Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Stress is a critical factor in the etiology of inflammation and neurodegeneration. The risk factor for the majority of psychiatric disorders is oxidative stress-induced depression. Mitochondrial damage and oxidative stress are associated with the development of neurodegenerative disorders. During aging, the brain and associated regions become more susceptible due to oxidative stress. The leading cause of oxidative stress is the continuous generation of ROS (reactive oxygen species) and RNS (Reactive nitrogen species) endogenously or exogenously. In this review, discussion on a potent antioxidant natural constituent “curcumin” has been made to alleviate many pathological and neurological disorders. A focused compilation of vast and informative research on the potential of curcumin as a magical moiety used therapeutically has been done in search of its role in controlling the neurological and similar disorders induced by oxidative stress.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230821102431
2023-08-21
2024-11-20
Loading full text...

Full text loading...

References

  1. JuanCA. Perez de la LastraJM PlouFJ. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int J Mol Sci.20212294642
    [Google Scholar]
  2. SinghJ. KumarV. SilakariP. KumarS. Pyridazinones: A versatile scaffold in the development of potential target-based novel anticancer agents.J. Heterocycl. Chem.202210.1002/jhet.4589
    [Google Scholar]
  3. SinghJ. SuryanA. KumarS. SharmaS. Phthalazinone scaffold: Emerging tool in the development of target based novel anticancer agents.Anticancer. Agents Med. Chem.202020182228224510.2174/187152062066620080722014632767957
    [Google Scholar]
  4. QuispeC Herrera-BravoJ JavedZ KhanK RazaS Gulsunoglu-KonuskanZ DaştanS.D SytarO MartorellM Sharifi-RadJ CalinaD. Therapeutic applications of curcumin in diabetes: A review and perspective.Biomed. Res. Int.20222022137589210.1155/2022/1375892
    [Google Scholar]
  5. SobhiW. BissetS. BensouiciC. khenchoucheA. Antioxidant activity and inhibitory effect of curcumin on some enzymes involved in several diseases: Acetylcholinesterase, butyrylcholinesterase, α-glucosidase and tyrosinase.Curr. Enzym. Inhib.202218317217910.2174/1573408018666220602091615
    [Google Scholar]
  6. SharmaS. AdvaniD. DasA. MalhotraN. KhoslaA. AroraV. JhaA. YadavM. AmbastaR.K. KumarP. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders.J. Pharm. Pharmacol.202274446148410.1093/jpp/rgab06434050648
    [Google Scholar]
  7. Bayo-OlugbamiA.A. BabalolaK.M. Imam-FulaniA.O. Translational Neuroprotective Activity of Curcumin in Neurodegenerative Diseases: An Overview with Animal Models.Curative and Preventive Properties Medicinal Plants2023125138
    [Google Scholar]
  8. LiN. YanX. HuangW. ChuM. DongY. SongH. PengY. ShiJ. LiuQ. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells.Biochem. Pharmacol.202321211557510.1016/j.bcp.2023.11557537334787
    [Google Scholar]
  9. AbrahamsS. HaylettW.L. JohnsonG. CarrJ.A. BardienS. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review.Neuroscience201940612110.1016/j.neuroscience.2019.02.02030825584
    [Google Scholar]
  10. DhimanP. MalikN. KhatkarA. Lead optimization for promising monoamine oxidase inhibitor from eugenol for the treatment of neurological disorder: Synthesis and in silico based study.BMC Chem.20191313810.1186/s13065‑019‑0552‑431384786
    [Google Scholar]
  11. CoxF.F. MisiouA. VierkantA. Ale-AghaN. GrandochM. HaendelerJ. AltschmiedJ. Protective effects of curcumin in cardiovascular diseases—Impact on oxidative stress and mitochondria.Cells202211334210.3390/cells1103034235159155
    [Google Scholar]
  12. MalikN. DhimanP. KhatkarA. In silico design and synthesis of targeted curcumin derivatives as xanthine oxidase inhibitors.Curr. Drug. Targets.2019205593603
    [Google Scholar]
  13. BateniZ. BehrouzV. RahimiH.R. HedayatiM. AfsharianS. SohrabG. Effects of nano-curcumin supplementation on oxidative stress, systemic inflammation, adiponectin, and NF-κB in patients with metabolic syndrome: A randomized, double-blind clinical trial.J. Herb. Med.20223110053110.1016/j.hermed.2021.100531
    [Google Scholar]
  14. SabouniN. MarzouniH.Z. PalizbanS. MeidaninikjehS. KesharwaniP. JamialahmadiT. SahebkarA. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells.J. Drug Target.202331324326010.1080/1061186X.2022.214175536305097
    [Google Scholar]
  15. HarrisJ.L. YehH.W. ChoiI.Y. Neuroimaging biomarkers of oxidative stress in brain aging and injury.J. Int. Soc. Antioxidants Nutr. Health20161233235
    [Google Scholar]
  16. SiswantoS. ArozalW. JuniantitoV. GraceA. AgustiniF.D. Nafrialdi The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin.Hayati J. Biosci.2016232515510.1016/j.hjb.2016.02.001
    [Google Scholar]
  17. BlackC.N. PenninxB.W.J.H. BotM. OdegaardA.O. GrossM.D. MatthewsK.A. JacobsD.R.Jr Oxidative stress, anti-oxidants and the cross-sectional and longitudinal association with depressive symptoms: results from the CARDIA study.Transl. Psychiatry201662e74310.1038/tp.2016.526905415
    [Google Scholar]
  18. ZhangH. TsaoR. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr. Opin. Food Sci.20168334210.1016/j.cofs.2016.02.002
    [Google Scholar]
  19. Bar-AmO. AmitT. YoudimM.B. WeinrebO. Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: Focus on mitochondrial targets.J. Neural Transm.2016123212513510.1007/s00702‑015‑1395‑325859841
    [Google Scholar]
  20. Djiokeng PakaG. DogguiS. ZaghmiA. SafarR. DaoL. ReischA. KlymchenkoA. RoullinV.G. JoubertO. RamassamyC. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly(lactide- co -glycolide) polymeric matrix composition.Mol. Pharm.201613239140310.1021/acs.molpharmaceut.5b0061126618861
    [Google Scholar]
  21. EstradaM. Herrera-ArozamenaC. PérezC. ViñaD. RomeroA. Morales-GarcíaJ.A. Pérez-CastilloA. Rodríguez-FrancoM.I. New cinnamic – N-benzylpiperidine and cinnamic – N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties.Eur. J. Med. Chem.201612137638610.1016/j.ejmech.2016.05.05527267007
    [Google Scholar]
  22. NisarT. IqbalM. RazaA. SafdarM. IftikharF. WaheedM. Turmeric: A promising spice for phytochemical and antimicrobial activities.Am.-Eurasian J. Agric. Environ. Sci.20151512781288
    [Google Scholar]
  23. AggarwalB.B. KumarA. BhartiA.C. Anticancer potential of curcumin: Preclinical and clinical studies.Anticancer Res.2003231A36339812680238
    [Google Scholar]
  24. MasudaT. HidakaK. ShinoharaA. MaekawaT. TakedaY. YamaguchiH. Chemical studies on antioxidant mechanism of curcuminoid: Analysis of radical reaction products from curcumin.J. Agric. Food Chem.1999471717710.1021/jf980534810563852
    [Google Scholar]
  25. NegiP.S. JayaprakashaG.K. Jagan Mohan RaoL. SakariahK.K. Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture.J. Agric. Food Chem.199947104297430010.1021/jf990308d10552805
    [Google Scholar]
  26. RaiD. SinghJ.K. RoyN. PandaD. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity.Biochem. J.2008410114715510.1042/BJ2007089117953519
    [Google Scholar]
  27. FarombiE.O. ShrotriyaS. NaH.K. KimS.H. SurhY.J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1.Food Chem. Toxicol.20084641279128710.1016/j.fct.2007.09.09518006204
    [Google Scholar]
  28. RajakrishnanV. ViswanathanP. RajasekharanK.N. MenonV.P. Neuroprotective role of curcumin from Curcuma longa on ethanol-induced brain damage.Phytother. Res.199913757157410.1002/(SICI)1099‑1573(199911)13:7<571::AID‑PTR494>3.0.CO;2‑710548748
    [Google Scholar]
  29. ThiyagarajanM. SharmaS.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats.Life Sci.200474896998510.1016/j.lfs.2003.06.04214672754
    [Google Scholar]
  30. ColeG.M. TeterB. FrautschyS.A. Neuroprotective effects of curcumin.Adv Exp Med Biol.200759519721210.1007/978‑0‑387‑46401‑5_8
    [Google Scholar]
  31. MiriyalaS. PanchatcharamM. RengarajuluP. Cardioprotective effects of curcumin.The molecular targets and therapeutic uses of curcumin in health and diseaseSpringer US200735937710.1007/978‑0‑387‑46401‑5_16
    [Google Scholar]
  32. SrivastavaG. MehtaJ.L. Currying the heart: Curcumin and cardioprotection.J. Cardiovasc. Pharmacol. Ther.2009141222710.1177/107424840832960819153099
    [Google Scholar]
  33. ChuengsamarnS. RattanamongkolgulS. LuechapudipornR. PhisalaphongC. JirawatnotaiS. Curcumin extract for prevention of type 2 diabetes.Diabetes Care201235112121212710.2337/dc12‑011622773702
    [Google Scholar]
  34. KimT. DavisJ. ZhangA.J. HeX. MathewsS.T. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells.Biochem. Biophys. Res. Commun.2009388237738210.1016/j.bbrc.2009.08.01819665995
    [Google Scholar]
  35. SinghS. JamwalS. KumarP. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: Possible neurotransmitters modulation mechanism.Neurochem. Res.20154081758176610.1007/s11064‑015‑1658‑226160706
    [Google Scholar]
  36. SaminiF. SamarghandianS. BorjiA. MohammadiG. bakaianM. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat.Pharmacol. Biochem. Behav.201311023824410.1016/j.pbb.2013.07.01923932920
    [Google Scholar]
  37. LvH. WangY. YangX. LingG. ZhangP. Application of curcumin nanoformulations in Alzheimer’s disease: Prevention, diagnosis and treatment.Nutr. Neurosci.2022101635694842
    [Google Scholar]
  38. MuruganP. PariL. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.Basic Clin. Pharmacol. Toxicol.200699212212710.1111/j.1742‑7843.2006.pto_447.x16918712
    [Google Scholar]
  39. KrukJ. Kubasik-KladnaK. Aboul-EneinH.Y. The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity.Mini Rev. Med. Chem.201516324125710.2174/138955751666615112011460526586128
    [Google Scholar]
  40. KamatP.K. KalaniA. RaiS. SwarnkarS. TotaS. NathC. TyagiN. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutic strategies.Mol. Neurobiol.201653164866110.1007/s12035‑014‑9053‑625511446
    [Google Scholar]
  41. AmirtharajG.J. NatarajanS.K. PulimoodA. BalasubramanianK.A. VenkatramanA. RamachandranA. Role of oxygen free radicals, nitric oxide and mitochondria in mediating cardiac alterations during liver cirrhosis induced by thioacetamide.Cardiovasc. Toxicol.2016301027131982
    [Google Scholar]
  42. GarveyJ. RyanS. TaylorC.T. McnicholasW.T. Oxidative Stress, Inflammation, and Vascular Function in Obstructive Sleep Apnea Syndrome. Sleep apnea: implications in cardiovascular and cerebrovascular disease.Informa healthcareNew York, London20162110122
    [Google Scholar]
  43. DonnezJ. BindaM.M. DonnezO. DolmansM.M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis.Fertil. Steril.201610651011101710.1016/j.fertnstert.2016.07.107527521769
    [Google Scholar]
  44. GamonL.F. WilleU. Oxidative damage of biomolecules by the environmental pollutants NO2 • and NO3 •.Acc. Chem. Res.201649102136214510.1021/acs.accounts.6b0021927668965
    [Google Scholar]
  45. ToyokuniS. The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy.Pathol. Int.201666524525910.1111/pin.1239626931176
    [Google Scholar]
  46. SinghS. SharmaB. Oxidative stress in chronic pancreatitis. Oxidative stress and antioxidant protection.Science Free Radic Biol Dis201615339346
    [Google Scholar]
  47. KhanT.A. HassanI. AhmadA. PerveenA. AmanS. QuddusiS. AlhazzaI.M. AshrafG.M. AlievG. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders.CNS Neurol. Disord. Drug Targets201615331032010.2174/187152731566616020212451826831262
    [Google Scholar]
  48. LoperenaR. HarrisonD.G. Oxidative stress and hypertensive diseases.Med. Clin. North Am.2017101116919310.1016/j.mcna.2016.08.00427884227
    [Google Scholar]
  49. Porres-MartínezM. González-BurgosE. CarreteroM.E. Gómez-SerranillosM.P. In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2 -induced oxidative stress in PC12 cells.Z. Naturforsch. C J. Biosci.2016717-819119910.1515/znc‑2014‑413527352445
    [Google Scholar]
  50. TermanA. BrunkU.T. Oxidative stress, accumulation of biological ‘garbage’, and aging.Antioxid. Redox Signal.200681-219720410.1089/ars.2006.8.19716487053
    [Google Scholar]
  51. YuanB. OhyamaK. BesshoT. UchideN. ToyodaH. Imbalance between ROS production and elimination results in apoptosis induction in primary smooth chorion trophoblast cells prepared from human fetal membrane tissues.Life Sci.20088211-1262363010.1016/j.lfs.2007.12.01618234233
    [Google Scholar]
  52. OkayamaY. Oxidative stress in allergic and inflammatory skin diseases.Curr. Drug Targets Inflamm. Allergy20054451751910.2174/156801005452638616127829
    [Google Scholar]
  53. DescoM.C. AsensiM. MárquezR. Martínez-VallsJ. VentoM. PallardóF.V. SastreJ. ViñaJ. Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol.Diabetes.20025141118112410.2337/diabetes.51.4.111811916934
    [Google Scholar]
  54. BorghiC. DesideriG. Urate-lowering drugs and prevention of cardiovascular disease.Hypertension.201667349649810.1161/HYPERTENSIONAHA.115.0653126865197
    [Google Scholar]
  55. ArmstrongD. Introduction to free radicals, inflammation, and recycling. Oxidative stress and antioxidant protection.Sci Free Radic Biol Disease2016410
    [Google Scholar]
  56. BorrowmanC.K. ZhouS. BurrowT.E. AbbattJ.P.D. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds.Phys. Chem. Chem. Phys.201618120521210.1039/C5CP05606C26603953
    [Google Scholar]
  57. LushchakV.I. Free radicals, reactive oxygen species, oxidative stress and its classification.Chem. Biol. Interact.201422416417510.1016/j.cbi.2014.10.01625452175
    [Google Scholar]
  58. GasparA. MilhazesN. SantanaL. UriarteE. BorgesF. MatosM. Oxidative stress and neurodegenerative diseases: Looking for a therapeutic solution inspired on benzopyran chemistry.Curr. Top. Med. Chem.201515543244510.2174/156802661466614122912414125658803
    [Google Scholar]
  59. Adam DaulatzaiM. Multifactorial pathologies promote inflammation and enhance vulnerability to late-onset Alzheimer’s disease: Implications for possible therapeutic targets.Front. Clin. Drug Res. - Alzheimer Disord.2014210315410.2174/9781608058709114020006
    [Google Scholar]
  60. BhandariR. KuhadA. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders.Life Sci.201514115616910.1016/j.lfs.2015.09.01226407474
    [Google Scholar]
  61. XuY. KuB. TieL. YaoH. JiangW. MaX. LiX. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB.Brain Res.200611221566410.1016/j.brainres.2006.09.00917022948
    [Google Scholar]
  62. SinghalS.S. AwasthiS. PandyaU. PiperJ.T. SainiM.K. ChengJ.Z. AwasthiY.C. The effect of curcumin on glutathione-linked enzymes in K562 human leukemia cells.Toxicol. Lett.19991091-2879510.1016/S0378‑4274(99)00124‑110514034
    [Google Scholar]
  63. LimG.P. ChuT. YangF. BeechW. FrautschyS.A. ColeG.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J. Neurosci.200121218370837710.1523/JNEUROSCI.21‑21‑08370.200111606625
    [Google Scholar]
  64. YangF. LimG.P. BegumA.N. UbedaO.J. SimmonsM.R. AmbegaokarS.S. ChenP.P. KayedR. GlabeC.G. FrautschyS.A. ColeG.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo.J. Biol. Chem.200528075892590110.1074/jbc.M40475120015590663
    [Google Scholar]
  65. WuA. NobleE.E. TyagiE. YingZ. ZhuangY. Gomez-PinillaF. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders.Biochim. Biophys. Acta Mol. Basis Dis.20151852595196110.1016/j.bbadis.2014.12.00525550171
    [Google Scholar]
  66. TiwariV. ChopraK. Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol.Psychopharmacology.2012224451953510.1007/s00213‑012‑2779‑922790976
    [Google Scholar]
  67. OzA. ÇelikO. Oveyİ.S. Effects of different doses of curcumin on apoptosis, mitochondrial oxidative stress and calcium influx in DBTRG glioblastoma cells.J. Cell. Neurosci201792
    [Google Scholar]
  68. HovattaI. TennantR.S. HeltonR. MarrR.A. SingerO. RedwineJ.M. EllisonJ.A. SchadtE.E. VermaI.M. LockhartD.J. BarlowC. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice.Nature2005438706866266610.1038/nature0425016244648
    [Google Scholar]
  69. ThornalleyP.J. Unease on the role of glyoxalase 1 in high-anxiety-related behaviour.Trends Mol. Med.200612519519910.1016/j.molmed.2006.03.00416616641
    [Google Scholar]
  70. LandgrafR. KeßlerM.S. BunckM. MurgatroydC. SpenglerD. ZimbelmannM. NußbaumerM. CzibereL. TurckC.W. SingewaldN. RujescuD. FrankE. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-I.Neurosci. Biobehav. Rev.20073118910210.1016/j.neubiorev.2006.07.00316934871
    [Google Scholar]
  71. NgF. BerkM. DeanO. BushA.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications.Int. J. Neuropsychopharmacol.200811685187610.1017/S146114570700840118205981
    [Google Scholar]
  72. BrouwersO. NiessenP.M. FerreiraI. MiyataT. SchefferP.G. TeerlinkT. SchrauwenP. BrownleeM. StehouwerC.D. SchalkwijkC.G. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats.J. Biol. Chem.201128621374138010.1074/jbc.M110.14409721056979
    [Google Scholar]
  73. WilliamsR. LimJ.E. HarrB. WingC. WaltersR. DistlerM.G. TeschkeM. WuC. WiltshireT. SuA.I. SokoloffG. TarantinoL.M. BorevitzJ.O. PalmerA.A. A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior.PLoS One200943e464910.1371/journal.pone.0004649
    [Google Scholar]
  74. DistlerM.G. PlantL.D. SokoloffG. HawkA.J. AneasI. WuenschellG.E. TerminiJ. MeredithS.C. NobregaM.A. PalmerA.A. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal.J. Clin. Invest.201212262306231510.1172/JCI6131922585572
    [Google Scholar]
  75. FiliouM.D. ZhangY. TeplytskaL. ReckowS. GormannsP. MaccarroneG. FrankE. KesslerM.S. HambschB. NussbaumerM. BunckM. LudwigT. YassouridisA. HolsboerF. LandgrafR. TurckC.W. Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways.Biol. Psychiatry201170111074108210.1016/j.biopsych.2011.06.00921791337
    [Google Scholar]
  76. RudrapalM. EltayebW.A. RakshitG. El-ArabeyA.A. KhanJ. AldosariS.M. AlshehriB. AbdallaM. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies.Sci. Rep.2023131865610.1038/s41598‑023‑35161‑037244921
    [Google Scholar]
  77. BhattacharyyaS. GhoshH. Covarrubias-ZambranoO. JainK. SwamyK.V. KasiA. HamzaA. AnantS. VanSaunM. WeirS.J. BossmannS.H. PadhyeS.B. DandawateP. Anticancer activity of novel difluorinated curcumin analog and its inclusion complex with 2-hydroxypropyl-β-cyclodextrin against pancreatic cancer. International.Int. J. Mol. Sci.2023247633610.3390/ijms2407633637047307
    [Google Scholar]
  78. ScomoroscencoC. TeodorescuM. BurlacuS.G. GîfuI.C. MihaescuC.I. PetcuC. RaducanA. OanceaP. CintezaL.O. Synergistic antioxidant activity and enhanced stability of curcumin encapsulated in vegetal oil-based microemulsion and gel microemulsions.Antioxidants202211585410.3390/antiox1105085435624718
    [Google Scholar]
  79. HashemiM. MirzaeiS. BaratiM. HejaziE.S. KakavandA. EntezariM. SalimimoghadamS. KalbasiA. RashidiM. TaheriazamA. SethiG. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects.Life Sci.202230912098410.1016/j.lfs.2022.12098436150461
    [Google Scholar]
  80. ZhangQ. WuL. In vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review.J. Oncol.202220227277562
    [Google Scholar]
  81. MartonL.T. Pescinini-e-SalzedasL.M. CamargoM.E.C. BarbalhoS.M. HaberJ.F.S. SinatoraR.V. DetregiachiC.R.P. GirioR.J.S. BuchaimD.V. Cincotto dosS.B.P. The effects of curcumin on diabetes mellitus: A systematic review.Front. Endocrinol.20211266944810.3389/fendo.2021.66944834012421
    [Google Scholar]
  82. NeyestaniZ. EbrahimiS.A. GhazaghiA. JaliliA. SahebkarA. RahimiH.R. Review of anti-bacterial activities of curcumin against Pseudomonas aeruginosa.Crit. Rev. Eukaryot. Gene Expr.201929537738510.1615/CritRevEukaryotGeneExpr.201902908832421995
    [Google Scholar]
  83. RatreyP. DalviS.V MishraA. Enhancing aqueous solubility and antibacterial activity of curcumin by complexing with cell-penetrating octaarginine.ACS omega.2020530190041901310.1021/acsomega.0c02321
    [Google Scholar]
  84. ShomeS. TalukdarA.D. UpadhyayaH. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review.Biotechnol. Appl. Biochem.20226962357238610.1002/bab.228934826356
    [Google Scholar]
  85. ZarrinfarH. BehnamM. HatamipourM. SahebkarA. Antifungal activities of curcuminoids and difluorinated curcumin against clinical dermatophyte isolates.Adv. Exp. Med. Biol.2021130810110710.1007/978‑3‑030‑64872‑5_8
    [Google Scholar]
  86. LayaidaH. HellalA. ChafaiN. HaddadiI. ImeneK. AnisB. MounaE. BensouiciC. SobhiW. AttouiA. LiliaA. Synthesis, spectroscopic characterization, density functional theory study, antimicrobial and antioxidant activities of curcumin and alanine-curcumin Schiff base.J. Biomol. Struct. Dyn.20221211610.1080/07391102.2022.212304336120951
    [Google Scholar]
  87. ThimmulappaR.K. Mudnakudu-NagarajuK.K. ShivamalluC. SubramaniamK.J.T. RadhakrishnanA. BhojrajS. KuppusamyG. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19.Heliyon202172e0635010.1016/j.heliyon.2021.e0635033655086
    [Google Scholar]
  88. RubabS. NaeemK. RanaI. KhanN. AfridiM. UllahI. ShahF.A. SarwarS. DinF. ChoiH.I. LeeC.H. LimC.W. AlamroA.A. KimJ.K. ZebA. Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model.Int. J. Pharm.202160312067010.1016/j.ijpharm.2021.12067033964337
    [Google Scholar]
  89. WangQ. YeC. SunS. LiR. ShiX. WangS. ZengX. KuangN. LiuY. ShiQ. LiuR. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects.Int. Immunopharmacol.20197229230010.1016/j.intimp.2019.04.02731005039
    [Google Scholar]
  90. NaghdiA. GoodarziM.T. KarimiJ. HashemniaM. KhodadadiI. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats.J. Cardiovasc. Thorac. Res.202214212813710.34172/jcvtr.2022.2335935389
    [Google Scholar]
  91. Alvarez-RicardoY. Meza-MoralesW. Obregón-MendozaM.A. ToscanoR.A. Núñez-ZarurF. Germán-AcacioJ.M. Puentes-DíazN. Alí-TorresJ. Arenaza-CoronaA. Ramírez-ApanM.T. Morales-MoralesD. EnríquezR.G. Synthesis, characterization, theoretical studies and antioxidant and cytotoxic evaluation of a series of Tetrahydrocurcumin (THC)-benzylated derivatives.J. Mol. Struct.2023127313435510.1016/j.molstruc.2022.134355
    [Google Scholar]
  92. LinH.W. ChenT.C. YehJ.H. TsouS.C. WangI. ShenT.J. ChuangC.J. ChangY.Y. Suppressive effect of tetrahydrocurcumin on pseudomonas aeruginosa lipopolysaccharide-induced inflammation by suppressing JAK/STAT and Nrf2/HO-1 pathways in microglial cells.Oxid. Med. Cell. Longev.202220224978556
    [Google Scholar]
  93. KhazaeliM. NunesA.C.F. ZhaoY. KhazaaliM. PrudenteJ. VaziriN.D. SinghB. LauW.L. Tetrahydrocurcumin Add-On therapy to losartan in a rat model of diabetic nephropathy decreases blood pressure and markers of kidney injury.Pharmacol. Res. Perspect.2023112e0107910.1002/prp2.107936971089
    [Google Scholar]
  94. YuanT. CaiD. HuB. ZhuY. QinJ. Therapeutic effects of curcumin on osteoarthritis and its protection of chondrocytes through the wnt/β-catenin signaling pathway.Altern. Ther. Health Med.2022285283735452417
    [Google Scholar]
  95. RiyadiS.A. AbdullahF.F. FadhilahF. AssidiqiahN. Anticancer activity of curcuminoids against B16-F10 melanoma cell lines.Marine Pharmacopoeia Sci. J. Sandra Amalia Riyadi.2022132152163
    [Google Scholar]
  96. OrhanC. TuzcuM. DurmusA.S. SahinN. OzercanI.H. DeehP.B.D. MordeA. BhanuseP. AcharyaM. PadigaruM. SahinK. Protective effect of a novel polyherbal formulation on experimentally induced osteoarthritis in a rat model.Biomed. Pharmacother.2022151113052, 151, 11305210.1016/j.biopha.2022.11305235588576
    [Google Scholar]
  97. PantioraP. FurlanV. MatiadisD. MavroidiB. PerperopoulouF. PapageorgiouA.C. SagnouM. BrenU. PelecanouM. LabrouN.E. Monocarbonyl curcumin analogues as potent inhibitors against human glutathione transferase P1-1.Antioxidants20221216310.3390/antiox1201006336670925
    [Google Scholar]
  98. GagliardiS. TruffiM. TinelliV. GarofaloM. PandiniC. Cotta RamusinoM. PeriniG. CostaA. NegriS. MazzucchelliS. BonizziA. SitiaL. BusaccaM. SevieriM. MocchiM. RicciardiA. ProsperiD. CorsiF. CeredaC. MorassoC. Bisdemethoxycurcumin (BDC)-loaded H-ferritin-nanocages mediate the regulation of inflammation in Alzheimer’s disease patients.Int. J. Mol. Sci.20222316923710.3390/ijms2316923736012501
    [Google Scholar]
  99. GordonB.A. BlazeyT. MorrisJ.C. HoltzmanD.M. FaganA.M. BenzingerT.L.S. Longitudinal amyloid deposition and hippocampal volume in suspected non-Alzheimer pathophysiology and preclinical Alzheimer’s disease.Alzheimers Dement.2016127S_Part_419110.1016/j.jalz.2016.06.332
    [Google Scholar]
  100. BozzaliM. SerraL. CercignaniM. Quantitative MRI to understand Alzheimer’s disease pathophysiology.Curr. Opin. Neurol.201629443744410.1097/WCO.000000000000034527228309
    [Google Scholar]
  101. OnoK. HasegawaK. NaikiH. YamadaM. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s? -amyloid fibrils in vitro. J. Neurosci. Res.200475674275010.1002/jnr.2002514994335
    [Google Scholar]
  102. RingmanJ. FrautschyS. ColeG. MastermanD. CummingsJ. A potential role of the curry spice curcumin in Alzheimer’s disease.Curr. Alzheimer Res.20052213113610.2174/156720505358588215974909
    [Google Scholar]
  103. BegumA.N. JonesM.R. LimG.P. MoriharaT. KimP. HeathD.D. RockC.L. PruittM.A. YangF. HudspethB. HuS. FaullK.F. TeterB. ColeG.M. FrautschyS.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease.J. Pharmacol. Exp. Ther.2008326119620810.1124/jpet.108.13745518417733
    [Google Scholar]
  104. BaumL. NgA. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models.J. Alzheimers Dis.20046436737710.3233/JAD‑2004‑640315345806
    [Google Scholar]
  105. HamaguchiT. OnoK. YamadaM. REVIEW: Curcumin and Alzheimer’s disease.CNS Neurosci. Ther.201016528529710.1111/j.1755‑5949.2010.00147.x20406252
    [Google Scholar]
  106. ReddyP.H. ManczakM. YinX. GradyM.C. MitchellA. KandimallaR. KuruvaC.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease.J. Investig. Med.20166481220123410.1136/jim‑2016‑00024027521081
    [Google Scholar]
  107. ShakeriA. SahebkarA. Optimized curcumin formulations for the treatment of Alzheimer’s disease: A patent evaluation.J. Neurosci. Res.201694211111310.1002/jnr.2369626577706
    [Google Scholar]
  108. GoozeeK.G. ChatterjeeP. SohrabiH.R. ShenK.K. BallB. DaveP. ManYanC. AsihP.R. TaddeiK. MartinsR.N. Targeting preclinical stages of Alzheimer’s disease: a clinical trial to assess the efficacy of curcumin using brain biomarkers.Alzheimers Dement.2016127S_Part_12616710.1016/j.jalz.2016.06.1224
    [Google Scholar]
  109. HuangH.C. ZhengB.W. GuoY. ZhaoJ. ZhaoJ.Y. MaX.W. JiangZ.F. Antioxidative and neuroprotective effects of curcumin in an Alzheimer’s disease rat model co-treated with intracerebroventricular streptozotocin and subcutaneous D-galactose.J. Alzheimers Dis.201652389991110.3233/JAD‑15087227060945
    [Google Scholar]
  110. ObulesuM. JhansilakshmiM. Neuroprotective role of nanoparticles against Alzheimer’s disease.Curr. Drug Metab.201617214214910.2174/13892002170216011416034126806041
    [Google Scholar]
  111. DominguezL.J. BarbagalloM. Dietary approaches and supplements in the prevention of cognitive decline and Alzheimer’s disease.Curr. Pharm. Des.201622668870010.2174/138161282266615120400073326635270
    [Google Scholar]
  112. ShiW. DolaiS. RizkS. HussainA. TariqH. AverickS. L’AmoreauxW. El IdrissiA. BanerjeeP. RajaK. Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAM dendrimer curcumin conjugate for therapeutic applications.Org. Lett.20079265461546410.1021/ol702370m18020348
    [Google Scholar]
  113. SanmukhaniJ. SatodiaV. TrivediJ. PatelT. TiwariD. PanchalB. GoelA. TripathiC.B. Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial.Phytother. Res.201428457958510.1002/ptr.502523832433
    [Google Scholar]
  114. LoprestiA.L. MaesM. MakerG.L. HoodS.D. DrummondP.D. Curcumin for the treatment of major depression: A randomised, double-blind, placebo controlled study.J. Affect. Disord.201416736837510.1016/j.jad.2014.06.00125046624
    [Google Scholar]
  115. GokceE.C. KahveciR. GokceA. SargonM.F. KisaU. AksoyN. CemilB. ErdoganB. Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia–reperfusion injury in rats.J. Stroke Cerebrovasc. Dis.20162551196120710.1016/j.jstrokecerebrovasdis.2016.01.00826935117
    [Google Scholar]
  116. GazalM. ValenteM.R. AcostaB.A. KaufmannF.N. BraganholE. LencinaC.L. StefanelloF.M. GhisleniG. KasterM.P. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats.Eur. J. Pharmacol.201472413213910.1016/j.ejphar.2013.12.02824384407
    [Google Scholar]
  117. RinwaP. KumarA. Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice.Brain Res.20121488385010.1016/j.brainres.2012.10.00223099054
    [Google Scholar]
  118. MotterliniR. ForestiR. BassiR. GreenC.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress.Free Radic. Biol. Med.20002881303131210.1016/S0891‑5849(00)00294‑X10889462
    [Google Scholar]
  119. SomparnP. PhisalaphongC. NakornchaiS. UnchernS. MoralesN.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives.Biol. Pharm. Bull.2007301747810.1248/bpb.30.7417202663
    [Google Scholar]
  120. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.307420446769
    [Google Scholar]
  121. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. Giuffrida StellaA.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn221417882254
    [Google Scholar]
  122. CalabreseE.J. IavicoliI. CalabreseV. Hormesis: Why it is important to biogerontologists.Biogerontology201213321523510.1007/s10522‑012‑9374‑722270337
    [Google Scholar]
  123. RahmanM.A. ShuvoA.A. BepariA.K. Hasan ApuM. ShillM.C. HossainM. UddinM. IslamM.R. BakshiM.K. HasanJ. RahmanA. RahmanG.M.S. RezaH.M. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies.PLoS One2022176e027012310.1371/journal.pone.027012335767571
    [Google Scholar]
  124. TrujilloJ. ChirinoY.I. Molina-JijónE. Andérica-RomeroA.C. TapiaE. Pedraza-ChaverríJ. Renoprotective effect of the antioxidant curcumin: Recent findings.Redox Biol.20131144845610.1016/j.redox.2013.09.00324191240
    [Google Scholar]
  125. MokgalaboniK. NtamoY. ZiqubuK. NyambuyaT.M. NkambuleB.B. Mazibuko-MbejeS.E. GabuzaK.B. ChellanN. TianoL. DludlaP.V. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence.Food Funct.20211224122351224910.1039/D1FO02696H34847213
    [Google Scholar]
  126. KuhadA. PilkhwalS. SharmaS. TirkeyN. ChopraK. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity.J. Agric. Food Chem.20075525101501015510.1021/jf072396518001039
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230821102431
Loading
/content/journals/cmc/10.2174/0929867331666230821102431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test