Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673250784231011094322
2023-10-26
2024-11-20
Loading full text...

Full text loading...

References

  1. ThakurK.T. AlbaneseE. GiannakopoulosP. JetteN. LindeM. PrinceM. J. Mental, neurological, and substance use disorders.Disease Control PrioritiesWashington (DC)The International Bank for Reconstruction and Development / The World Bank2016
    [Google Scholar]
  2. SiulyS. ZhangY. Medical big data: Neurological diseases diagnosis through medical data analysis.DSE201612546410.1007/s41019‑016‑0011‑3
    [Google Scholar]
  3. RaggiA. MonastaL. BeghiE. CasoV. CastelpietraG. MondelloS. GiussaniG. LogroscinoG. MagnaniF.G. PiccininniM. PupilloE. RicciS. RonfaniL. SantaluciaP. SattinD. SchiavolinS. ToppoC. TrainiE. SteinmetzJ. NicholsE. MaR. VosT. FeiginV. LeonardiM. Incidence, prevalence and disability associated with neurological disorders in Italy between 1990 and 2019: An analysis based on the global burden of disease study 2019.J. Neurol.202226942080209810.1007/s00415‑021‑10774‑534498172
    [Google Scholar]
  4. BertoloteJ.M. Neurological disorders affect millions globally: WHO report.World Neurol.2007221
    [Google Scholar]
  5. JangC.H. OhJ. LimJ.S. KimH.J. KimJ.S. Fermented soy products: Beneficial potential in neurodegenerative diseases.Foods202110363610.3390/foods1003063633803607
    [Google Scholar]
  6. PistollatoF. BattinoM. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases.Trends Food Sci. Technol.2014401628110.1016/j.tifs.2014.07.012
    [Google Scholar]
  7. BerlinJ. DewickP.M. BarzW. GrisebachH. Biosynthesis of coumestrol in Phaseolus aureus.Phytochemistry19721151689169310.1016/0031‑9422(72)85020‑9
    [Google Scholar]
  8. YildizF. Phytoestrogens in functional foods.CRC Press201910.1201/9780429113802
    [Google Scholar]
  9. SonnenscheinC. SotoA.M. An updated review of environmental estrogen and androgen mimics and antagonists.J. Steroid Biochem. Mol. Biol.1998651-614315010.1016/S0960‑0760(98)00027‑29699867
    [Google Scholar]
  10. WhittenP.L. LewisC. RussellE. NaftolinF. Potential adverse effects of phytoestrogens.J. Nutr.1995125S3771S776S7884563
    [Google Scholar]
  11. ThomasB.F. ZeiselS.H. BusbyM.G. HillJ.M. MitchellR.A. SchefflerN.M. BrownS.S. BloedenL.T. DixK.J. JeffcoatA.R. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection.J. Chromatogr., Biomed. Appl.2001760219120510.1016/S0378‑4347(01)00269‑911530977
    [Google Scholar]
  12. ThompsonL.U. BoucherB.A. LiuZ. CotterchioM. KreigerN. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan.Nutr. Cancer200654218420110.1207/s15327914nc5402_516898863
    [Google Scholar]
  13. BranhamW.S. DialS.L. MolandC.L. HassB.S. BlairR.M. SheehanD.M. FangH. ShiL. TongW. PerkinsR.G. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor.J. Nutr.2002132465866410.1093/jn/132.4.65811925457
    [Google Scholar]
  14. WangT. WangY. ZhuangX. LuanF. ZhaoC. CordeiroM.N.D.S. Interaction of coumarin phytoestrogens with ERα and ERβ: A molecular dynamics simulation study.Molecules2020255116510.3390/molecules2505116532150902
    [Google Scholar]
  15. BingolZ. KızıltaşH. GörenA.C. KoseL.P. TopalM. DurmazL. AlwaselS.H. Gulcinİ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.) – profiling of phenolic compounds by LC-HRMS.Heliyon202175e0698610.1016/j.heliyon.2021.e0698634027185
    [Google Scholar]
  16. WhittenP.L. PatisaulH.B. YoungL.J. Neurobehavioral actions of coumestrol and related isoflavonoids in rodents.Neurotoxicol. Teratol.2002241475410.1016/S0892‑0362(01)00192‑111836071
    [Google Scholar]
  17. KoiralaP. SeongS.H. JungH.A. ChoiJ.S. Comparative molecular docking studies of lupeol and lupenone isolated from Pueraria lobata that inhibits BACE1: Probable remedies for Alzheimer’s disease.Asian Pac. J. Trop. Med.201710121117112210.1016/j.apjtm.2017.10.01829268966
    [Google Scholar]
  18. JantaratnotaiN. UtaisincharoenP. SanvarindaP. ThampithakA. SanvarindaY. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia.Int. Immunopharmacol.201317248348810.1016/j.intimp.2013.07.01323938252
    [Google Scholar]
  19. PogačnikL. OtaA. Poklar UlrihN. An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases.Cells20209357610.3390/cells903057632121302
    [Google Scholar]
  20. FekriK. NayebiA.M. MahmoudiJ. Sadigh-EteghadS. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions.Pharm. Sci.2022292135143
    [Google Scholar]
  21. WalfA.A. FryeC.A. Administration of estrogen receptor beta-specific selective estrogen receptor modulators to the hippocampus decrease anxiety and depressive behavior of ovariectomized rats.Pharmacol. Biochem. Behav.200786240741410.1016/j.pbb.2006.07.00316916539
    [Google Scholar]
  22. MichelT. HalabalakiM. SkaltsounisA.L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources.Planta Med.201379751453210.1055/s‑0032‑132830023479392
    [Google Scholar]
  23. TaujenisL. PadarauskasA. CesevičienėJ. LemežienėN. ButkutėB. Determination of coumestrol in lucerne by ultra-high pressure liquid chromatography-mass spectrometry.Chemija20162716064
    [Google Scholar]
  24. MartinL.M. CastilhoM.C. SilveiraM.I. AbreuJ.M. Liquid chromatographic validation of a quantitation method for phytoestrogens, biochanin-a, coumestrol, daidzein, formononetin, and genistein, in lucerne.J. Liq. Chromatogr. Relat. Technol.200629192875288410.1080/10826070600961076
    [Google Scholar]
  25. MoravcováJ. KleinováT. LoučkaR. The determination of coumestrol in alfalfa (Medicago sativa) by capillary electrophoresis.Plant Soil Environ.200248522422910.17221/4230‑PSE
    [Google Scholar]
  26. KnucklesB.E. MillerR.E. BickoffE.M. Quantitative determination of coumestrol in dried alfalfa and alfalfa leaf protein concentrates containing chlorophyll.J. Assoc. Off. Anal. Chem.197558598398610.1093/jaoac/58.5.9831158842
    [Google Scholar]
  27. LivingstonA.L. BickoffE.M. GuggolzJ. ThompsonC.R. Alfalfa estrogens, quantitative determination of coumestrol in fresh and dried alfalfa.J. Agric. Food Chem.19619213513710.1021/jf60114a013
    [Google Scholar]
  28. BickoffE.M. LivingstonA.L. WittS.C. KnucklesB.F. GuggolzJ. SpencerR.R. Isolation of coumestrol and other phenolics from alfalfa by countercurrent distribution.J. Pharm. Sci.196453121496149910.1002/jps.260053121314255129
    [Google Scholar]
  29. KnucklesB.E. DeFremeryD. KohlerG.O. Coumestrol content of fractions obtained during wet processing of alfalfa.J. Agric. Food Chem.19762461177118010.1021/jf60208a03412201
    [Google Scholar]
  30. LeeE.J. JiménezZ. SeoK.H. NamG.B. KangY.G. LeeT.R. KimD. YangD.C. Mass production of coumestrol from soybean (Glycine max) adventitious roots through bioreactor: effect on collagen production.Plant Biotechnol. Rep.20201419911010.1007/s11816‑019‑00589‑2
    [Google Scholar]
  31. HutabaratL.S. GreenfieldH. MulhollandM. Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography.J. Chromatogr. A20008861-2556310.1016/S0021‑9673(00)00444‑110950275
    [Google Scholar]
  32. LookhartG.L. Note on an improved method of extracting and quantitating coumestrol from soybeans.Cereal Chem.1979564386388
    [Google Scholar]
  33. HabibR. NoureenN. NadeemN. Decoding common features of neurodegenerative disorders: from differentially expressed genes to pathways.Curr. Genomics201819430031210.2174/138920291866617100510054929755292
    [Google Scholar]
  34. AlafuzoffI. InceP.G. ArzbergerT. Al-SarrajS. BellJ. BodiI. BogdanovicN. BugianiO. FerrerI. GelpiE. GentlemanS. GiacconeG. IronsideJ.W. KavantzasN. KingA. KorkolopoulouP. KovácsG.G. MeyronetD. MonoranuC. ParchiP. ParkkinenL. PatsourisE. RoggendorfW. RozemullerA. Stadelmann-NesslerC. StreichenbergerN. ThalD.R. KretzschmarH. Staging/typing of Lewy body related α-synuclein pathology: A study of the BrainNet Europe Consortium.Acta Neuropathol.2009117663565210.1007/s00401‑009‑0523‑219330340
    [Google Scholar]
  35. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  36. HardyJ.A. HigginsG.A. Alzheimer’s disease: The amyloid cascade hypothesis.Science1992256505418418510.1126/science.15660671566067
    [Google Scholar]
  37. VergaraC. HoubenS. SuainV. YilmazZ. De DeckerR. Vanden DriesV. BoomA. MansourS. LeroyK. AndoK. BrionJ.P. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo.Acta Neuropathol.2019137339741210.1007/s00401‑018‑1953‑530599077
    [Google Scholar]
  38. PetersenR.C. SmithG.E. WaringS.C. IvnikR.J. TangalosE.G. KokmenE. Mild cognitive impairment: Clinical characterization and outcome.Arch. Neurol.199956330330810.1001/archneur.56.3.30310190820
    [Google Scholar]
  39. CarmasinJ.S. RothR.M. RabinL.A. EnglertJ.J. FlashmanL.A. SaykinA.J. Stability of subjective executive functioning in older adults with aMCI and subjective cognitive decline.Arch. Clin. Neuropsychol.20213661012101810.1093/arclin/acaa12933454755
    [Google Scholar]
  40. SeidelK. MahlkeJ. SiswantoS. KrügerR. HeinsenH. AuburgerG. BouzrouM. GrinbergL.T. WichtH. KorfH.W. den DunnenW. RübU. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies.Brain Pathol.201525212113510.1111/bpa.1216824995389
    [Google Scholar]
  41. DicksonD.W. FujishiroH. DelleDonneA. MenkeJ. AhmedZ. KlosK.J. JosephsK.A. FrigerioR. BurnettM. ParisiJ.E. AhlskogJ.E. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease.Acta Neuropathol.2008115443744410.1007/s00401‑008‑0345‑718264713
    [Google Scholar]
  42. TrovatoB. MagrìB. CastorinaA. MaugeriG. D’AgataV. MusumeciG. Effects of exercise on skeletal muscle pathophysiology in Huntington’s disease.J. Funct. Morphol. Kinesiol.2022724010.3390/jfmk702004035645302
    [Google Scholar]
  43. CraufurdD. ThompsonJ.C. SnowdenJ.S. Behavioral changes in Huntington disease.Neuropsychiatry Neuropsychol. Behav. Neurol.200114421922611725215
    [Google Scholar]
  44. ChaturvediR.K. AdhihettyP. ShuklaS. HennessyT. CalingasanN. YangL. StarkovA. KiaeiM. CannellaM. SassoneJ. CiammolaA. SquitieriF. BealM.F. Impaired PGC-1α function in muscle in Huntington’s disease.Hum. Mol. Genet.200918163048306510.1093/hmg/ddp24319460884
    [Google Scholar]
  45. CastroC.C. PagnussatA.S. MouraN. da CunhaM.J. MachadoF.R. WyseA.T.S. NettoC.A. Coumestrol treatment prevents Na +, K + -ATPase inhibition and affords histological neuroprotection to male rats receiving cerebral global ischemia.Neurol. Res.201436319820610.1179/1743132813Y.000000028624512013
    [Google Scholar]
  46. WangJ. PantopoulosK. Regulation of cellular iron metabolism.Biochem. J.2011434336538110.1042/BJ2010182521348856
    [Google Scholar]
  47. BuslK.M. GreerD.M. Hypoxic-ischemic brain injury: Pathophysiology, neuropathology and mechanisms.NeuroRehabilitation201026151310.3233/NRE‑2010‑053120130351
    [Google Scholar]
  48. OrreniusS. McCabeM.J.Jr NicoteraP. Ca2+-dependent mechanisms of cytotoxicity and programmed cell death.Toxicol. Lett.199264-65Spec No35736410.1016/0378‑4274(92)90208‑21335178
    [Google Scholar]
  49. Chand, S.P.; Marwaha, R.; Bender, R.M. Anxiety (Nursing). In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023.33760520
  50. SteinM.B. StecklerT. Behavioral Neurobiology of Anxiety and Its treatment.SpringerBerlin, Heidelberg201010.1007/978‑3‑642‑02912‑7
    [Google Scholar]
  51. Jongen-RêloA.L. AmaralD.G. Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study.Eur. J. Neurosci.19981092924293310.1111/j.1460‑9568.1998.00299.x9758162
    [Google Scholar]
  52. LimW. JeongM. BazerF.W. SongG. Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades.J. Cell. Physiol.2017232486287110.1002/jcp.2549427431052
    [Google Scholar]
  53. CookeP.S. NanjappaM.K. KoC. PrinsG.S. HessR.A. Estrogens in male physiology.Physiol. Rev.2017973995104310.1152/physrev.00018.201628539434
    [Google Scholar]
  54. DurmazL. ErturkA. AkyüzM. Polat KoseL. UcE.M. BingolZ. SaglamtasR. AlwaselS. Gulcinİ. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol.Molecules20222710309110.3390/molecules2710309135630566
    [Google Scholar]
  55. GandhiS. AbramovA.Y. SinghA. KukretiR. SasoL. KukretiS. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Front. Aging Neurosci.2012248385
    [Google Scholar]
  56. ZuoL. ZhouT. PannellB.K. ZieglerA.C. BestT.M. Biological and physiological role of reactive oxygen species - the good, the bad and the ugly.Acta Physiol.2015214332934810.1111/apha.1251525912260
    [Google Scholar]
  57. MonteroG. ArriagadaF. GüntherG. BolloS. MuraF. BerríosE. MoralesJ. Phytoestrogen coumestrol: Antioxidant capacity and its loading in albumin nanoparticles.Int. J. Pharm.2019562869510.1016/j.ijpharm.2019.03.02930885651
    [Google Scholar]
  58. AhmadA. RamasamyK. MajeedA.B.A. ManiV. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones.Pharm. Biol.201553575876610.3109/13880209.2014.94279125756802
    [Google Scholar]
  59. LiuM.H. TsuangF.Y. SheuS.Y. SunJ.S. ShihC.M. The protective effects of coumestrol against amyloid-β peptide- and lipopolysaccharide-induced toxicity on mice astrocytes.Neurol. Res.201133666367210.1179/1743132810Y.000000002921708076
    [Google Scholar]
  60. KimD.C. Investigation of coumestrol as a potent IKK-beta inhibitor using microglia cell system and computer aided drug design technology.Int. J. Eng. Res. Technol.20181114150
    [Google Scholar]
  61. YouJ.S. ChoI.A. KangK.R. OhJ.S. YuS.J. LeeG.J. SeoY.S. KimS.G. KimC.S. KimD.K. ImH.J. KimJ.S. Coumestrol counteracts interleukin-1β-induced catabolic effects by suppressing inflammation in primary rat chondrocytes.Inflammation2017401799110.1007/s10753‑016‑0455‑727709316
    [Google Scholar]
  62. Juárez-ChairezM.F. Meza-MárquezO.G. Márquez-FloresY.K. Jiménez-MartínezC. Potential anti-inflammatory effects of legumes: A review.Br. J. Nutr.2022128112158216910.1017/S000711452200013735042569
    [Google Scholar]
  63. GàoX. SchöttkerB. Reduction-oxidation pathways involved in cancer development: A systematic review of literature reviews.Oncotarget2017831518885190610.18632/oncotarget.1712828881698
    [Google Scholar]
  64. QinM. ZhangJ. XuC. PengP. TanL. LiuS. HuangJ. Knockdown of NIK and IKKβ-binding protein (NIBP) reduces colorectal cancer metastasis through down-regulation of the canonical NF-κBsignaling pathway and suppression of MAPK signaling mediated through ERK and JNK.PLoS One2017121e017059510.1371/journal.pone.017059528125661
    [Google Scholar]
  65. SharmaV.K. MehtaV. SinghT.G. Alzheimer’s disorder: Epigenetic connection and associated risk factors.Curr. Neuropharmacol.202018874075310.2174/1570159X1866620012812564131989902
    [Google Scholar]
  66. SharmaV.K. SinghT.G. CREB: A multifaceted target for Alzheimer’s disease.Curr. Alzheimer Res.202117141280129310.2174/156720501866621021815225333602089
    [Google Scholar]
  67. KwakY.D. WangR. LiJ.J. ZhangY.W. XuH. LiaoF.F. Differential regulation of BACE1 expression by oxidative and nitrosative signals.Mol. Neurodegener.2011611710.1186/1750‑1326‑6‑1721371311
    [Google Scholar]
  68. MangialascheF. PolidoriM.C. MonasteroR. ErcolaniS. CamardaC. CecchettiR. MecocciP. Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment.Ageing Res. Rev.20098428530510.1016/j.arr.2009.04.00219376275
    [Google Scholar]
  69. KoiralaP. SeongS. JungH. ChoiJ. comparative evaluation of the antioxidant and anti-Alzheimer’s disease potential of coumestrol and puerarol isolated from Pueraria lobata using molecular modeling studies.Molecules201823478510.3390/molecules2304078529597336
    [Google Scholar]
  70. MoreiraA.C. SilvaA.M. BrancoA.F. BaldeirasI. PereiraG.C. SeiçaR. SantosM.S. SardãoV.A. Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats.J. Funct. Foods20173432933910.1016/j.jff.2017.05.002
    [Google Scholar]
  71. BelcherS.M. ZsarnovszkyA. Estrogenic actions in the brain: Estrogen, phytoestrogens, and rapid intracellular signaling mechanisms.J. Pharmacol. Exp. Ther.2001299240841411602649
    [Google Scholar]
  72. MerrillJ.E. IgnarroL.J. ShermanM.P. MelinekJ. LaneT.E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide.J. Immunol.199315142132214110.4049/jimmunol.151.4.21328102159
    [Google Scholar]
  73. ChaoC.C. HuS. MolitorT.W. ShaskanE.G. PetersonP.K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism.J. Immunol.199214982736274110.4049/jimmunol.149.8.27361383325
    [Google Scholar]
  74. KamijoR. HaradaH. MatsuyamaT. BoslandM. GerecitanoJ. ShapiroD. LeJ. KohS.I. KimuraT. GreenS.J. MakT.W. TaniguchiT. VilčekJ. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages.Science199426351531612161510.1126/science.75104197510419
    [Google Scholar]
  75. LennikovA. MirabelliP. MukwayaA. SchaupperM. ThangaveluM. LachotaM. AliZ. JensenL. LagaliN. Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis.Angiogenesis201821226728510.1007/s10456‑018‑9594‑929332242
    [Google Scholar]
  76. WisniewskiD. LoGrassoP. CalaycayJ. MarcyA. Assay for IkappaB kinases using an in vivo biotinylated IkappaB protein substrate.Anal. Biochem.1999274222022810.1006/abio.1999.428710527519
    [Google Scholar]
  77. PingH. YangF. WangM. NiuY. XingN. IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer.Oncol. Rep.20163631658166410.3892/or.2016.491527432067
    [Google Scholar]
  78. BaharE. KimJ.Y. YoonH. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways.Int. J. Mol. Sci.2017189198910.3390/ijms1809198928914791
    [Google Scholar]
  79. NarayananK.B. ParkH.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways.Apoptosis201520219620910.1007/s10495‑014‑1073‑125563856
    [Google Scholar]
  80. MoraleM.C. SerraP.A. L’EpiscopoF. TiroloC. CanigliaS. TestaN. GennusoF. GiaquintaG. RocchittaG. DesoleM.S. MieleE. MarchettiB. Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: Glia dictates resistance versus vulnerability to neurodegeneration.Neuroscience2006138386987810.1016/j.neuroscience.2005.07.06016337092
    [Google Scholar]
  81. ErikssonG. ZetterströmM. Cortes ToroV. BartfaiT. IverfeldtK. Hypersensitive cytokine response to beta-amyloid 25-35 in astroglial cells from IL-1 receptor type I-deficient mice.Int. J. Mol. Med.19981120120610.3892/ijmm.1.1.2019852220
    [Google Scholar]
  82. GaoTaslimiP. AslanH.E. DemirY. OztaskinN. MaraşA. Gulçinİ. GoksuS. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia.Int. J. Biol. Macromol.2018119857863
    [Google Scholar]
  83. Schedin-WeissS. InoueM. HromadkovaL. TeranishiY. YamamotoN.G. WiehagerB. BogdanovicN. WinbladB. Sandebring-MattonA. FrykmanS. TjernbergL.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels.Alzheimers Res. Ther.2017915710.1186/s13195‑017‑0279‑128764767
    [Google Scholar]
  84. SeongS.H. KimB.R. ChoM.L. KimT.S. ImS. HanS. JeongJ.W. JungH.A. ChoiJ.S. Phytoestrogen coumestrol selectively inhibits monoamine oxidase-a and amyloid β self-aggregation.Nutrients20221418382210.3390/nu1418382236145197
    [Google Scholar]
  85. OlanowC.W. TattonW.G. Etiology and pathogenesis of Parkinson’s disease.Annu. Rev. Neurosci.199922112314410.1146/annurev.neuro.22.1.12310202534
    [Google Scholar]
  86. ZhuJ. ChuC.T. Mitochondrial dysfunction in Parkinson’s disease.J. Alzheimers Dis.201020S2S325S33410.3233/JAD‑2010‑10036320442495
    [Google Scholar]
  87. StefanisL. α-synuclein in Parkinson’s disease.Cold Spring Harb. Perspect. Med.201222a00939910.1101/cshperspect.a00939922355802
    [Google Scholar]
  88. HirschE.C. HunotS. Neuroinflammation in Parkinson’s disease: A target for neuroprotection?Lancet Neurol.20098438239710.1016/S1474‑4422(09)70062‑619296921
    [Google Scholar]
  89. LiuB. GaoH.M. WangJ.Y. JeohnG.H. CooperC.L. HongJ.S. Role of nitric oxide in inflammation-mediated neurodegeneration.Ann. N. Y. Acad. Sci.2002962131833110.1111/j.1749‑6632.2002.tb04077.x12076984
    [Google Scholar]
  90. KimI.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans.Antioxidants2021107106410.3390/antiox1007106434209224
    [Google Scholar]
  91. ChenH.Q. WangX.J. JinZ.Y. XuX.M. ZhaoJ.W. XieZ.J. Protective effect of isoflavones from Trifolium pratense on dopaminergic neurons.Neurosci. Res.200862212313010.1016/j.neures.2008.07.00118675857
    [Google Scholar]
  92. LubbersL.S. ZafianP.T. GautreauxC. GordonM. AlvesS.E. CorreaL. LorrainD.S. HickeyG.J. LuineV. Estrogen receptor (ER) subtype agonists alter monoamine levels in the female rat brain.J. Steroid Biochem. Mol. Biol.2010122531031710.1016/j.jsbmb.2010.08.00520800684
    [Google Scholar]
  93. LeeD. YoonS. LeeJ. LimD. YoonC. ImH. LeeK. Amyloid fibril formation of α-synuclein is modulated via the estrogen receptor ligand binding domain of estrogen receptor α bound with tamoxifen-based small molecules.Bull. Korean Chem. Soc.202041327427810.1002/bkcs.11956
    [Google Scholar]
  94. DiasV. JunnE. MouradianM.M. The role of oxidative stress in Parkinson’s disease.J. Parkinsons Dis.20133446149110.3233/JPD‑13023024252804
    [Google Scholar]
  95. GorzkiewiczJ. BartoszG. Sadowska-BartoszI. The potential effects of phytoestrogens: The role in neuroprotection.Molecules20212610295410.3390/molecules2610295434065647
    [Google Scholar]
  96. ChenC.M. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease.Chang Gung Med. J.201134213515221539755
    [Google Scholar]
  97. AnastacioJ.B.R. SanchesE.F. NicolaF. OdorcykF. FabresR.B. NettoC.A. Phytoestrogen coumestrol attenuates brain mitochondrial dysfunction and long-term cognitive deficits following neonatal hypoxia–ischemia.Int. J. Dev. Neurosci.2019791869510.1016/j.ijdevneu.2019.10.00931693927
    [Google Scholar]
  98. KumarA. RatanR.R. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly.J. Huntingtons Dis.20165321723710.3233/JHD‑16020527662334
    [Google Scholar]
  99. PaveseN. GerhardA. TaiY.F. HoA.K. TurkheimerF. BarkerR.A. BrooksD.J. PicciniP. Microglial activation correlates with severity in Huntington disease: A clinical and PET study.Neurology200666111638164310.1212/01.wnl.0000222734.56412.1716769933
    [Google Scholar]
  100. PolitisM. PaveseN. TaiY.F. KiferleL. MasonS.L. BrooksD.J. TabriziS.J. BarkerR.A. PicciniP. Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: A multimodal imaging study.Hum. Brain Mapp.201132225827010.1002/hbm.2100821229614
    [Google Scholar]
  101. BjörkqvistM. WildE.J. ThieleJ. SilvestroniA. AndreR. LahiriN. RaibonE. LeeR.V. BennC.L. SouletD. MagnussonA. WoodmanB. LandlesC. PouladiM.A. HaydenM.R. Khalili-ShiraziA. LowdellM.W. BrundinP. BatesG.P. LeavittB.R. MöllerT. TabriziS.J. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease.J. Exp. Med.200820581869187710.1084/jem.2008017818625748
    [Google Scholar]
  102. HsiaoH.Y. ChenY.C. ChenH.M. TuP.H. ChernY. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease.Hum. Mol. Genet.20132291826184210.1093/hmg/ddt03623372043
    [Google Scholar]
  103. DhakalA. BobrinB.D. Cognitive Deficits. StatPearls.StatPearls Publishing2021
    [Google Scholar]
  104. BelanoffJ.K. GrossK. YagerA. SchatzbergA.F. Corticosteroids and cognition.J. Psychiatr. Res.200135312714510.1016/S0022‑3956(01)00018‑811461709
    [Google Scholar]
  105. KalachnikJ.E. HanzelT.E. SevenichR. HarderS.R. Benzodiazepine behavioral side effects: Review and implications for individuals with mental retardation.Am. J. Ment. Retard.2002107537641010.1352/0895‑8017(2002)107<0376:BBSERA>2.0.CO;212186578
    [Google Scholar]
  106. FitzpatrickJ.L. MizeA.L. WadeC.B. HarrisJ.A. ShapiroR.A. DorsaD.M. Estrogen-mediated neuroprotection against β-amyloid toxicity requires expression of estrogen receptor α or β and activation of the MAPK pathway.J. Neurochem.200282367468210.1046/j.1471‑4159.2002.01000.x12153491
    [Google Scholar]
  107. AguirreC. JayaramanA. PikeC. BaudryM. Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β.J. Neurochem.201011551277128710.1111/j.1471‑4159.2010.07038.x20977477
    [Google Scholar]
  108. MoyanoP. SanjuanJ. GarcíaJ.M. AnadonM.J. LoboM. PelayoA. GarcíaJ. FrejoM.T. del PinoJ. Primary hippocampal estrogenic dysfunction induces synaptic proteins alteration and neuronal cell death after single and repeated paraquat exposure.Food Chem. Toxicol.202013611096110.1016/j.fct.2019.11096131715309
    [Google Scholar]
  109. IwasakiY. HosoyaT. TakebayashiH. OgawaY. HottaY. IkenakaK. The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes.Development20031302460276035
    [Google Scholar]
  110. FekriK. MahmoudiJ. Sadigh-EteghadS. FarajdokhtF. Mohajjel NayebiA. Coumestrol alleviates oxidative stress, apoptosis and cognitive impairments through hippocampal estrogen receptor-beta in male mouse model of chronic restraint stress.Ulum-i Daruyi202128226027410.34172/PS.2021.44
    [Google Scholar]
  111. LinfordN.J. DorsaD.M. 17β-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin.Steroids20026713-141029104010.1016/S0039‑128X(02)00062‑412441188
    [Google Scholar]
  112. ZhaoP. Yue-wei LEED. MaZ. HuangL. SunL. LiY. ChenJ. NiuJ. The antioxidant effect of carnosol in bovine aortic endothelial cells is mainly mediated via estrogen receptor α pathway.Biol. Pharm. Bull.201235111947195510.1248/bpb.b12‑0032522971524
    [Google Scholar]
  113. AngelovaP.R. AbramovA.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration.FEBS Lett.2018592569270210.1002/1873‑3468.1296429292494
    [Google Scholar]
  114. BebbingtonP. HurryJ. TennantC. SturtE. WingJ.K. Epidemiology of mental disorders in Camberwell.Psychol. Med.198111356157910.1017/S00332917000528796973770
    [Google Scholar]
  115. JenkinsR. Sex differences in depression.Br. J. Hosp. Med.19873854854863690086
    [Google Scholar]
  116. WalfA.A. FryeC.A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior.Neuropsychopharmacology20063161097111110.1038/sj.npp.130106716554740
    [Google Scholar]
  117. WalfA.A. KoonceC.J. FryeC.A. Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice.Behav. Neurosci.2008122597498110.1037/a001274918823154
    [Google Scholar]
  118. FekriK. Mohajjel NayebiA. MahmoudiJ. Sadigh-EteghadS. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions.Ulum-i Daruyi202329213514310.34172/PS.2022.22
    [Google Scholar]
  119. NitatoriT. SatoN. WaguriS. KarasawaY. ArakiH. ShibanaiK. KominamiE. UchiyamaY. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis.J. Neurosci.19951521001101110.1523/JNEUROSCI.15‑02‑01001.19957869078
    [Google Scholar]
  120. de Souza WyseA.T. StreckE.L. WormP. WajnerA. RitterF. NettoC.A. Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia.Neurochem. Res.200025797197510.1023/A:100750452530110959493
    [Google Scholar]
  121. BlomgrenK. HagbergH. Free radicals, mitochondria, and hypoxia–ischemia in the developing brain.Free Radic. Biol. Med.200640338839710.1016/j.freeradbiomed.2005.08.04016443153
    [Google Scholar]
  122. SilachevD. PlotnikovE. PevznerI. ZorovaL. BalakirevaA. GulyaevM. PirogovY. SkulachevV. ZorovD. Neuroprotective effects of mitochondria-targeted plastoquinone in a rat model of neonatal hypoxic–ischemic brain injury.Molecules2018238187110.3390/molecules2308187130060443
    [Google Scholar]
  123. Canal CastroC. PagnussatA.S. OrlandiL. WormP. MouraN. EtgenA.M. Alexandre NettoC. Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats.Brain Res.20121474829010.1016/j.brainres.2012.07.02522824334
    [Google Scholar]
  124. CastroC. C. de SouzaP.A. MunhozC. D. Coumestrol pre-treatment improves spatial learning and memory deficits following transient cerebral ischemia recruiting hippocampal GluR2 AMPA receptors.Hippocampus2022326413418
    [Google Scholar]
  125. SharmaV. SinghT. GargN. DhimanS. GuptaS. RahmanM. NajdaA. Walasek-JanuszM. KamelM. AlbadraniG. AkhtarM. SaleemA. AltyarA. Abdel-DaimM. Dysbiosis and Alzheimer’s Disease: A role for chronic stress?Biomolecules202111567810.3390/biom1105067833946488
    [Google Scholar]
  126. VishwasS. GulatiM. KapoorB. GuptaS. SinghS.K. AwasthiA. KhanA. GoyalA. BansalA. BaishnabS. SinghT.G. AroraS. PorwalO. KumarA. KumarV. Expanding the arsenal against Huntington’s disease-herbal drugs and their nanoformulations.Curr. Neuropharmacol.202119795798910.2174/1570159X1866620110909082433167841
    [Google Scholar]
  127. GuptaS. KhanA. VishwasS. GulatiM. Gurjeet SinghT. DuaK. Kumar SinghS. NajdaA. SayedA.A. AlmeerR. Abdel-DaimM.M. Demethyleneberberine: A possible treatment for Huntington’s disease.Med. Hypotheses202115311063910.1016/j.mehy.2021.11063934229236
    [Google Scholar]
  128. SaklaniP. KhanH. SinghT.G. GuptaS. GrewalA.K. Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: A proposed mechanistic insight.Mol. Biol. Rep.20224910101011011310.1007/s11033‑022‑07594‑935657450
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673250784231011094322
Loading
/content/journals/cmc/10.2174/0109298673250784231011094322
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AD; Coumestrol; neurological diseases; PD; pharmacological aspects; phytoestrogen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test