Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Several chronic liver injuries can result in liver fibrosis, a wound-healing response defined by an excessive buildup of diffuse extracellular matrix (ECM). Liver fibrosis may progress to liver cirrhosis, liver failure, or hepatocellular carcinoma. Many cellular routes are implicated in the fibrosis process; however, hepatic stellate cells appear to be the main cell type involved. Curcumin, a polyphenolic substance extracted from the plant, has a diversity of pharmacologic impacts, including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic actions. The anti-fibrotic property of curcumin is less clear, but curcumin's ability to influence inflammatory cytokines, inflammatory pathways, the expression of pro-apoptotic (up-regulated) and anti-apoptotic (down-regulated) proteins, and its ability to lower oxidative stress likely underlie its anti-fibrotic properties. In this review, we investigate and analyze the impact of curcumin on several disorders that lead to liver fibrosis, and discuss the therapeutic applications of curcumin for these disorders.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230821095329
2023-08-21
2025-03-31
Loading full text...

Full text loading...

References

  1. DevarajE. PerumalE. SubramaniyanR. MustaphaN. Liver fibrosis: Extracellular vesicles mediated intercellular communication in perisinusoidal space.Hepatology.202276127528510.1002/hep.3223934773651
    [Google Scholar]
  2. KisselevaT. The origin of fibrogenic myofibroblasts in fibrotic liver.Hepatology.20176531039104310.1002/hep.2894827859502
    [Google Scholar]
  3. BerumenJ. BaglieriJ. KisselevaT. MekeelK. Liver fibrosis: Pathophysiology and clinical implications.WIREs Mech. Dis.2021131e149910.1002/wsbm.149932713091
    [Google Scholar]
  4. BatallerR. BrennerD.A. Liver fibrosis.J. Clin. Invest.2005115220921810.1172/JCI2428215690074
    [Google Scholar]
  5. RoehlenN. CrouchetE. BaumertT.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives.Cells.20209487510.3390/cells904087532260126
    [Google Scholar]
  6. BaglieriJ. BrennerD. KisselevaT. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma.Int. J. Mol. Sci.2019207172310.3390/ijms2007172330959975
    [Google Scholar]
  7. van de VlekkertD. DemmersJ. NguyenX.X. CamposY. MachadoE. AnnunziataI. HuH. GomeroE. QiuX. BongiovanniA. Feghali-BostwickC.A. d’AzzoA. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis.Sci. Adv.201957eaav327010.1126/sciadv.aav327031328155
    [Google Scholar]
  8. ShankarS. SethuG. The origin of myofibroblasts in liver fibrosis.J. Pharm. Sci. Res.201911624072409
    [Google Scholar]
  9. YavuzB.G. PestanaR.C. AbugabalY.I. KrishnanS. ChenJ. HassanM.M. WolffR.A. RashidA. AminH.M. KasebA.O. Origin and role of hepatic myofibroblasts in hepatocellular carcinoma.Oncotarget.202011131186120110.18632/oncotarget.2753232284794
    [Google Scholar]
  10. YangF. LiH. LiY. HaoY. WangC. JiaP. ChenX. MaS. XiaoZ. Crosstalk between hepatic stellate cells and surrounding cells in hepatic fibrosis.Int. Immunopharmacol.20219910805110.1016/j.intimp.2021.10805134426110
    [Google Scholar]
  11. KoyamaY. WangP. LiangS. IwaisakoK. LiuX. XuJ. ZhangM. SunM. CongM. KarinD. TauraK. BennerC. HeinzS. BeraT. BrennerD.A. KisselevaT. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis.J. Clin. Invest.201712741254127010.1172/JCI8884528287406
    [Google Scholar]
  12. XuF. LiuC. ZhouD. ZhangL. TGF-β/SMAD pathway and its regulation in hepatic fibrosis.J. Histochem. Cytochem.201664315716710.1369/002215541562768126747705
    [Google Scholar]
  13. ZhangD. ZhangY. SunB. The molecular mechanisms of liver fibrosis and its potential therapy in application.Int. J. Mol. Sci.202223201257210.3390/ijms23201257236293428
    [Google Scholar]
  14. MengF WangK AoyamaT GrivennikovSI PaikY ScholtenD Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice.Gastroenterology.2012143376576.e3
    [Google Scholar]
  15. de OliveiraR.C. WilsonS.E. Fibrocytes, wound healing, and corneal fibrosis.Invest. Ophthalmol. Vis. Sci.20206122810.1167/iovs.61.2.2832084275
    [Google Scholar]
  16. XuJ. CongM. ParkT.J. ScholtenD. BrennerD.A. KisselevaT. Contribution of bone marrow-derived fibrocytes to liver fibrosis.Hepatobiliary Surg. Nutr.201541344725713803
    [Google Scholar]
  17. FaustherM. LavoieE.G. DranoffJ.A. Contribution of myofibroblasts of different origins to liver fibrosis.Curr. Pathobiol. Rep.20131322523010.1007/s40139‑013‑0020‑023997993
    [Google Scholar]
  18. Maretti-MiraA.C. WangX. WangL. DeLeveL.D. Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat.Hepatology.20196931259127210.1002/hep.3022730141211
    [Google Scholar]
  19. DingB.S. CaoZ. LisR. NolanD.J. GuoP. SimonsM. PenfoldM.E. ShidoK. RabbanyS.Y. RafiiS. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis.Nature.201450574819710210.1038/nature1268124256728
    [Google Scholar]
  20. WanY. LiX. SlevinE. HarrisonK. LiT. ZhangY. KlaunigJ.E. WuC. ShettyA.K. DongX.C. MengF. Endothelial dysfunction in pathological processes of chronic liver disease during aging.FASEB J.2022361e2212510.1096/fj.202101426R34958687
    [Google Scholar]
  21. IwaisakoK. JiangC. ZhangM. CongM. Moore-MorrisT.J. ParkT.J. LiuX. XuJ. WangP. PaikY.H. MengF. AsagiriM. MurrayL.A. HofmannA.F. IidaT. GlassC.K. BrennerD.A. KisselevaT. Origin of myofibroblasts in the fibrotic liver in mice.Proc. Natl. Acad. Sci.201411132E3297E330510.1073/pnas.140006211125074909
    [Google Scholar]
  22. KarinD. KoyamaY. BrennerD. KisselevaT. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis.Differentiation.2016923849210.1016/j.diff.2016.07.00127591095
    [Google Scholar]
  23. ZhuC. KimK. WangX. BartolomeA. SalomaoM. DongiovanniP. MeroniM. GrahamM.J. YatesK.P. DiehlA.M. SchwabeR.F. TabasI. ValentiL. LavineJ.E. PajvaniU.B. Hepatocyte notch activation induces liver fibrosis in nonalcoholic steatohepatitis.Sci. Transl. Med.201810468eaat034410.1126/scitranslmed.aat034430463916
    [Google Scholar]
  24. WangX. ZhengZ. CavigliaJ.M. CoreyK.E. HerfelT.M. CaiB. MasiaR. ChungR.T. LefkowitchJ.H. SchwabeR.F. TabasI. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis.Cell Metab.201624684886210.1016/j.cmet.2016.09.01628068223
    [Google Scholar]
  25. BaghaeiK. MazhariS. TokhanbigliS. ParsamaneshG. AlavifardH. SchaafsmaD. GhavamiS. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis.Drug Discov. Today20222741044106110.1016/j.drudis.2021.12.01234952225
    [Google Scholar]
  26. SekiE. SchwabeR.F. Hepatic inflammation and fibrosis: Functional links and key pathways.Hepatology.20156131066107910.1002/hep.2733225066777
    [Google Scholar]
  27. FuY.S. ChenT.H. WengL. HuangL. LaiD. WengC.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential.Biomed. Pharmacother.202114111188810.1016/j.biopha.2021.11188834237598
    [Google Scholar]
  28. RathoreS. MukimM. SharmaP. DeviS. NagarJ.C. KhalidM. Curcumin: A review for health benefits.Int J Res Rev.202071273290
    [Google Scholar]
  29. Yuandani JantanI. RohaniA.S. SumantriI.B. Immunomodulatory effects and mechanisms of curcuma species and their bioactive compounds: A review.Front. Pharmacol.20211264311910.3389/fphar.2021.64311933995049
    [Google Scholar]
  30. DerguineR RezguiA TachourRA KhenchoucheA CherifD RymA New insights of the pharmacological properties of curcumin: Cytotoxicity and immuno-modulation study.Research Square202310.21203/rs.3.rs‑2426508/v1
    [Google Scholar]
  31. AkramM. Shahab-UddinA.A. UsmanghaniK. HannanA. MohiuddinE. AsifM. Curcuma longa and curcumin: A review article.Rom. J. Biol. Plant. Biol.20105526570
    [Google Scholar]
  32. LiuZ. SmartJ.D. PannalaA.S. Recent developments in formulation design for improving oral bioavailability of curcumin: A review.J. Drug Deliv. Sci. Technol.20206010208210.1016/j.jddst.2020.102082
    [Google Scholar]
  33. ElzoheiryA. AyadE. OmarN. ElbakryK. HyderA. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles.Sci. Rep.20221211840310.1038/s41598‑022‑23276‑936319750
    [Google Scholar]
  34. MohajeriM. SahebkarA. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review.Crit. Rev. Oncol. Hematol.2018122305110.1016/j.critrevonc.2017.12.00529458788
    [Google Scholar]
  35. Mokhtari-ZaerA. MarefatiN. AtkinS.L. ButlerA.E. SahebkarA. The protective role of curcumin in myocardial ischemia–reperfusion injury.J. Cell. Physiol.2019234121422210.1002/jcp.2684829968913
    [Google Scholar]
  36. AbbasM.A. SahebkarA. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile.Curr. Pharm. Des.201622284386439710.2174/138161282266616052711350127229723
    [Google Scholar]
  37. Keihanian, F.; Saeidinia, A.; Bagheri, R. K.; Johnston, T. P.; & Sahebkar, A.; Curcumin, hemostasis, thrombosis, and coagulation. J. Cell. Physiol., 2018 233(6), 4497-451110.1002/jcp.26249
  38. SahebkarA. Molecular mechanisms for curcumin benefits against ischemic injury.Fertil. Steril.2010945e75e7610.1016/j.fertnstert.2010.07.107120797714
    [Google Scholar]
  39. KhayatanD. RazaviS.M. ArabZ.N. NiknejadA.H. NouriK. MomtazS. GumprichtE. JamialahmadiT. AbdolghaffariA.H. BarretoG.E. SahebkarA. Protective effects of curcumin against traumatic brain injury.Biomed. Pharmacother.202215411362110.1016/j.biopha.2022.11362136055110
    [Google Scholar]
  40. Marjaneh, R.M.; Rahmani, F.; Hassanian, S.M.; Rezaei, N.; Hashemzehi, M.; Bahrami, A.; Ariakia, F.; Fiuji, H.; Sahebkar, A.; Avan, A.; Khazaei, M.; . Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell. Physiol., 2018, 233(10), 6785-6798.10.1002/jcp.26538
  41. MojtabaviS. SaedA. AboulfazliS. KheirandishA. NajafiM. Jafari-SabetM. Evaluation of curcumin effect on Il6, Sirt1, TNFα and NFkB expression of liver tissues in diabetic mice with STZ.J. Diabetes Metab. Disord.2022221205215
    [Google Scholar]
  42. JyotirmayeeB. MahalikG. A review on selected pharmacological activities of Curcuma longa L.Int. J. Food Prop.20222511377139810.1080/10942912.2022.2082464
    [Google Scholar]
  43. HeidariH. BagherniyaM. MajeedM. SathyapalanT. JamialahmadiT. SahebkarA. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies.Phytother. Res.20233741462148710.1002/ptr.773736720711
    [Google Scholar]
  44. HasanzadehS. ReadM.I. BlandA.R. MajeedM. JamialahmadiT. SahebkarA. Curcumin: An inflammasome silencer.Pharmacol. Res.202015910492110.1016/j.phrs.2020.10492132464325
    [Google Scholar]
  45. WangX. LinY. KemperT. ChenJ. YuanZ. LiuS. ZhuY. BroeringR. LuM. AMPK and Akt/mTOR signalling pathways participate in glucose-mediated regulation of hepatitis B virus replication and cellular autophagy.Cell. Microbiol.2020222e1313110.1111/cmi.1313131746509
    [Google Scholar]
  46. DhivyaD. RajalakshmiA.N. Curcumin nano drug delivery systems: A Review on its type and therapeutic application.Pharmatutor.2017512303910.29161/PT.v5.i12.2017.30
    [Google Scholar]
  47. CuiZ. YaoL. YeJ. WangZ. HuY. Solubility measurement and thermodynamic modelling of curcumin in twelve pure solvents and three binary solvents at different temperature (T = 278.15–323.15 K).J. Mol. Liq.202133811679510.1016/j.molliq.2021.116795
    [Google Scholar]
  48. AhsanR. ArshadM. KhushtarM. AhmadM.A. MuazzamM. AkhterM.S. GuptaG. MuzahidM. A comprehensive review on physiological effects of curcumin.Drug Res.2020701044144710.1055/a‑1207‑946932746480
    [Google Scholar]
  49. Ramos-TovarE. MurielP. Phytotherapy for the liver.Dietary interventions in liver disease.Elsevier201910112110.1016/B978‑0‑12‑814466‑4.00009‑4
    [Google Scholar]
  50. ZhangF. ZhangZ. ChenL. KongD. ZhangX. LuC. LuY. ZhengS. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells.J. Cell. Mol. Med.20141871392140610.1111/jcmm.1228624779927
    [Google Scholar]
  51. YanX. LiaoH. ChengM. ShiX. LinX. FengX.H. ChenY.G. Smad7 protein interacts with receptor-regulated Smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/Smad signaling.J. Biol. Chem.2016291138239210.1074/jbc.M115.69428126555259
    [Google Scholar]
  52. HuN. GuoC. DaiX. WangC. GongL. YuL. PengC. LiY. Forsythiae fructuse water extract attenuates liver fibrosis via TLR4/MyD88/NF-κB and TGF-β/smads signaling pathways.J. Ethnopharmacol.202026211327510.1016/j.jep.2020.11327532810620
    [Google Scholar]
  53. GeorgeJ. TsutsumiM. TsuchishimaM. MMP-13 deletion decreases profibrogenic molecules and attenuates N -nitrosodimethylamine-induced liver injury and fibrosis in mice.J. Cell. Mol. Med.201721123821383510.1111/jcmm.1330428782260
    [Google Scholar]
  54. CannitoS. NovoE. ParolaM. Therapeutic pro-fibrogenic signaling pathways in fibroblasts.Adv. Drug Deliv. Rev.2017121578410.1016/j.addr.2017.05.01728578015
    [Google Scholar]
  55. ChengY. HuangL. WangY. HuoQ. ShaoY. BaoH. LiZ. LiuY. LiX. Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3-E1 cells.Int. J. Mol. Med.201944265266010.3892/ijmm.2019.421631173178
    [Google Scholar]
  56. KongD. ZhangZ. ChenL. HuangW. ZhangF. WangL. WangY. CaoP. ZhengS. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy.Redox Biol.20203610160010.1016/j.redox.2020.10160032526690
    [Google Scholar]
  57. StickelF. DatzC. HampeJ. BatallerR. Pathophysiology and management of alcoholic liver disease: update 2016.Gut. Liver.201711217318810.5009/gnl1647728274107
    [Google Scholar]
  58. RehmJ. ShieldK.D. Global burden of alcohol use disorders and alcohol liver disease.Biomedicines.2019749910.3390/biomedicines704009931847084
    [Google Scholar]
  59. JiangY. ZhangT. KusumanchiP. HanS. YangZ. LiangpunsakulS. Alcohol metabolizing enzymes, microsomal ethanol oxidizing system, cytochrome P450 2E1, catalase, and aldehyde dehydrogenase in alcohol-associated liver disease.Biomedicines.2020835010.3390/biomedicines803005032143280
    [Google Scholar]
  60. Cortés-RojoC. Vargas-VargasM.A. Olmos-OrizabaB.E. Rodríguez-OrozcoA.R. Calderón-CortésE. Interplay between NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance.Biochim. Biophys. Acta Mol. Basis Dis.20201866816580110.1016/j.bbadis.2020.16580132305451
    [Google Scholar]
  61. AcharyaP. ChouhanK. WeiskirchenS. WeiskirchenR. Cellular mechanisms of liver fibrosis.Front. Pharmacol.20211267164010.3389/fphar.2021.67164034025430
    [Google Scholar]
  62. TanH.K. YatesE. LillyK. DhandaA.D. Oxidative stress in alcohol-related liver disease.World J. Hepatol.202012733234910.4254/wjh.v12.i7.33232821333
    [Google Scholar]
  63. KwonH.J. WonY.S. ParkO. ChangB. DuryeeM.J. ThieleG.E. MatsumotoA. SinghS. AbdelmegeedM.A. SongB.J. KawamotoT. VasiliouV. ThieleG.M. GaoB. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice.Hepatology.201460114615710.1002/hep.2703624492981
    [Google Scholar]
  64. SetshediM. WandsJ.R. de la MonteS.M. Acetaldehyde adducts in alcoholic liver disease.Oxid. Med. Cell. Longev.20103317818510.4161/oxim.3.3.1228820716942
    [Google Scholar]
  65. WeiY. BingyuW. LeiY. XingxingY. The antifibrotic role of natural killer cells in liver fibrosis.Exp. Biol. Med.2022247141235124310.1177/1535370222109267235475367
    [Google Scholar]
  66. TilgH. GaoB. Dietary saturated lipids in alcoholic liver disease: New microbiota-targeting bullets?Gastroenterology.20151481161910.1053/j.gastro.2014.11.02325451649
    [Google Scholar]
  67. ChenP TorralbaM TanJ EmbreeM ZenglerK StärkelP Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice.Gastroenterology.2015148120314.e1610.1053/j.gastro.2014.09.014
    [Google Scholar]
  68. WangB. GaoX. LiuB. LiY. BaiM. ZhangZ. XuE. XiongZ. HuY. Protective effects of curcumin against chronic alcohol-induced liver injury in mice through modulating mitochondrial dysfunction and inhibiting endoplasmic reticulum stress.Food Nutr. Res.20196306310.29219/fnr.v63.356731762728
    [Google Scholar]
  69. KimS.G. SuhH.J. HanS.H. LeeH.S. KimH.W. KimH. Encapsulated curcumin enhances intestinal absorption and improves hepatic damage in alcoholic liver disease-induced rats.Prev. Nutr. Food Sci.201924441041710.3746/pnf.2019.24.4.41031915636
    [Google Scholar]
  70. MohanR. JoseS. SukumaranS. SA. SS. JohnG. i MK. Curcumin-galactomannosides mitigate alcohol-induced liver damage by inhibiting oxidative stress, hepatic inflammation, and enhance bioavailability on TLR4/MMP events compared to curcumin.J. Biochem. Mol. Toxicol.2019336e2231510.1002/jbt.2231530793463
    [Google Scholar]
  71. GuoC. MaJ. ZhongQ. ZhaoM. HuT. ChenT. QiuL. WenL. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.Toxicol. Appl. Pharmacol.20173281910.1016/j.taap.2017.05.00128476407
    [Google Scholar]
  72. LeeM. NamS.H. YoonH.G. KimS. YouY. ChoiK.C. LeeY.H. LeeJ. ParkJ. JunW. Fermented Curcuma longa L. Prevents alcoholic fatty liver disease in mice by regulating CYP2E1, SREBP-1c, and PPAR- α.J. Med. Food202225445646310.1089/jmf.2021.K.009835438556
    [Google Scholar]
  73. PerumpailB.J. KhanM.A. YooE.R. CholankerilG. KimD. AhmedA. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease.World J. Gastroenterol.201723478263827610.3748/wjg.v23.i47.826329307986
    [Google Scholar]
  74. YounossiZ.M. BlissettD. BlissettR. HenryL. StepanovaM. YounossiY. RacilaA. HuntS. BeckermanR. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe.Hepatology.20166451577158610.1002/hep.2878527543837
    [Google Scholar]
  75. HazlehurstJ.M. WoodsC. MarjotT. CobboldJ.F. TomlinsonJ.W. Non-alcoholic fatty liver disease and diabetes.Metabolism.20166581096110810.1016/j.metabol.2016.01.00126856933
    [Google Scholar]
  76. MachadoM.V. DiehlA.M. Pathogenesis of nonalcoholic steatohepatitis.Gastroenterology.201615081769177710.1053/j.gastro.2016.02.06626928243
    [Google Scholar]
  77. AnguloP. MachadoM.V. DiehlA.M. Fibrosis in nonalcoholic Fatty liver disease: mechanisms and clinical implications.Seminars in liver DiseaseThieme Medical Publishers2015 35(2), pp. 132-145.
    [Google Scholar]
  78. AshrafN.U. SheikhT.A. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease.Free Radic. Res.201549121405141810.3109/10715762.2015.107846126223319
    [Google Scholar]
  79. HolmströmK.M. FinkelT. Cellular mechanisms and physiological consequences of redox-dependent signalling.Nat. Rev. Mol. Cell Biol.201415641142110.1038/nrm380124854789
    [Google Scholar]
  80. Ramos-TovarE. MurielP. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver.Antioxidants.2020912127910.3390/antiox912127933333846
    [Google Scholar]
  81. TorokN.J. Dysregulation of redox pathways in liver fibrosis.Am. J. Physiol. Gastrointest. Liver Physiol.20163114G667G67410.1152/ajpgi.00050.201627562057
    [Google Scholar]
  82. AlkhouriN. Carter-KentC. FeldsteinA.E. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications.Expert Rev. Gastroenterol. Hepatol.20115220121210.1586/egh.11.621476915
    [Google Scholar]
  83. ZakariaS. ElBatshM. MowafyS. Effects of curcumin on autophagy and Nrf2 signaling pathway in a rat model of high fructose diet induced steatohepatitis.Bulletin of ESPS201737220822610.21608/besps.2017.8268
    [Google Scholar]
  84. CunninghamR.P. MooreM.P. MooreA.N. HealyJ.C. RobertsM.D. RectorR.S. MartinJ.S. Curcumin supplementation mitigates NASH development and progression in female Wistar rats.Physiol. Rep.2018614e1378910.14814/phy2.1378930009570
    [Google Scholar]
  85. PickichM.B. HargroveM.W. PhillipsC.N. HealyJ.C. MooreA.N. RobertsM.D. MartinJ.S. Effect of curcumin supplementation on serum expression of select cytokines and chemokines in a female rat model of nonalcoholic steatohepatitis.BMC Res. Notes201912149610.1186/s13104‑019‑4540‑531399137
    [Google Scholar]
  86. KarlmarkK.R. ZimmermannH.W. RoderburgC. GasslerN. WasmuthH.E. LueddeT. TrautweinC. TackeF. The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes.Hepatology.20105251769178210.1002/hep.2389421038415
    [Google Scholar]
  87. YanC. ZhangY. ZhangX. AaJ. WangG. XieY. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice.Biomed. Pharmacother.201810527428110.1016/j.biopha.2018.05.13529860219
    [Google Scholar]
  88. SharifiS. BagherniyaM. KhoramZ. Ebrahimi VarzanehA. AtkinS.L. JamialahmadiT. SahebkarA. AskariG. Efficacy of curcumin plus piperine co-supplementation in moderate-to-high hepatic steatosis: A double-blind, randomized, placebo-controlled clinical trial.Phytother. Res.20233762217222910.1002/ptr.776436799355
    [Google Scholar]
  89. KalhoriA. RafrafM. NavekarR. GhaffariA. JafarabadiM.A. Effect of turmeric supplementation on blood pressure and serum levels of sirtuin 1 and adiponectin in patients with nonalcoholic fatty liver disease: A double-blind, randomized, placebo-controlled trial.Prev. Nutr. Food Sci.2022271374410.3746/pnf.2022.27.1.3735465117
    [Google Scholar]
  90. Ali HosseinianS. MehrzadJ. Reza MirhafezS. SaeidiJ. ZhianiR. SahebkarA. Evaluation of the effect of phytosomal curcuminoids on oxidative stress and inflammatory markers in NAFLD: A randomized double-blind placebo-controlled trial.J. Funct. Foods20229610520210.1016/j.jff.2022.105202
    [Google Scholar]
  91. MirhafezS.R. Azimi-NezhadM. DehabehM. HaririM. NaderanR.D. MovahediA. The effect of curcumin phytosome on the treatment of patients with non-alcoholic fatty liver disease: A double-blind, randomized, placebo-controlled trial.Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. BarretoG.E. SahebkarA. ChamSpringer International Publishing2021253510.1007/978‑3‑030‑64872‑5_3
    [Google Scholar]
  92. jarhahzadehM. AlavinejadP. FarsiF. HusainD. RezazadehA. The effect of turmeric on lipid profile, malondialdehyde, liver echogenicity and enzymes among patients with nonalcoholic fatty liver disease: A randomized double blind clinical trial.Diabetol. Metab. Syndr.202113111210.1186/s13098‑021‑00731‑734663438
    [Google Scholar]
  93. Saberi-KarimianM. KeshvariM. Ghayour-MobarhanM. SalehizadehL. RahmaniS. BehnamB. JamialahmadiT. AsgaryS. SahebkarA. Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial.Complement. Ther. Med.20204910232210.1016/j.ctim.2020.10232232147075
    [Google Scholar]
  94. SaadatiS. HatamiB. YariZ. ShahrbafM.A. EghtesadS. MansourA. PoustchiH. HedayatiM. Aghajanpoor-pashaM. SadeghiA. HekmatdoostA. The effects of curcumin supplementation on liver enzymes, lipid profile, glucose homeostasis, and hepatic steatosis and fibrosis in patients with non-alcoholic fatty liver disease.Eur. J. Clin. Nutr.201973344144910.1038/s41430‑018‑0382‑930610213
    [Google Scholar]
  95. MehtaP. ReddivariA.K.R. Hepatitis.StatPearls.StatPearls Publishing2022
    [Google Scholar]
  96. DevhareP.B. SasakiR. ShrivastavaS. Di BisceglieA.M. RayR. RayR.B. Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells.J. Virol.2017916e02225-1610.1128/JVI.02225‑1628077652
    [Google Scholar]
  97. SebastianiG. GkouvatsosK. PantopoulosK. Chronic hepatitis C and liver fibrosis.World J. Gastroenterol.20142032110331105310.3748/wjg.v20.i32.1103325170193
    [Google Scholar]
  98. LinW. TsaiW.L. ShaoR.X. WuG. PengL.F. BarlowL.L. Hepatitis C virus regulates transforming growth factor β1 production through the generation of reactive oxygen species in a nuclear factor κB–dependent manner.Gastroenterology.2010138725092518
    [Google Scholar]
  99. AbdallaM.Y. MathahsM.M. AhmadI.M. Reduced heme oxygenase-1 expression in steatotic livers infected with hepatitis C virus.Eur. J. Intern. Med.201223764965510.1016/j.ejim.2012.05.00122939811
    [Google Scholar]
  100. SahinH. TrautweinC. WasmuthH.E. Functional role of chemokines in liver disease models.Nat. Rev. Gastroenterol. Hepatol.201071268269010.1038/nrgastro.2010.16820975742
    [Google Scholar]
  101. ZaldivarM.M. PauelsK. von HundelshausenP. BerresM.L. SchmitzP. BornemannJ. KowalskaM.A. GasslerN. StreetzK.L. WeiskirchenR. TrautweinC. WeberC. WasmuthH.E. CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis.Hepatology.20105141345135310.1002/hep.2343520162727
    [Google Scholar]
  102. Reyes-GordilloK. ShahR. LakshmanM.R. Flores-BeltránR.E. MurielP. Hepatoprotective properties of curcumin.Liver Pathophysiology. MurielP. BostonAcademic Press201768770410.1016/B978‑0‑12‑804274‑8.00049‑7
    [Google Scholar]
  103. HesariA. GhasemiF. SalariniaR. BiglariH. Tabar Molla HassanA. AbdoliV. MirzaeiH. Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection.J. Cell. Biochem.2018119107898790410.1002/jcb.2682929923222
    [Google Scholar]
  104. KimK. KimK.H. KimH.Y. ChoH.K. SakamotoN. CheongJ. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway.FEBS Lett.2010584470771210.1016/j.febslet.2009.12.01920026048
    [Google Scholar]
  105. Anggakusuma ColpittsC.C. SchangL.M. RachmawatiH. FrentzenA. PfaenderS. BehrendtP. BrownR.J.P. BankwitzD. SteinmannJ. OttM. MeulemanP. RiceC.M. PlossA. PietschmannT. SteinmannE. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells.Gut.20146371137114910.1136/gutjnl‑2012‑30429923903236
    [Google Scholar]
  106. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑823143785
    [Google Scholar]
  107. KhudirR. GhannamM. SalamaA. ToussonE. DsokiS. Curcumin attenuated oxidative stress and inflammation on hepatitis induced of by fluvastatin in female albino rats.Alex. J. Vet. Sci.201962110210.5455/ajvs.48116
    [Google Scholar]
  108. WangX. ChangX. ZhanH. LiC. ZhangQ. LiS. SunY. Curcumin combined with Baicalin attenuated ethanol-induced hepatitis by suppressing p38 MAPK and TSC1/ eIF-2α/ATF4 pathways in rats.Food Biosci.20214010085110.1016/j.fbio.2020.100851
    [Google Scholar]
  109. TsochatzisE.A. BoschJ. BurroughsA.K. Liver cirrhosis.Lancet.201438399301749176110.1016/S0140‑6736(14)60121‑524480518
    [Google Scholar]
  110. GunarathneL.S. RajapakshaH. ShackelN. AngusP.W. HerathC.B. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics.World J. Gastroenterol.202026406111614010.3748/wjg.v26.i40.611133177789
    [Google Scholar]
  111. SanyalA.J. BoschJ. BleiA. ArroyoV. Portal hypertension and its complications.Gastroenterology.200813461715172810.1053/j.gastro.2008.03.00718471549
    [Google Scholar]
  112. HilscherM. SimonettoD.A. KamathP.S. Portal Hypertension–Related Bleedinga.Mayo Clinic Gastroenterology and Hepatology Board Review.Elsevier2024331
    [Google Scholar]
  113. BoschJ. Portal hypertension and cirrhosis: From evolving concepts to better therapies.Clin. Liver Dis.202015S1S8S1210.1002/cld.84432140209
    [Google Scholar]
  114. IwakiriY GroszmannRJ Pathophysiology of portal hypertension.The Liver: Biology and Pathobiology.Wiley202065966910.1002/9781119436812.ch51
    [Google Scholar]
  115. BoschJ. AbraldesJ.G. FernándezM. García-PagánJ.C. Hepatic endothelial dysfunction and abnormal angiogenesis: New targets in the treatment of portal hypertension.J. Hepatol.201053355856710.1016/j.jhep.2010.03.02120561700
    [Google Scholar]
  116. MuraV.L. NicoliniA. TosettiG. PrimignaniM. Cirrhosis and portal hypertension: The importance of risk stratification, the role of hepatic venous pressure gradient measurement.World J. Hepatol.20157468869510.4254/wjh.v7.i4.68825866605
    [Google Scholar]
  117. CazzanigaM. DionigiE. GobboG. FiorettiA. MontiV. SalernoF. The systemic inflammatory response syndrome in cirrhotic patients: Relationship with their in-hospital outcome.J. Hepatol.200951347548210.1016/j.jhep.2009.04.01719560225
    [Google Scholar]
  118. TripodiA. MannucciP.M. The coagulopathy of chronic liver disease.N. Engl. J. Med.2011365214715610.1056/NEJMra101117021751907
    [Google Scholar]
  119. FerlitschM. ReibergerT. HokeM. SalzlP. SchwengererB. UlbrichG. PayerB.A. TraunerM. Peck-RadosavljevicM. FerlitschA. Von Willebrand factor as new noninvasive predictor of portal hypertension, decompensation and mortality in patients with liver cirrhosis.Hepatology.20125641439144710.1002/hep.2580622532296
    [Google Scholar]
  120. BellotP. García-PagánJ.C. FrancésR. AbraldesJ.G. NavasaM. Pérez-MateoM. SuchJ. BoschJ. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis.Hepatology20105262044205210.1002/hep.2391820979050
    [Google Scholar]
  121. Abo-ZaidM.A. ShaheenE.S. IsmailA.H. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats.J. Food Biochem.2020446e1321910.1111/jfbc.1321932215945
    [Google Scholar]
  122. BellezzaI. TucciA. GalliF. GrottelliS. MierlaA.L. PilolliF. MinelliA. Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity.J. Nutr. Biochem.201223121583159110.1016/j.jnutbio.2011.10.01222444871
    [Google Scholar]
  123. FarzaeiM. ZobeiriM. ParviziF. El-SendunyF. MarmouziI. Coy-BarreraE. NaseriR. NabaviS. RahimiR. AbdollahiM. Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective.Nutrients201810785510.3390/nu1007085529966389
    [Google Scholar]
  124. SalamaS.M. AbdullaM.A. AlRashdiA.S. IsmailS. AlkiyumiS.S. GolbabapourS. Hepatoprotective effect of ethanolic extract of Curcuma longa on thioacetamide induced liver cirrhosis in rats.BMC Complement. Altern. Med.20131315610.1186/1472‑6882‑13‑5623496995
    [Google Scholar]
  125. HsuS.J. LeeJ.Y. LinT.Y. HsiehY.H. HuangH.C. LeeF.Y. LinH.C. HouM.C. LeeS.D. The beneficial effects of curcumin in cirrhotic rats with portal hypertension.Biosci. Rep.2017376BSR2017101510.1042/BSR2017101529162665
    [Google Scholar]
  126. Nouri-VaskehM. AfshanH. Malek MahdaviA. AlizadehL. FanX. ZareiM. Curcumin ameliorates health-related quality of life in patients with liver cirrhosis: A randomized, double-blind placebo-controlled trial.Complement. Ther. Med.20204910235110.1016/j.ctim.2020.10235132147077
    [Google Scholar]
  127. Nouri-VaskehM. Malek MahdaviA. AfshanH. AlizadehL. ZareiM. Effect of curcumin supplementation on disease severity in patients with liver cirrhosis: A randomized controlled trial.Phytother. Res.20203461446145410.1002/ptr.662032017253
    [Google Scholar]
  128. de VriesE. BeuersU. Management of cholestatic disease in 2017.Liver Int.201737S112312910.1111/liv.1330628052628
    [Google Scholar]
  129. DeliwalaS. SundusS. HaykalT. ElbedawiM.M. BachuwaG. Small duct primary sclerosing cholangitis: An underdiagnosed cause of chronic liver disease and cirrhosis.Cureus.2020123e729810.7759/cureus.729832313739
    [Google Scholar]
  130. CaiS.Y. BoyerJ.L. The role of bile acids in cholestatic liver injury.Ann. Transl. Med.20219873710.21037/atm‑20‑511033987435
    [Google Scholar]
  131. Penz-ÖsterreicherM. ÖsterreicherC.H. TraunerM. Fibrosis in autoimmune and cholestatic liver disease.Best Pract. Res. Clin. Gastroenterol.201125224525810.1016/j.bpg.2011.02.00121497742
    [Google Scholar]
  132. PinzaniM. LuongT.V. Pathogenesis of biliary fibrosis.Biochim. Biophys. Acta Mol. Basis Dis.2018186441279128310.1016/j.bbadis.2017.07.02628754450
    [Google Scholar]
  133. EshaghianA. KhodarahmiA. SafariF. BineshF. MoradiA. Curcumin attenuates hepatic fibrosis and insulin resistance induced by bile duct ligation in rats.Br. J. Nutr.2018120439340310.1017/S000711451800109529880071
    [Google Scholar]
  134. KhodarahmiA. JavidmehrD. EshaghianA. GhoreshiZ. KarimollahA. YousefiH. MoradiA. Curcumin exerts hepatoprotection via overexpression of Paraoxonase-1 and its regulatory genes in rats undergone bile duct ligation.J. Basic Clin. Physiol. Pharmacol.202132596997710.1515/jbcpp‑2020‑006734592082
    [Google Scholar]
  135. ErenoğluC KanterM BurhanA Protective effect of curcumin on liver damage induced by biliary obstruction in rats.Balkan Med. J.201120114352357
    [Google Scholar]
  136. AurelliaN SusilaningsihN PrabowoE MunirohM BudionoBP Effect of curcumin on interleukin-6 expression and malondialdehyde levels in liver fibrosis.Open Access Maced. J. Med. Sci.2022102319232610.3889/oamjms.2022.10694
    [Google Scholar]
  137. AmandaP PrabowoE MunirohM RozyAM SusilaningsihN The effectiveness of curcumin on transforming growth factor-β and the proportion of liver fibrosis in deutschland denken yoken mice with common bile duct ligation.Open Access Maced. J. Med. Sci.202210A1157116310.3889/oamjms.2022.9152
    [Google Scholar]
  138. MaX. JiangY. ZhangW. WangJ. WangR. WangL. WeiS. WenJ. LiH. ZhaoY. Natural products for the prevention and treatment of cholestasis: A review.Phytother. Res.20203461291130910.1002/ptr.662132026542
    [Google Scholar]
  139. ChenariS. SafariF. MoradiA. Curcumin enhances liver SIRT3 expression in the rat model of cirrhosis.Iran. J. Basic Med. Sci.201720121306131129238464
    [Google Scholar]
  140. IoannouG.N. The role of cholesterol in the pathogenesis of NASH.Trends Endocrinol. Metab.2016272849510.1016/j.tem.2015.11.00826703097
    [Google Scholar]
  141. Svegliati-BaroniG. PierantonelliI. TorquatoP. MarinelliR. FerreriC. ChatgilialogluC. BartoliniD. GalliF. Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease.Free Radic. Biol. Med.201914429330910.1016/j.freeradbiomed.2019.05.02931152791
    [Google Scholar]
  142. ChaoH.W. ChaoS.W. LinH. KuH.C. ChengC.F. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease.Int. J. Mol. Sci.201920229810.3390/ijms2002029830642126
    [Google Scholar]
  143. RochaPM BarataJT MindericoCS SilvaAM TeixeiraPJ SardinhaLB Visceral abdominal and subfascial femoral adipose tissue have opposite associations with liver fat in overweight and obese premenopausal caucasian women.J. Lipids.2011201115467210.1155/2011/154672
    [Google Scholar]
  144. KhanR.S. BrilF. CusiK. NewsomeP.N. Modulation of insulin resistance in nonalcoholic fatty liver disease.Hepatology.201970271172410.1002/hep.3042930556145
    [Google Scholar]
  145. MakkiK FroguelP WolowczukI Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines.ISRN Inflamm.2013201313923910.1155/2013/139239
    [Google Scholar]
  146. GengY. FaberK.N. de MeijerV.E. BlokzijlH. MoshageH. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?Hepatol. Int.2021151213510.1007/s12072‑020‑10121‑233548031
    [Google Scholar]
  147. MasaroneM. RosatoV. DallioM. GravinaA.G. AglittiA. LoguercioC. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease.Oxid. Med. Cell. Longev.20182018954761310.1155/2018/9547613
    [Google Scholar]
  148. DeFronzoR.A. TripathyD. SchwenkeD.C. BanerjiM. BrayG.A. BuchananT.A. ClementS.C. HenryR.R. KitabchiA.E. MudaliarS. RatnerR.E. StentzF.B. MusiN. ReavenP.D. GastaldelliA. Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk.Diabetes. Care.201336113607361210.2337/dc13‑052024062330
    [Google Scholar]
  149. LuukkonenP.K. SädevirtaS. ZhouY. KayserB. AliA. AhonenL. LallukkaS. PellouxV. GagginiM. JianC. HakkarainenA. LundbomN. GyllingH. SalonenA. OrešičM. HyötyläinenT. Orho-MelanderM. RissanenA. GastaldelliA. ClémentK. HodsonL. Yki-JärvinenH. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars.Diabetes. Care.20184181732173910.2337/dc18‑007129844096
    [Google Scholar]
  150. ErikssonJ.W. Metabolic stress in insulin’s target cells leads to ROS accumulation - A hypothetical common pathway causing insulin resistance.FEBS Lett.2007581193734374210.1016/j.febslet.2007.06.04417628546
    [Google Scholar]
  151. SoleimaniM. Insulin resistance and hypertension: New insights.Kidney Int.201587349749910.1038/ki.2014.39225723632
    [Google Scholar]
  152. WangY. ZengY. LinC. ChenZ. Hypertension and non-alcoholic fatty liver disease proven by transient elastography.Hepatol. Res.201646131304131010.1111/hepr.1268826932594
    [Google Scholar]
  153. ArtuncF. SchleicherE. WeigertC. FritscheA. StefanN. HäringH.U. The impact of insulin resistance on the kidney and vasculature.Nat. Rev. Nephrol.2016121272173710.1038/nrneph.2016.14527748389
    [Google Scholar]
  154. SansoèG. AragnoM. WongF. Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease.Liver Int.2020401183110.1111/liv.1427231580514
    [Google Scholar]
  155. OikonomouD. GeorgiopoulosG. KatsiV. KourekC. TsioufisC. AlexopoulouA. KoutliE. TousoulisD. Non-alcoholic fatty liver disease and hypertension: coprevalent or correlated?Eur. J. Gastroenterol. Hepatol.201830997998510.1097/MEG.000000000000119130048367
    [Google Scholar]
  156. Shamsi-GoushkiA. MortazaviZ. MirshekarM.A. MohammadiM. Moradi-KorN. Jafari-MaskouniS. ShahrakiM. Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats.Diabetes Metab. Syndr. Obes.2020132337234610.2147/DMSO.S24735132753918
    [Google Scholar]
  157. KangO.H. KimS.B. SeoY.S. JoungD.K. MunS.H. ChoiJ.G. LeeY.M. KangD.G. LeeH.S. KwonD.Y. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells.Eur. Rev. Med. Pharmacol. Sci.201317192578258624142602
    [Google Scholar]
  158. EjazA. WuD. KwanP. MeydaniM. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.J. Nutr.2009139591992510.3945/jn.108.10096619297423
    [Google Scholar]
  159. LeeE.S. KwonM.H. KimH.M. WooH.B. AhnC.M. ChungC.H. Curcumin analog CUR5–8 ameliorates nonalcoholic fatty liver disease in mice with high-fat diet-induced obesity.Metabolism.202010315401510.1016/j.metabol.2019.15401531758951
    [Google Scholar]
  160. El-AzabM.F. AttiaF.M. El-MowafyA.M. Novel role of curcumin combined with bone marrow transplantation in reversing experimental diabetes: Effects on pancreatic islet regeneration, oxidative stress, and inflammatory cytokines.Eur. J. Pharmacol.20116581414810.1016/j.ejphar.2011.02.01021349269
    [Google Scholar]
  161. WeisbergS.P. LeibelR. TortorielloD.V. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity.Endocrinology.200814973549355810.1210/en.2008‑026218403477
    [Google Scholar]
  162. AdibianM. HodaeiH. NikpayamO. SohrabG. HekmatdoostA. HedayatiM. The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial.Phytother. Res.20193351374138310.1002/ptr.632830864188
    [Google Scholar]
  163. AdabZ. EghtesadiS. VafaM.R. HeydariI. ShojaiiA. HaqqaniH. ArablouT. EghtesadiM. Effect of turmeric on glycemic status, lipid profile, hs-CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients.Phytother. Res.20193341173118110.1002/ptr.631230859660
    [Google Scholar]
  164. HodaeiH. AdibianM. NikpayamO. HedayatiM. SohrabG. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: a randomized, double-blind clinical trial.Diabetol. Metab. Syndr.20191114110.1186/s13098‑019‑0437‑731149032
    [Google Scholar]
  165. DolatiS. NamiranianK. AmerianR. MansouriS. ArshadiS. AzarbayjaniM.A. The effect of curcumin supplementation and aerobic training on anthropometric indices, serum lipid profiles, c-reactive protein and insulin resistance in overweight women: A randomized, double-blind, placebo-controlled trial.J. Obes. Metab. Syndr.2020291475710.7570/jomes1905532145720
    [Google Scholar]
  166. BateniZ. RahimiH.R. HedayatiM. AfsharianS. GoudarziR. SohrabG. The effects of nano-curcumin supplementation on glycemic control, blood pressure, lipid profile, and insulin resistance in patients with the metabolic syndrome: A randomized, double-blind clinical trial.Phytother. Res.20213573945395310.1002/ptr.710933851448
    [Google Scholar]
  167. BateniZ. BehrouzV. RahimiH.R. HedayatiM. AfsharianS. SohrabG. Effects of nano-curcumin supplementation on oxidative stress, systemic inflammation, adiponectin, and NF-κB in patients with metabolic syndrome: A randomized, double-blind clinical trial.J. Herb. Med.20223110053110.1016/j.hermed.2021.100531
    [Google Scholar]
  168. SangouniA.A. TaghdirM. MirahmadiJ. SepandiM. ParastoueiK. Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: A randomized clinical trial.Nutr. J.20222116210.1186/s12937‑022‑00816‑736192751
    [Google Scholar]
  169. RóżańskiG. TabiszH. ZalewskaM. NiemiroW. KujawskiS. NewtonJ. ZalewskiP. SłomkoJ. Meta-analysis of exploring the effect of curcumin supplementation with or without other advice on biochemical and anthropometric parameters in patients with metabolic-associated fatty liver disease (MAFLD).Int. J. Environ. Res. Public Health2023205426610.3390/ijerph2005426636901277
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230821095329
Loading
/content/journals/cmc/10.2174/0929867331666230821095329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test