Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Marine natural products have great pharmacological potential due to their unique and diverse chemical structures. The marine bacterial biodiversity and the unique marine environment lead to a high level of complexity and ecological interaction among marine species. This results in the production of metabolic pathways and adaptation mechanisms that are different from those of terrestrial organisms, which has drawn significant attention from researchers in the field of natural medicine. This review provides an analysis of the distribution and frequency of keywords in the literature on marine bacterial natural products as well as an overview of the new natural products isolated from the secondary metabolites of marine bacteria in recent years. Finally, it discusses the current research hotspots in this field and speculates on future directions and limitations.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230821102521
2023-08-21
2024-11-20
Loading full text...

Full text loading...

References

  1. DengL.J. QiM. LiN. LeiY.H. ZhangD.M. ChenJ.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy.J. Leukoc. Biol.2020108249350810.1002/JLB.3MR0320‑444R32678943
    [Google Scholar]
  2. NewmanD.J. CraggG.M. SnaderK.M. Natural products as sources of new drugs over the period 1981-2002.J. Nat. Prod.20036671022103710.1021/np030096l12880330
    [Google Scholar]
  3. DanielR. The soil metagenome – a rich resource for the discovery of novel natural products.Curr. Opin. Biotechnol.200415319920410.1016/j.copbio.2004.04.00515193327
    [Google Scholar]
  4. DebbabA. AlyA.H. LinW.H. ProkschP. Bioactive compounds from marine bacteria and fungi.Microb. Biotechnol.20103554456310.1111/j.1751‑7915.2010.00179.x21255352
    [Google Scholar]
  5. SongC. YangJ. ZhangM. DingG. JiaC. QinJ. GuoL. Marine natural products: The important resource of biological insecticide.Chem. Biodivers.2021185e200102010.1002/cbdv.20200102033855815
    [Google Scholar]
  6. LuW.Y. LiH.J. LiQ.Y. WuY.C. Application of marine natural products in drug research.Bioorg. Med. Chem.20213511605810.1016/j.bmc.2021.11605833588288
    [Google Scholar]
  7. MoghaddamA.J. JautzusT. AlanjaryM. BeemelmannsC. Recent highlights of biosynthetic studies on marine natural products.Org. Biomol. Chem.202119112314010.1039/D0OB01677B33216100
    [Google Scholar]
  8. StinconeP. BrandelliA. Marine bacteria as source of antimicrobial compounds.Crit. Rev. Biotechnol.202040330631910.1080/07388551.2019.171045731992085
    [Google Scholar]
  9. ParkesR.J. CraggB.A. BaleS.J. GetlifffJ.M. GoodmanK. RochelleP.A. FryJ.C. WeightmanA.J. HarveyS.M. Deep bacterial biosphere in Pacific Ocean sediments.Nature1994371649641041310.1038/371410a0
    [Google Scholar]
  10. SimmonsT.L. AndrianasoloE. McPhailK. FlattP. GerwickW.H. Marine natural products as anticancer drugs.Mol. Cancer Ther.20054233334210.1158/1535‑7163.333.4.215713904
    [Google Scholar]
  11. ArmstrongE. YanL. BoydK.G. WrightP.C. BurgessJ.G. The symbiotic role of marine microbes on living surfaces.Hydrobiologia20014611/3374010.1023/A:1012756913566
    [Google Scholar]
  12. ZhengL. HanX. ChenH. LinW. YanX. Marine bacteria associated with marine macroorganisms: The potential antimicrobial resources.Ann. Microbiol.2005552119124
    [Google Scholar]
  13. ZakariaN.N. ConveyP. Gomez-FuentesC. ZulkharnainA. SabriS. ShaharuddinN.A. AhmadS.A. Oil bioremediation in the marine environment of antarctica: A review and bibliometric keyword cluster analysis.Microorganisms20219241910.3390/microorganisms902041933671443
    [Google Scholar]
  14. VenkatesanM.I. RuthE. KaplanI.R. Triterpenols from sediments of Santa Monica Basin, Southern California Bight, U.S.A.Org. Geochem.1990164-61015102410.1016/0146‑6380(90)90138‑P
    [Google Scholar]
  15. BarkaE.A. VatsaP. SanchezL. Gaveau-VaillantN. JacquardC. KlenkH-P. ClémentC. OuhdouchY. van WezelG.P. van WezelG.P. Taxonomy, physiology, and natural products of Actinobacteria.Microbiol. Mol. Biol. Rev.201680114310.1128/MMBR.00019‑1526609051
    [Google Scholar]
  16. YangZ. HeJ. WeiX. JuJ. MaJ. Exploration and genome mining of natural products from marine Streptomyces.Appl. Microbiol. Biotechnol.20201041677610.1007/s00253‑019‑10227‑031773207
    [Google Scholar]
  17. WieseJ. ImhoffJ.F. Marine bacteria and fungi as promising source for new antibiotics.Drug Dev. Res.2019801242710.1002/ddr.2148230370576
    [Google Scholar]
  18. LuS. WangJ. ShengR. FangY. GuoR. Novel bioactive polyketides isolated from marine Actinomycetes: An update review from 2013 to 2019.Chem. Biodivers.20201712e200056210.1002/cbdv.20200056233206470
    [Google Scholar]
  19. YangL.J. PengX.Y. ZhangY.H. LiuZ.Q. LiX. GuY.C. ShaoC.L. HanZ. WangC.Y. Antimicrobial and antioxidant polyketides from a deep-sea-derived fungus Aspergillus versicolor SH0105.Mar. Drugs2020181263610.3390/md1812063633322355
    [Google Scholar]
  20. TangM. HuX. WangY. YaoX. ZhangW. YuC. ChengF. LiJ. FangQ. Ivermectin, a potential anticancer drug derived from an antiparasitic drug.Pharmacol. Res.202116310520710.1016/j.phrs.2020.10520732971268
    [Google Scholar]
  21. ZhaoH. JiR. ZhaX. XuZ. LinY. ZhouS. Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis.Eur. J. Pharm. Sci.202217910629910.1016/j.ejps.2022.10629936179970
    [Google Scholar]
  22. ChenC. RenX. TaoH. CaiW. ChenY. LuoX. GuoP. LiuY. Anti-inflammatory polyketides from an alga-derived fungus Aspergillus ochraceopetaliformis SCSIO 41020.Mar. Drugs202220529510.3390/md2005029535621946
    [Google Scholar]
  23. XieC.L. ChenR. YangS. XiaJ.M. ZhangG.Y. ChenC.H. ZhangY. YangX.W. Nesteretal A, a novel class of cage-like polyketide from marine-derived Actinomycete Nesterenkonia halobia. Org. Lett.201921208174817710.1021/acs.orglett.9b0263431423796
    [Google Scholar]
  24. WangZ. WenZ. LiuL. ZhuX. ShenB. YanX. DuanY. HuangY. Yangpumicins F and G, enediyne congeners from Micromonospora yangpuensis DSM 45577.J. Nat. Prod.20198292483248810.1021/acs.jnatprod.9b0022931490685
    [Google Scholar]
  25. García-SalcedoR. Álvarez-ÁlvarezR. OlanoC. CañedoL. BrañaA. MéndezC. de la CalleF. SalasJ. Characterization of the jomthonic acids biosynthesis pathway and isolation of novel analogues in Streptomyces caniferus GUA-06-05-006A.Mar. Drugs201816825910.3390/md1608025930065171
    [Google Scholar]
  26. KanohS. RubinB.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications.Clin. Microbiol. Rev.201023359061510.1128/CMR.00078‑0920610825
    [Google Scholar]
  27. Al-FadhliA.A. ThreadgillM.D. MohammedF. SibleyP. Al-AriqiW. ParveenI. Macrolides from rare actinomycetes: Structures and bioactivities.Int. J. Antimicrob. Agents202259210652310.1016/j.ijantimicag.2022.10652335041941
    [Google Scholar]
  28. LenzK.D. KlostermanK.E. MukundanH. Kubicek-SutherlandJ.Z. Macrolides: From toxins to therapeutics.Toxins (Basel)202113534710.3390/toxins1305034734065929
    [Google Scholar]
  29. Pérez-VictoriaI. Oves-CostalesD. LacretR. MartínJ. Sánchez-HidalgoM. DíazC. CautainB. VicenteF. GenilloudO. ReyesF. Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066.Org. Biomol. Chem.201917112954297110.1039/C8OB03115K30806648
    [Google Scholar]
  30. ZhangB. WangK.B. WangW. BiS.F. MeiY.N. DengX.Z. JiaoR.H. TanR.X. GeH.M. Discovery, biosynthesis, and heterologous production of streptoseomycin, an anti-microaerophilic bacteria macrodilactone.Org. Lett.201820102967297110.1021/acs.orglett.8b0100629697266
    [Google Scholar]
  31. ChenJ. XuL. ZhouY. HanB. Natural products from actinomycetes associated with marine organisms.Mar. Drugs2021191162910.3390/md1911062934822500
    [Google Scholar]
  32. AnjumK. KaleemS. YiW. ZhengG. LianX. ZhangZ. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275.Mar. Drugs20191728910.3390/md1702008930717135
    [Google Scholar]
  33. AnhC.V. KangJ.S. LeeH.S. TrinhP.T.H. HeoC.S. ShinH.J. New glycosylated secondary metabolites from marine-derived bacteria.Mar. Drugs202220746410.3390/md2007046435877757
    [Google Scholar]
  34. ZhouB. QinL.L. DingW.J. MaZ.J. Cytotoxic indolocarbazoles alkaloids from the streptomyces sp. A65.Tetrahedron201874772673010.1016/j.tet.2017.12.048
    [Google Scholar]
  35. ZhengL. XuY. LinX. YuanZ. LiuM. CaoS. ZhangF. LinhardtR.J. Recent progress of marine polypeptides as anticancer agents.Recent Patents Anticancer Drug Discov.201813444545410.2174/157489281366618043011003329708076
    [Google Scholar]
  36. Just-BaringoX. AlbericioF. ÁlvarezM. Thiopeptide engineering: A multidisciplinary effort towards future drugs.Angew. Chem. Int. Ed.201453266602661610.1002/anie.20130728824861213
    [Google Scholar]
  37. GogineniV. HamannM.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.Biochim. Biophys. Acta, Gen. Subj.2018186218119610.1016/j.bbagen.2017.08.01428844981
    [Google Scholar]
  38. IniyanA.M. SudarmanE. WinkJ. KannanR.R. VincentS.G.P. Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19.J. Antibiot. (Tokyo)20197229910510.1038/s41429‑018‑0115‑230356080
    [Google Scholar]
  39. LeeJ. GamageC.D.B. KimG.J. HillmanP.F. LeeC. LeeE.Y. ChoiH. KimH. NamS.J. FenicalW. Androsamide, a cyclic tetrapeptide from a marine Nocardiopsis sp., suppresses motility of colorectal cancer cells.J. Nat. Prod.202083103166317210.1021/acs.jnatprod.0c0081532985880
    [Google Scholar]
  40. StewartA.K. RavindraR. Van WagonerR.M. WrightJ.L.C. Metabolomics-guided discovery of microginin peptides from cultures of the cyanobacterium Microcystis aeruginosa.J. Nat. Prod.201881234935510.1021/acs.jnatprod.7b0082929405714
    [Google Scholar]
  41. WieseJ. AbdelmohsenU.R. MotieiA. HumeidaU.H. ImhoffJ.F. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis.Bioorg. Med. Chem. Lett.201828455856110.1016/j.bmcl.2018.01.06229422389
    [Google Scholar]
  42. El-BabaC. BaassiriA. KiriakoG. DiaB. FadlallahS. MoodadS. DarwicheN. Terpenoids’ anti-cancer effects: Focus on autophagy.Apoptosis2021269-1049151110.1007/s10495‑021‑01684‑y34269920
    [Google Scholar]
  43. RudolfJ.D. AlsupT.A. XuB. LiZ. Bacterial terpenome.Nat. Prod. Rep.202138590598010.1039/D0NP00066C33169126
    [Google Scholar]
  44. HoshinoY. GaucherE.A. On the origin of isoprenoid biosynthesis.Mol. Biol. Evol.20183592185219710.1093/molbev/msy12029905874
    [Google Scholar]
  45. FrankA. GrollM. The methylerythritol phosphate pathway to isoprenoids.Chem. Rev.201711785675570310.1021/acs.chemrev.6b0053727995802
    [Google Scholar]
  46. MiziorkoH.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis.Arch. Biochem. Biophys.2011505213114310.1016/j.abb.2010.09.02820932952
    [Google Scholar]
  47. KuzuyamaT. SetoH. Diversity of the biosynthesis of the isoprene units.Nat. Prod. Rep.200320217118310.1039/b109860h12735695
    [Google Scholar]
  48. LeT. LeeE. LeeJ. HongA. YimC.Y. YangI. ChoiH. ChinJ. ChoS. KoJ. HwangH. NamS.J. FenicalW. Saccharoquinoline, a cytotoxic alkaloidal meroterpenoid from marine-derived bacterium Saccharomonospora sp.Mar. Drugs20191729810.3390/md1702009830717397
    [Google Scholar]
  49. HuoL. HugJ.J. FuC. BianX. ZhangY. MüllerR. Heterologous expression of bacterial natural product biosynthetic pathways.Nat. Prod. Rep.201936101412143610.1039/C8NP00091C30620035
    [Google Scholar]
  50. WalshC.T. TangY. Recent advances in enzymatic complexity generation: Cyclization reactions.Biochemistry201857223087310410.1021/acs.biochem.7b0116129236467
    [Google Scholar]
  51. HetrickK.J. van der DonkW.A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era.Curr. Opin. Chem. Biol.201738364410.1016/j.cbpa.2017.02.00528260651
    [Google Scholar]
  52. DickschatJ.S. Bacterial diterpene biosynthesis.Angew. Chem. Int. Ed.20195845159641597610.1002/anie.20190531231183935
    [Google Scholar]
  53. DickschatJ.S. Bacterial terpene cyclases.Nat. Prod. Rep.20163318711010.1039/C5NP00102A26563452
    [Google Scholar]
  54. MitsuhashiT. AbeI. Chimeric terpene synthases possessing both terpene cyclization and prenyltransfer activities.ChemBioChem201819111106111410.1002/cbic.20180012029675947
    [Google Scholar]
  55. MinamiA. OzakiT. LiuC. OikawaH. Cyclopentane-forming di/sesterterpene synthases: Widely distributed enzymes in bacteria, fungi, and plants.Nat. Prod. Rep.201835121330134610.1039/C8NP00026C29855001
    [Google Scholar]
  56. RinkelJ. DickschatJ.S. Characterization of micromonocyclol synthase from the marine actinomycete Micromonospora marina. Org. Lett.201921239442944510.1021/acs.orglett.9b0365431702158
    [Google Scholar]
  57. MaL.F. ChenM.J. LiangD.E. ShiL.M. YingY.M. ShanW.G. LiG.Q. ZhanZ.J. Streptomyces albogriseolus SY67903 produces eunicellin diterpenoids structurally similar to terpenes of the gorgonian Muricella sibogae, the bacterial source.J. Nat. Prod.20208351641164510.1021/acs.jnatprod.0c0014732367724
    [Google Scholar]
  58. HamedA. Abdel-RazekA. FreseM. StammlerH. El-HaddadA. IbrahimT. SewaldN. ShaabanM. Terretonin N: A new meroterpenoid from Nocardiopsis sp.Molecules201823229910.3390/molecules2302029929385078
    [Google Scholar]
  59. CarmichaelJ.R. ZhouH. ButlerA. A suite of asymmetric citrate siderophores isolated from a marine Shewanella species. J. Inorg. Biochem.201919811073610.1016/j.jinorgbio.2019.11073631203087
    [Google Scholar]
  60. MacIntyreL.W. CharlesM.J. HaltliB.A. MarchbankD.H. KerrR.G. An ichip-domesticated sponge bacterium produces an N-acyltyrosine bearing an α-methyl substituent.Org. Lett.201921197768777110.1021/acs.orglett.9b0271031524403
    [Google Scholar]
  61. LacoskeM.H. TheodorakisE.A. Spirotetronate polyketides as leads in drug discovery.J. Nat. Prod.201578356257510.1021/np500757w25434976
    [Google Scholar]
  62. GongT. ZhenX. LiX.L. ChenJ.J. ChenT.J. YangJ.L. ZhuP. Tetrocarcin Q, a new spirotetronate with a unique glycosyl group from a marine-derived actinomycete Micromonospora carbonacea LS276.Mar. Drugs20181627410.3390/md1602007429495293
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230821102521
Loading
/content/journals/cmc/10.2174/0929867331666230821102521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test