017851710.3389/fimmu.2017.0051728529513
    [Google Scholar]
  110. BehranvandN. NasriF. Zolfaghari EmamehR. KhaniP. HosseiniA. GarssenJ. FalakR. Chemotherapy: A double-edged sword in cancer treatment.Cancer Immunol. Immunother.202271350752610.1007/s00262‑021‑03013‑334355266
    [Google Scholar]
  111. JagiełaJ. BartnickiP. RyszJ. Nephrotoxicity as a complication of chemotherapy and immunotherapy in the treatment of colorectal cancer, melanoma and non-small cell lung cancer.Int. J. Mol. Sci.2021229461810.3390/ijms2209461833924827
    [Google Scholar]
  112. FontenotJ.D. LeeA.K. NewhauserW.D. Risk of secondary malignant neoplasms from proton therapy and intensity-modulated x-ray therapy for early-stage prostate cancer.Int. J. Radiat. Oncol. Biol. Phys.200974261662210.1016/j.ijrobp.2009.01.00119427561
    [Google Scholar]
  113. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  114. XueP. ZhangG. ZhangJ. RenL. Synergism of ellagic acid in combination with radiotherapy and chemotherapy for cancer treatment.Phytomedicine20229915399810.1016/j.phymed.2022.15399835217437
    [Google Scholar]
  115. WangL.Y. ZhaoS. LvG.J. MaX.J. ZhangJ.B. Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer.World J. Clin. Cases20208122425243710.12998/wjcc.v8.i12.242532607320
    [Google Scholar]
  116. Serna-ThoméG. Castro-EguiluzD. Fuchs-TarlovskyV. Sánchez-LópezM. Delgado-OlivaresL. Coronel-MartínezJ.A. Molina-TrinidadE.M. de la TorreM. Cetina-PérezL. Use of functional foods and oral supplements as adjuvants in cancer treatment.Rev. Invest. Clin.201870313614610.24875/RIC.1800252729943769
    [Google Scholar]
  117. GuoY. KurugantiR. GaoY. Recent advances in ginsenosides as potential therapeutics against breast cancer.Curr. Top. Med. Chem.201919252334234710.2174/156802661966619101810084831648643
    [Google Scholar]
  118. PeraltaE.A. MurphyL.L. MinnisJ. LouisS. DunningtonG.L. American Ginseng inhibits induced COX-2 and NFKB activation in breast cancer cells.J. Surg. Res.2009157226126710.1016/j.jss.2009.05.01119815237
    [Google Scholar]
  119. GoelA. AggarwalB.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs.Nutr. Cancer201062791993010.1080/01635581.2010.50983520924967
    [Google Scholar]
  120. NeyshaburinezhadN. HashemiM. RamezaniM. ArabzadehS. BehravanJ. KalaliniaF. The effects of crocetin, extracted from saffron, in chemotherapy against the incidence of multiple drug resistance phenotype.Iran. J. Basic Med. Sci.201821111192119710.22038/IJBMS.2018.29474.711830483395
    [Google Scholar]
  121. KooshyarM.M. MozafariP.M. AmirchaghmaghiM. PakfetratA. KaroosP. MohaselM.R. OrafaiH. AzarianA.A. A randomized placebo- controlled double blind clinical trial of quercetin in the prevention and treatment of chemotherapy-induced oral mucositis.J. Clin. Diagn. Res.2017113ZC46ZC5010.7860/JCDR/2017/23975.957128511508
    [Google Scholar]
  122. KatoS. HayashiS. KitaharaY. NagasawaK. AonoH. ShibataJ. UtsumiD. AmagaseK. KadowakiM. Saireito (TJ-114), a Japanese traditional herbal medicine, reduces 5-fluorouracil-induced intestinal mucositis in mice by inhibiting cytokine-mediated apoptosis in intestinal crypt cells.PLoS One2015101e011621310.1371/journal.pone.011621325565296
    [Google Scholar]
  123. OršolićN. Jazvinšćak JembrekM. Molecular and cellular mechanisms of propolis and its polyphenolic compounds against cancer.Int. J. Mol. Sci.202223181047910.3390/ijms23181047936142391
    [Google Scholar]
  124. BhargavaP. MahantaD. KaulA. IshidaY. TeraoK. WadhwaR. KaulS.C. Experimental evidence for therapeutic potentials of propolis.Nutrients2021138252810.3390/nu1308252834444688
    [Google Scholar]
  125. FormaE. BryśM. Anticancer activity of propolis and its compounds.Nutrients2021138259410.3390/nu1308259434444754
    [Google Scholar]
  126. ShaitoA. PosadinoA.M. YounesN. HasanH. HalabiS. AlhababiD. Al-MohannadiA. Abdel-RahmanW.M. EidA.H. NasrallahG.K. PintusG. Potential adverse effects of resveratrol: A literature review.Int. J. Mol. Sci.2020216208410.3390/ijms2106208432197410
    [Google Scholar]
  127. MortezaeeK. NajafiM. FarhoodB. AhmadiA. ShabeebD. MusaA.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization.Curr. Cancer Drug Targets202020213014510.2174/156800961966619101914353931738153
    [Google Scholar]
  128. BishrA. SallamN. Nour El-DinM. AwadA.S. KenawyS.A. Ambroxol attenuates cisplatin-induced hepatotoxicity and nephrotoxicity via inhibition of p-JNK/p-ERK.Can. J. Physiol. Pharmacol.2019971556410.1139/cjpp‑2018‑052830383980
    [Google Scholar]
  129. ChenC. AiQ. WeiY. Hydroxytyrosol protects against cisplatin-induced nephrotoxicity via attenuating CKLF1 mediated inflammation, and inhibiting oxidative stress and apoptosis.Int. Immunopharmacol.20219610780510.1016/j.intimp.2021.10780534162164
    [Google Scholar]
  130. MaatoukM. AbedB. BouhlelI. KrifaM. KhlifiR. IoannouI. GhediraK. GhediraL.C. Heat treatment and protective potentials of luteolin-7-O-glucoside against cisplatin genotoxic and cytotoxic effects.Environ. Sci. Pollut. Res. Int.20202712134171342710.1007/s11356‑020‑07900‑732026362
    [Google Scholar]
  131. TatlidedeE. ŞehirliÖ. Velioğlu-ÖğünçA. ÇetinelŞ. YeğenB.Ç. YaratA. SüleymanoğluS. ŞenerG. Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage.Free Radic. Res.200943319520510.1080/1071576080267300819169920
    [Google Scholar]
  132. DuttaD. XuJ. DirainM.L.S. LeeuwenburghC. Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity.Free Radic. Biol. Med.20147425226210.1016/j.freeradbiomed.2014.06.01124975655
    [Google Scholar]
  133. CarresiC. MusolinoV. GliozziM. MaiuoloJ. MollaceR. NuceraS. MarettaA. SergiD. MuscoliS. GratteriS. PalmaE. BoscoF. GiancottaC. MuscoliC. MarinoF. AquilaI. TorellaD. RomeoF. MollaceV. Anti-oxidant effect of bergamot polyphenolic fraction counteracts doxorubicin-induced cardiomyopathy: Role of autophagy and c-kitposCD45negCD31neg cardiac stem cell activation.J. Mol. Cell. Cardiol.2018119101810.1016/j.yjmcc.2018.04.00729654879
    [Google Scholar]
  134. KumarappanC. VijayakumarM. ThilagamE. BalamuruganM. ThiagarajanM. SenthilS. DasS.C. MandaiS.C. Protective and curative effects of polyphenolic extracts from Ichnocarpus frutescense leaves on experimental hepatotoxicity by carbon tretrachloride and tamoxifen.Ann. Hepatol.2011101637210.1016/S1665‑2681(19)31589‑321301012
    [Google Scholar]
  135. SherifI.O. The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway.Int. Immunopharmacol.201861293610.1016/j.intimp.2018.05.00729800788
    [Google Scholar]
  136. PotočnjakI. ŠkodaM. Pernjak-PugelE. PeršićM.P. DomitrovićR. Oral administration of oleuropein attenuates cisplatin-induced acute renal injury in mice through inhibition of ERK signaling.Mol. Nutr. Food Res.201660353054110.1002/mnfr.20150040926603374
    [Google Scholar]
  137. WessnerB. StrasserE.M. KoitzN. SchmuckenschlagerC. Unger-ManhartN. RothE. Green tea polyphenol administration partly ameliorates chemotherapy-induced side effects in the small intestine of mice.J. Nutr.2007137363464010.1093/jn/137.3.63417311952
    [Google Scholar]
  138. AbshireD. LangM.K. The evolution of radiation therapy in treating cancer.Semin. Oncol. Nurs.201834215115710.1016/j.soncn.2018.03.00629606538
    [Google Scholar]
  139. LaiX. NajafiM. Redox interactions in chemo/radiation therapy-induced lung toxicity; mechanisms and therapy perspectives.Curr. Drug Targets202223131261127610.2174/138945012366622070512331535792117
    [Google Scholar]
  140. HolleyA.K. MiaoL. St ClairD.K. St ClairW.H. Redox-modulated phenomena and radiation therapy: The central role of superoxide dismutases.Antioxid. Redox Signal.201420101567158910.1089/ars.2012.500024094070
    [Google Scholar]
  141. KeryM. PapandreouI. Emerging strategies to target cancer metabolism and improve radiation therapy outcomes.Br. J. Radiol.20209311152020006710.1259/bjr.2020006732462882
    [Google Scholar]
  142. SebastiàN. SorianoJ.M. BarquineroJ.F. VillaescusaJ.I. AlmonacidM. CerveraJ. SuchE. SillaM.A. MontoroA. In vitro cytogenetic and genotoxic effects of curcumin on human peripheral blood lymphocytes.Food Chem. Toxicol.20125093229323310.1016/j.fct.2012.06.01222713711
    [Google Scholar]
  143. LimY.C. LeeS.H. SongM.H. YamaguchiK. YoonJ.H. ChoiE.C. BaekS.J. Growth inhibition and apoptosis by (−)-epicatechin gallate are mediated by cyclin D1 suppression in head and neck squamous carcinoma cells.Eur. J. Cancer200642183260326610.1016/j.ejca.2006.07.01417045795
    [Google Scholar]
  144. XieL.W. CaiS. ZhaoT.S. LiM. TianY. Green tea derivative (−)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo.Free Radic. Biol. Med.202016117518610.1016/j.freeradbiomed.2020.10.01233069855
    [Google Scholar]
  145. MorleyN. CliffordT. SalterL. CampbellS. GouldD. CurnowA. The green tea polyphenol (−)-epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation-induced damage.Photodermatol. Photoimmunol. Photomed.2005211152210.1111/j.1600‑0781.2005.00119.x15634219
    [Google Scholar]
  146. BenkovicV. Horvat KnezevicA. DikicD. LisicicD. OrsolicN. BasicI. KosalecI. KopjarN. Radioprotective effects of propolis and quercetin in γ-irradiated mice evaluated by the alkaline comet assay.Phytomedicine2008151085185810.1016/j.phymed.2008.02.01018424105
    [Google Scholar]
  147. BenkovićV. KopjarN. KneževicA.H. ĐikićD. BašićI. RamićS. ViculinT. KneževićF. OrolićN. Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro.Biol. Pharm. Bull.20083191778178510.1248/bpb.31.177818758076
    [Google Scholar]
  148. HaddadY.H. SaidR.S. KamelR. MorsyE.M.E. El-DemerdashE. Phytoestrogen genistein hinders ovarian oxidative damage and apoptotic cell death-induced by ionizing radiation: Co-operative role of ER-β, TGF-β, and FOXL-2.Sci. Rep.20201011355110.1038/s41598‑020‑70309‑232782329
    [Google Scholar]
  149. LandauerM.R. HarveyA.J. KaytorM.D. DayR.M. Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome.J. Radiat. Res.201960330831710.1093/jrr/rrz01431038675
    [Google Scholar]
  150. XuW. YangF. ZhangY. ShenX. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice.J. Radiat. Res.201657435636210.1093/jrr/rrw02127006381
    [Google Scholar]
  151. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_1831417011
    [Google Scholar]
  152. SinghR. MishraM.K. AggarwalH. Inflammation, immunity, and cancer.Mediators Inflamm.20172017110.1155/2017/602730529234189
    [Google Scholar]
  153. DiakosC.I. CharlesK.A. McMillanD.C. ClarkeS.J. Cancer-related inflammation and treatment effectiveness.Lancet Oncol.20141511e493e50310.1016/S1470‑2045(14)70263‑325281468
    [Google Scholar]
  154. LucaS.V. MacoveiI. BujorA. MironA. Skalicka-WoźniakK. AprotosoaieA.C. TrifanA. Bioactivity of dietary polyphenols: The role of metabolites.Crit. Rev. Food Sci. Nutr.202060462665910.1080/10408398.2018.154666930614249
    [Google Scholar]
  155. Duda-ChodakA. TarkoT. Possible side effects of polyphenols and their interactions with medicines.Molecules2023286253610.3390/molecules2806253636985507
    [Google Scholar]
  156. XuJ. CaoK. LiuX. ZhaoL. FengZ. LiuJ. Punicalagin regulates signaling pathways in inflammation-associated chronic diseases.Antioxidants20211112910.3390/antiox1101002935052533
    [Google Scholar]
  157. AdamsL.S. SeeramN.P. AggarwalB.B. TakadaY. SandD. HeberD. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells.J. Agric. Food Chem.200654398098510.1021/jf052005r16448212
    [Google Scholar]
  158. DuL. LiJ. ZhangX. WangL. ZhangW. YangM. HouC. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation.Food Nutr. Res.20196310.29219/fnr.v63.339231073284
    [Google Scholar]
  159. OhishiT. GotoS. MoniraP. IsemuraM. NakamuraY. Anti-inflammatory action of green tea.Antiinflamm. Antiallergy Agents Med. Chem.2016152749010.2174/187152301566616091515444327634207
    [Google Scholar]
  160. YounH.S. LeeJ.Y. SaitohS.I. MiyakeK. KangK.W. ChoiY.J. HwangD.H. Suppression of MyD88- and TRIF-dependent signaling pathways of toll-like receptor by (−)-epigallocatechin-3-gallate, a polyphenol component of green tea.Biochem. Pharmacol.200672785085910.1016/j.bcp.2006.06.02116890209
    [Google Scholar]
  161. WuD. GuoZ. RenZ. GuoW. MeydaniS.N. Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling.Free Radic. Biol. Med.200947563664310.1016/j.freeradbiomed.2009.06.00119501156
    [Google Scholar]
  162. Jasso-MirandaC. Herrera-CamachoI. Flores-MendozaL.K. DominguezF. Vallejo-RuizV. Sanchez-BurgosG.G. Pando-RoblesV. Santos-LopezG. Reyes-LeyvaJ. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies.Infect. Drug Resist.2019121833185210.2147/IDR.S21089031303775
    [Google Scholar]
  163. BoudoukhaC. BouricheH. OrtegaE. SenatorA. Immunomodulatory effects of Santolina chamaecyparissus leaf extracts on human neutrophil functions.Pharm. Biol.201654466767310.3109/13880209.2015.107185326453376
    [Google Scholar]
  164. SadowskaB. MicotaB. RóżalskiM. RedzyniaM. RóżalskiM. The immunomodulatory potential of Leonurus cardiaca extract in relation to endothelial cells and platelets.Innate Immun.201723328529510.1177/175342591769111628142301
    [Google Scholar]
  165. GanjaliS. SahebkarA. MahdipourE. JamialahmadiK. TorabiS. AkhlaghiS. FernsG. ParizadehS.M.R. Ghayour-MobarhanM. Investigation of the effects of curcumin on serum cytokines in obese individuals: A randomized controlled trial.Scientific World J.201420141610.1155/2014/89836124678280
    [Google Scholar]
  166. YangX. XuS. QianY. XiaoQ. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury.Brain Behav. Immun.20176416217210.1016/j.bbi.2017.03.00328268115
    [Google Scholar]
  167. LittleC.H. CombetE. McMillanD.C. HorganP.G. RoxburghC.S.D. The role of dietary polyphenols in the moderation of the inflammatory response in early stage colorectal cancer.Crit. Rev. Food Sci. Nutr.201757112310232010.1080/10408398.2014.99786626066365
    [Google Scholar]
  168. NiedzwieckiA. RoomiM. KalinovskyT. RathM. Anticancer efficacy of polyphenols and their combinations.Nutrients20168955210.3390/nu809055227618095
    [Google Scholar]
  169. DoroshowJ.H. SimonR.M. On the design of combination cancer therapy.Cell201717171476147810.1016/j.cell.2017.11.03529245008
    [Google Scholar]
  170. LavoieJ.M. KollmannsbergerC.K. Current management of disseminated germ cell tumors.Urol. Clin. North Am.201946337738810.1016/j.ucl.2019.04.00331277732
    [Google Scholar]
  171. AlshatwiA.A. PeriasamyV.S. AthinarayananJ. ElangoR. Synergistic anticancer activity of dietary tea polyphenols and bleomycin hydrochloride in human cervical cancer cell: Caspase-dependent and independent apoptotic pathways.Chem. Biol. Interact.201624711010.1016/j.cbi.2016.01.01226800624
    [Google Scholar]
  172. KilicU. SahinK. TuzcuM. BasakN. OrhanC. Elibol-CanB. KilicE. SahinF. KucukO. Enhancement of cisplatin sensitivity in human cervical cancer: Epigallocatechin-3-gallate.Front. Nutr.201512810.3389/fnut.2014.0002825988128
    [Google Scholar]
  173. YunosN.M. BealeP. YuJ.Q. HuqF. Synergism from sequenced combinations of curcumin and epigallocatechin-3-gallate with cisplatin in the killing of human ovarian cancer cells.Anticancer Res.20113141131114021508356
    [Google Scholar]
  174. PanH. LiJ. RankinG.O. RojanasakulY. TuY. ChenY.C. Synergistic effect of black tea polyphenol, theaflavin-3,3′-digallate with cisplatin against cisplatin resistant human ovarian cancer cells.J. Funct. Foods20184611110.1016/j.jff.2018.04.03730364631
    [Google Scholar]
  175. LuW.D. QinY. YangC. LiL. FuZ.X. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo.Clinics201368569470110.6061/clinics/2013(05)1823778405
    [Google Scholar]
  176. Bayet-RobertM. KwiatowskiF. LeheurteurM. GachonF. PlanchatE. AbrialC. Mouret-ReynierM.A. DurandoX. BarthomeufC. CholletP. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer.Cancer Biol. Ther.20109181410.4161/cbt.9.1.1039219901561
    [Google Scholar]
  177. PopatR. PlesnerT. DaviesF. CookG. CookM. ElliottP. JacobsonE. GumbletonT. OakerveeH. CavenaghJ. A phase 2 study of SRT 501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma.Br. J. Haematol.2013160571471710.1111/bjh.1215423205612
    [Google Scholar]
  178. FalsaperlaM. MorgiaG. TartaroneA. ArditoR. RomanoG. Support ellagic acid therapy in patients with hormone refractory prostate cancer (HRPC) on standard chemotherapy using vinorelbine and estramustine phosphate.Eur. Urol.200547444945510.1016/j.eururo.2004.12.00115774240
    [Google Scholar]
  179. EpelbaumR. SchafferM. VizelB. BadmaevV. Bar-SelaG. Curcumin and gemcitabine in patients with advanced pancreatic cancer.Nutr. Cancer20106281137114110.1080/01635581.2010.51380221058202
    [Google Scholar]
  180. KanaiM. YoshimuraK. AsadaM. ImaizumiA. SuzukiC. MatsumotoS. NishimuraT. MoriY. MasuiT. KawaguchiY. YanagiharaK. YazumiS. ChibaT. GuhaS. AggarwalB.B. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer.Cancer Chemother. Pharmacol.201168115716410.1007/s00280‑010‑1470‑220859741
    [Google Scholar]
  181. JamesM.I. IwujiC. IrvingG. KarmokarA. HigginsJ.A. Griffin-TealN. ThomasA. GreavesP. CaiH. PatelS.R. MorganB. DennisonA. MetcalfeM. GarceaG. LloydD.M. BerryD.P. StewardW.P. HowellsL.M. BrownK. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy.Cancer Lett.2015364213514110.1016/j.canlet.2015.05.00525979230
    [Google Scholar]
  182. ZhangX. TianW. CaiX. WangX. DangW. TangH. CaoH. WangL. ChenT. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression.PLoS One201386e6589610.1371/journal.pone.006589623825527
    [Google Scholar]
  183. ShiriS. AlizadehA.M. BaradaranB. FarhanghiB. ShanehbandiD. KhodayariS. KhodayariH. TavassoliA. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment.Asian Pac. J. Cancer Prev.20151693917392210.7314/APJCP.2015.16.9.391725987060
    [Google Scholar]
  184. MukherjeeS. BaidooJ. FriedA. AtwiD. DolaiS. BoockvarJ. SymonsM. RuggieriR. RajaK. BanerjeeP. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma.Int. J. Cancer2016139122838284910.1002/ijc.3039827543754
    [Google Scholar]
  185. LiuX. FengZ. WangC. SuQ. SongH. ZhangC. HuangP. LiangX.J. DongA. KongD. WangW. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses.Biomaterials202023011964910.1016/j.biomaterials.2019.11964931791843
    [Google Scholar]
  186. XiaoZ. SuZ. HanS. HuangJ. LinL. ShuaiX. Dual pH-sensitive nanodrug blocks PD-1 immune checkpoint and uses T cells to deliver NF-κB inhibitor for antitumor immunotherapy.Sci. Adv.202066eaay778510.1126/sciadv.aay778532076650
    [Google Scholar]
  187. ShihY.L. ShangH.S. ChenY.L. HsuehS.C. ChouH.M. LuH.F. LeeM.Z. HouH.T. ChuangY.Y. LeeM.H. ChenK.W. ChungJ.G. Ouabain promotes immune responses in WEHI-3 cells to generate leukemia mice through enhancing phagocytosis and natural killer cell activities in vivo.Environ. Toxicol.201934565966510.1002/tox.2273230761740
    [Google Scholar]
  188. ShihY.L. ChouJ.S. ChenY.L. HsuehS.C. ChungH.Y. LeeM.H. ChenC.P. LeeM.Z. HouH.T. LuH.F. ChenK.W. ChungJ.G. Bufalin enhances immune responses in leukemic mice through enhancing phagocytosis of macrophage in vivo.In Vivo20183251129113610.21873/invivo.1135530150435
    [Google Scholar]
  189. YuanB. HeJ. KisohK. HayashiH. TanakaS. SiN. ZhaoH.Y. HiranoT. BianB. TakagiN. Effects of active bufadienolide compounds on human cancer cells and CD4+CD25+Foxp3+ regulatory T cells in mitogen-activated human peripheral blood mononuclear cells.Oncol. Rep.20163631377138410.3892/or.2016.494627431260
    [Google Scholar]
  190. ThollD. Biosynthesis and biological functions of terpenoids in plants.Adv. Biochem. Eng. Biotechnol.20151486310610.1007/10_2014_29525583224
    [Google Scholar]
  191. ZhuL. ChenL. Progress in research on paclitaxel and tumor immunotherapy.Cell. Mol. Biol. Lett.20192414010.1186/s11658‑019‑0164‑y31223315
    [Google Scholar]
  192. NaazF. HaiderM.R. ShafiS. YarM.S. Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains.Eur. J. Med. Chem.201917131033110.1016/j.ejmech.2019.03.02530953881
    [Google Scholar]
  193. ZhaoY.G. WangY. GuoZ. GuA. DanH.C. BaldwinA.S. HaoW. WanY.Y. Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway.J. Immunol.201218994417442510.4049/jimmunol.120091922993204
    [Google Scholar]
  194. Güçlü-ÜstündağÖ. MazzaG. Saponins: Properties, applications and processing.Crit. Rev. Food Sci. Nutr.200747323125810.1080/1040839060069819717453922
    [Google Scholar]
  195. RagupathiG. GardnerJ.R. LivingstonP.O. GinD.Y. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer.Expert Rev. Vaccines201110446347010.1586/erv.11.1821506644
    [Google Scholar]
  196. MartinezP. SundlingC. O’DellS. MascolaJ.R. WyattR.T. Karlsson HedestamG.B. Primate immune responses to HIV-1 Env formulated in the saponin-based adjuvant AbISCO-100 in the presence or absence of TLR9 co-stimulation.Sci. Rep.201551892510.1038/srep0892525762407
    [Google Scholar]
  197. ChenJ.L. DawoodjiA. TarltonA. GnjaticS. TajarA. KarydisI. BrowningJ. PratapS. VerfailleC. VenhausR.R. PanL. AltmanD.G. CebonJ.S. OldL.L. NathanP. OttensmeierC. MiddletonM. CerundoloV. NY-ESO -1 specific antibody and cellular responses in melanoma patients primed with NY-ESO -1 protein in ISCOMATRIX and boosted with recombinant NY-ESO -1 fowlpox virus.Int. J. Cancer20151366E590E60110.1002/ijc.2911825081390
    [Google Scholar]
  198. HuangM.Y. JiangX.M. XuY.L. YuanL.W. ChenY.C. CuiG. HuangR.Y. LiuB. WangY. ChenX. LuJ.J. Platycodin D triggers the extracellular release of programed death Ligand-1 in lung cancer cells.Food Chem. Toxicol.201913111053710.1016/j.fct.2019.05.04531150782
    [Google Scholar]
  199. KwonH.J. LeeH. ChoiG.E. KwonS.J. SongA.Y. KimS.J. ChoiW.S. HwangS.H. KimS.C. KimH.S. Ginsenoside F1 promotes cytotoxic activity of NK Cells via insulin-like growth factor-1-dependent mechanism.Front. Immunol.20189278510.3389/fimmu.2018.0278530546365
    [Google Scholar]
  200. ConstantinouC. PapasA. ConstantinouA.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs.Int. J. Cancer2008123473975210.1002/ijc.2368918512238
    [Google Scholar]
  201. HouL. ZhangH. XuP. ZhangL. ZhangX. SunY. HuangX. WuK. Effect of vitamin E succinate on the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor in gastric cancer cells and CD4+ T cells.Mol. Biosyst.201511113119312810.1039/C5MB00350D26378383
    [Google Scholar]
  202. KangT.H. KnoffJ. YehW.H. YangB. WangC. KimY.S. KimT.W. WuT.C. HungC.F. Treatment of tumors with vitamin E suppresses myeloid derived suppressor cells and enhances CD8+ T cell-mediated antitumor effects.PLoS One201497e10356210.1371/journal.pone.010356225072795
    [Google Scholar]
  203. AlizadehF. BolhassaniA. KhavariA. BathaieS.Z. NajiT. BidgoliS.A. Retinoids and their biological effects against cancer.Int. Immunopharmacol.2014181434910.1016/j.intimp.2013.10.02724239628
    [Google Scholar]
  204. BergmanM.E. DavisB. PhillipsM.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action.Molecules20192421396110.3390/molecules2421396131683764
    [Google Scholar]
  205. NagegowdaD.A. GuptaP. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids.Plant Sci.202029411045710.1016/j.plantsci.2020.11045732234216
    [Google Scholar]
  206. ChopraB. DhingraA.K. DharK.L. NepaliK. Emerging role of terpenoids for the treatment of cancer: A review.Mini Rev. Med. Chem.202121162300233610.2174/138955752166621011214302433438537
    [Google Scholar]
  207. NazariJ. PayamnoorV. SadeghzadehZ. AsadiJ. KavosiM.R. Increased induction of apoptosis in ESCC (Esophageal Squamous-Cell Carcinoma) by Betula pendula roth stem cell extract containing triterpenoids compared to doxorubicin.Anticancer. Agents Med. Chem.202021110010710.2174/187152062066620081111290432781971
    [Google Scholar]
  208. KazakovaO. ȘoicaC. BabaevM. PetrovaA. KhusnutdinovaE. PoptsovA. MacașoiI. DrăghiciG. AvramȘ. VlaiaL. MiocA. MiocM. DeheleanC. VoicuA. 3-Pyridinylidene derivatives of chemically modified lupane and ursane triterpenes as promising anticancer agents by targeting apoptosis.Int. J. Mol. Sci.202122191069510.3390/ijms22191069534639035
    [Google Scholar]
  209. WangH. WuD. GaoC. TengH. ZhaoY. HeZ. ChenW. ZongY. DuR. Seco -lupane triterpene derivatives induce ferroptosis through GPX4/ACSL4 axis and target cyclin D1 to block the cell cycle.J. Med. Chem.20226514100141004410.1021/acs.jmedchem.2c0066435801495
    [Google Scholar]
  210. GrymelM. ZawojakM. AdamekJ. Triphenylphosphonium analogues of betulin and betulinic acid with biological activity: A comprehensive review.J. Nat. Prod.20198261719173010.1021/acs.jnatprod.8b0083031141361
    [Google Scholar]
  211. ShuY. JonesS.R. KinneyW.A. SelinskyB.S. The synthesis of spermine analogs of the shark aminosterol squalamine.Steroids2002673-429130410.1016/S0039‑128X(01)00161‑111856553
    [Google Scholar]
  212. CuiJ. ZhangE. ZhangX. WangQ. Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism.Sci. Rep.2021111111510.1038/s41598‑020‑80739‑733441932
    [Google Scholar]
  213. ZhangZ. YungK.K.L. KoJ.K.S. Therapeutic intervention in cancer by isoliquiritigenin from licorice: A natural antioxidant and redox regulator.Antioxidants2022117134910.3390/antiox1107134935883840
    [Google Scholar]
  214. Wajs-BonikowskaA. SienkiewiczM. StobieckaA. MaciągA. SzokaŁ. KarnaE. Chemical composition and biological activity of Abies alba and A. koreana seed and cone essential oils and characterization of their seed hydrolates.Chem. Biodivers.201512340741810.1002/cbdv.20140016725766914
    [Google Scholar]
  215. KuceraO. MezeraV. MoravcovaA. EndlicherR. LotkovaH. DrahotaZ. CervinkovaZ. In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes.Oxid. Med. Cell. Longev.2015201511010.1155/2015/47618025918582
    [Google Scholar]
  216. WangA. ChenX. WangL. JiaW. WanX. JiaoJ. YaoW. ZhangY. Catechins protect against acrylamide- and glycidamide-induced cellular toxicity via rescuing cellular apoptosis and DNA damage.Food Chem. Toxicol.202216711325310.1016/j.fct.2022.11325335738327
    [Google Scholar]
  217. Sandoval-AcuñaC. FerreiraJ. SpeiskyH. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions.Arch. Biochem. Biophys.2014559759010.1016/j.abb.2014.05.01724875147
    [Google Scholar]
  218. LiuD. ZhangX. JiangL. GuoY. ZhengC. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice.Acta Histochem.2014116465466210.1016/j.acthis.2013.12.00224373695
    [Google Scholar]
  219. CottartC.H. Nivet-AntoineV. BeaudeuxJ.L. Review of recent data on the metabolism, biological effects, and toxicity of resveratrol in humans.Mol. Nutr. Food Res.201458172110.1002/mnfr.20120058923740855
    [Google Scholar]
  220. BorrielloA. BencivengaD. CaldarelliI. TramontanoA. BorgiaA. ZappiaV. Della RagioneF. Resveratrol: From basic studies to bedside.Cancer Treat. Res.201415916718410.1007/978‑3‑642‑38007‑5_1024114480
    [Google Scholar]
  221. ZhaoX-Y. LiG-Y. LiuY. ChaiL-M. ChenJ-X. ZhangY. DuZ-M. LuY-J. YangB-F. Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo.Br. J. Pharmacol.2008154110511310.1038/bjp.2008.8118332854
    [Google Scholar]
  222. GiulianiC IezziM CiolliL HysiA BucciI Di SantoS RossiC ZucchelliM NapolitanoG Resveratrol has anti-thyroid effects both in vitro and in vivo.Food Chem Toxicol201710723724710.1016/j.fct.2017.06.044
    [Google Scholar]
  223. LiuZ.L. LiH. LiuJ. WuM.L. ChenX.Y. LiuL.H. WangQ. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication.Oncol. Lett.20171422239224310.3892/ol.2017.645828781663
    [Google Scholar]
  224. GalatiG. LinA. SultanA.M. O’BrienP.J. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins.Free Radic. Biol. Med.200640457058010.1016/j.freeradbiomed.2005.09.01416458187
    [Google Scholar]
  225. LambertJ.D. KennettM.J. SangS. ReuhlK.R. JuJ. YangC.S. Hepatotoxicity of high oral dose (−)-epigallocatechin-3-gallate in mice.Food Chem. Toxicol.201048140941610.1016/j.fct.2009.10.03019883714
    [Google Scholar]
  226. BöttnerM. ChristoffelJ. JarryH. WuttkeW. Effects of long-term treatment with resveratrol and subcutaneous and oral estradiol administration on pituitary function in rats.J. Endocrinol.20061891778810.1677/joe.1.0653516614383
    [Google Scholar]
  227. da SilvaJ. HerrmannS.M. HeuserV. PeresW. Possa MarroniN. González-GallegoJ. ErdtmannB. Evaluation of the genotoxic effect of rutin and quercetin by comet assay and micronucleus test.Food Chem. Toxicol.200240794194710.1016/S0278‑6915(02)00015‑712065216
    [Google Scholar]
  228. Ortiz-AndradeR. Araujo-LeónJ.A. Sánchez-RecillasA. Navarrete-VazquezG. González-SánchezA.A. Hidalgo-FigueroaS. Alonso-CastroÁ.J. Aranda-GonzálezI. Hernández-NúñezE. Coral-MartínezT.I. Sánchez-SalgadoJ.C. Yáñez-PérezV. Lucio-GarciaM.A. Toxicological screening of four bioactive citroflavonoids: In vitro, in vivo, and in silico approaches.Molecules20202524595910.3390/molecules2524595933339310
    [Google Scholar]
  229. HagiwaraA. HiroseM. TakahashiS. OgawaK. ShiraiT. ItoN. Forestomach and kidney carcinogenicity of caffeic acid in F344 rats and C57BL/6N x C3H/HeN F1 mice.Cancer Res.19915120565556601913684
    [Google Scholar]
  230. AndersonD. DobrzyńskaM.M. BasaranN. Effect of various genotoxins and reproductive toxins in human lymphocytes and sperm in the Comet assay.Teratog. Carcinog. Mutagen.1997171294310.1002/(SICI)1520‑6866(1997)17:1<29::AID‑TCM5>3.0.CO;2‑H9249928
    [Google Scholar]
  231. HurrellR.F. ReddyM. CookJ.D. Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages.Br. J. Nutr.199981428929510.1017/S000711459900053710999016
    [Google Scholar]
  232. SuliburskaJ. BogdanskiP. SzulinskaM. StepienM. Pupek-MusialikD. JableckaA. Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients.Biol. Trace Elem. Res.2012149331532210.1007/s12011‑012‑9448‑z22581111
    [Google Scholar]
  233. Correia-da-SilvaM. SousaE. PintoM.M.M. Emerging sulfated flavonoids and other polyphenols as drugs: Nature as an inspiration.Med. Res. Rev.201434222327910.1002/med.2128223553315
    [Google Scholar]
  234. PeiR. LiuX. BollingB. Flavonoids and gut health.Curr. Opin. Biotechnol.20206115315910.1016/j.copbio.2019.12.01831954357
    [Google Scholar]
  235. SarkarC. ChaudharyP. JamaddarS. JanmedaP. MondalM. MubarakM.S. IslamM.T. Redox activity of flavonoids: Impact on human health, therapeutics, and chemical safety.Chem. Res. Toxicol.202235214016210.1021/acs.chemrestox.1c0034835045245
    [Google Scholar]
  236. de OliveiraN.K.S. AlmeidaM.R.S. PontesF.M.M. BarcelosM.P. SilvaG.M. de Paula da SilvaC.H.T. CruzR.A.S. da Silva Hage-MelimL.I. Molecular docking, physicochemical properties, pharmacokinetics and toxicity of flavonoids present in euterpe oleracea martius.Curr. Computeraided Drug Des.202117458961710.2174/157340991666620061912280332560610
    [Google Scholar]
  237. McdougallG.J. StewartD. The inhibitory effects of berry polyphenols on digestive enzymes.Biofactors200523418919510.1002/biof.552023040316498205
    [Google Scholar]
  238. SunL. MiaoM. Dietary polyphenols modulate starch digestion and glycaemic level: a review.Crit. Rev. Food Sci. Nutr.202060454155510.1080/10408398.2018.154488330799629
    [Google Scholar]
  239. RothenbergD. ZhouC. ZhangL. A review on the weight-loss effects of oxidized tea polyphenols.Molecules2018235117610.3390/molecules2305117629758009
    [Google Scholar]
  240. VallianouN.G. EvangelopoulosA. KazazisC. Resveratrol and diabetes.Rev. Diabet. Stud.201310423624210.1900/RDS.2013.10.23624841877
    [Google Scholar]
  241. RothsteinM. Recent developments in the age-related alteration of enzymes: A review.Mech. Ageing Dev.19776424125710.1016/0047‑6374(77)90025‑2327166
    [Google Scholar]
  242. GafniA. NoyN. Age-related effects in enzyme catalysis.Mol. Cell. Biochem.1984591-211312910.1007/BF002313086369109
    [Google Scholar]
  243. MaugeriA. LombardoG.E. CirmiS. SüntarI. BarrecaD. LaganàG. NavarraM. Pharmacology and toxicology of tannins.Arch. Toxicol.20229651257127710.1007/s00204‑022‑03250‑035199243
    [Google Scholar]
  244. Mohammed AbdulM.I. JiangX. WilliamsK.M. DayR.O. RoufogalisB.D. LiauwW.S. XuH. McLachlanA.J. Pharmacodynamic interaction of warfarin with cranberry but not with garlic in healthy subjects.Br. J. Pharmacol.200815481691170010.1038/bjp.2008.21018516070
    [Google Scholar]
  245. KimT.E. ShinK.H. ParkJ.E. KimM.G. YunY.M. ChoiD.H. KwonK.J. LeeJ. Effect of green tea catechins on the pharmacokinetics of digoxin in humans.Drug Des. Devel. Ther.2018122139214710.2147/DDDT.S14825730022812
    [Google Scholar]
  246. AbeO. OnoT. SatoH. MüllerF. OgataH. MiuraI. ShikamaY. YabeH. OnoueS. FrommM.F. KimuraJ. MisakaS. Role of (−)-epigallocatechin gallate in the pharmacokinetic interaction between nadolol and green tea in healthy volunteers.Eur. J. Clin. Pharmacol.201874677578310.1007/s00228‑018‑2436‑229480324
    [Google Scholar]
  247. AbdelkawyK.S. AbdelazizR.M. AbdelmageedA.M. DoniaA.M. El-KhodaryN.M. Effects of green tea extract on atorvastatin pharmacokinetics in healthy volunteers.Eur. J. Drug Metab. Pharmacokinet.202045335136010.1007/s13318‑020‑00608‑631997084
    [Google Scholar]
  248. ZengW. HuM. LeeH.K. WatE. LauC.B.S. HoC.S. WongC.K. TomlinsonB. Effect of green tea extract and soy isoflavones on the pharmacokinetics of rosuvastatin in healthy volunteers.Front. Nutr.2022985031810.3389/fnut.2022.85031835399656
    [Google Scholar]
  249. ZengW. HuM. LeeH.K. WatE. LauC.B.S. HoC.S. WongC.K. TomlinsonB. Effects of soy isoflavones and green tea extract on simvastatin pharmacokinetics and influence of the SLCO1B1 521T > C polymorphism.Front. Nutr.2022986812610.3389/fnut.2022.86812635685887
    [Google Scholar]
  250. PasdarY. OubariF. ZarifM.N. AbbasiM. PourmahmoudiA. HosseinikiaM. Effects of quercetin supplementation on hematological parameters in non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study.Clin. Nutr. Res.202091111910.7762/cnr.2020.9.1.1132095444
    [Google Scholar]
  251. HutchinsA.M. McIverI.E. JohnstonC.S. Hypertensive crisis associated with high dose soy isoflavone supplementation in a post-menopausal woman: A case report [ISRCTN98074661].BMC Womens Health200551910.1186/1472‑6874‑5‑915975148
    [Google Scholar]
  252. MartinezJ. LewiJ.E. An unusual case of gynecomastia associated with soy product consumption.Endocr. Pract.200814441541810.4158/EP.14.4.41518558591
    [Google Scholar]
  253. BondonnoN.P. DalgaardF. KyrøC. MurrayK. BondonnoC.P. LewisJ.R. CroftK.D. GislasonG. ScalbertA. CassidyA. TjønnelandA. OvervadK. HodgsonJ.M. Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort.Nat. Commun.2019101365110.1038/s41467‑019‑11622‑x31409784
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673284605240301035057
Loading
/content/journals/cmc/10.2174/0109298673284605240301035057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test