Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230726095222
2023-08-10
2024-11-20
Loading full text...

Full text loading...

References

  1. SakrY. JaschinskiU. WitteboleX. SzakmanyT. LipmanJ. Ñamendys-SilvaS.A. Martin-LoechesI. LeoneM. LupuM.N. VincentJ.L. Sepsis in intensive care unit patients: Worldwide data from the intensive care over nations audit.Open Forum Infect. Dis.2018512ofy31310.1093/ofid/ofy31330555852
    [Google Scholar]
  2. HonoreP.M. JacobsR. HendrickxI. De WaeleE. Van GorpV. Joannes-BoyauO. De RegtJ. BoerW. SpapenH.D. Biomarkers in critical illness: Have we made progress?Int. J. Nephrol. Renovasc. Dis.2016925325610.2147/IJNRD.S11321927799811
    [Google Scholar]
  3. HeilmannE. GregorianoC. SchuetzP. Biomarkers of infection: Are they useful in the ICU?Semin. Respir. Crit. Care Med.201940446547510.1055/s‑0039‑1696689.31585473
    [Google Scholar]
  4. RelloJ BlanchL PreiserJ-C De WaeleJJ How to improve research on management of critically ill patients: Lessons learned from negative randomised clinical trials in the intensive care unit.Anaesth. Crit. Care Pain Med.202039217317410.1016/j.accpm.2020.02.00132058127
    [Google Scholar]
  5. WareL.B. Biomarkers in critical illness: New insights and challenges for the future.Am. J. Respir. Crit. Care Med.2017196894494510.1164/rccm.201704‑0831ED28475361
    [Google Scholar]
  6. ConwayS.R. WongH.R. Biomarker panels in critical care.Crit. Care Clin.20203618910410.1016/j.ccc.2019.08.00731733684
    [Google Scholar]
  7. HeffernanA.J. DennyK.J. Host diagnostic biomarkers of infection in the ICU: Where are we and where are we going?Curr. Infect. Dis. Rep.2021234410.1007/s11908‑021‑00747‑033613126
    [Google Scholar]
  8. KabekkoduS.P. ShuklaV. VargheseV.K. AdigaD. Vethil JishnuP. ChakrabartyS. SatyamoorthyK. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities.Wiley Interdiscip. Rev. RNA2020112e156310.1002/wrna.156331436881
    [Google Scholar]
  9. TabaeiS. TabaeeS.S. Implications for MicroRNA involvement in the prognosis and treatment of atherosclerosis.Mol. Cell. Biochem.202147631327133610.1007/s11010‑020‑03992‑433389489
    [Google Scholar]
  10. ChenW. SinhaB. LiY. BenowitzL. ChenQ. ZhangZ. PatelN.J. Aziz-SultanA.M. ChioccaA.E. WangX. Monogenic, polygenic, and MicroRNA markers for ischemic stroke.Mol. Neurobiol.20195621330134310.1007/s12035‑018‑1055‑329948938
    [Google Scholar]
  11. PeplowP.V. MartinezB. Blood microRNAs as potential diagnostic markers for hemorrhagic stroke.Neural Regen. Res.2017121131810.4103/1673‑5374.19896528250731
    [Google Scholar]
  12. Sun C.; Liu J.; Duan F.; Cong L.; Qi X.; The role of the microRNA regulatory network in Alzheimer's disease: A bioinformatics analysis. Arch. Med. Sci., 2021, 18(1), 206-222.10.5114/aoms/8061935154541PMC8826944
  13. ZhangX HuangF YangD PengT LuG. Identification of miRNA-mRNA crosstalk in respiratory syncytial virus- (RSV-) Associated pediatric pneumonia through integrated mirnaome and transcriptome analysis.Mediators Inflamm.20202020891953410.1155/2020/891953432410870
    [Google Scholar]
  14. Galván-RománJM Lancho-SánchezÁ Luquero-BuenoS Vega-PirisL CurbeloJ Manzaneque-PradalesM GómezM de la FuenteH Ortega-GómezM AspaJ Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia.PLoS One20201510e024092610.1371/journal.pone.024092633095833
    [Google Scholar]
  15. EbrahimiS. HashemyS.I. SahebkarA. Aghaee BakhtiariS.H. Microrna regulation of androgen receptor in castration-resistant prostate cancer: Premises, promises, and potentials.Curr. Mol. Pharmacol.202114455956910.2174/187446721366620122312185033357209
    [Google Scholar]
  16. GorabiAM KiaieN SathyapalanT Al-RasadiK JamialahmadiT SahebkarA The role of MicroRNAs in regulating cytokines and growth factors in coronary artery disease: The ins and outs.J. Immunol. Res.20202020519303610.1155/2020/5193036.32775466
    [Google Scholar]
  17. Fathullahzadeh, S.; Mirzaei, H.; Honardoost, M. A.; Sahebkar, A.; & Salehi, M.; Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene. Ther., 2016, 23(10), 327-332.10.1038/cgt.2016.34
  18. MirzaeiH. SahebkarA. MohammadiM. YariR. SalehiH. JafariM. NamdarA. KhabazianE. JaafariM. MirzaeiH. Circulating micrornas in hepatocellular carcinoma: Potential diagnostic and prognostic biomarkers.Curr. Pharm. Des.201622345257526910.2174/138161282266616030311083826935703
    [Google Scholar]
  19. InnsJ. JamesV. Circulating microRNAs for the prediction of metastasis in breast cancer patients diagnosed with early stage disease.Breast201524436436910.1016/j.breast.2015.04.00125957467
    [Google Scholar]
  20. LiG. Morris-BlancoK.C. LopezM.S. YangT. ZhaoH. VemugantiR. LuoY. Impact of microRNAs on ischemic stroke: From pre- to post-disease.Prog. Neurobiol.2018163-164597810.1016/j.pneurobio.2017.08.00228842356
    [Google Scholar]
  21. GorabiA.M. GhanbariM. SathyapalanT. JamialahmadiT. SahebkarA. Implications of microRNAs in the pathogenesis of atherosclerosis and prospects for therapy.Curr. Drug Targets202122151738174910.2174/138945012266621012014345033494668
    [Google Scholar]
  22. MahmoudiA. ButlerA.E. JamialahmadiT. SahebkarA. The role of exosomal miRNA in nonalcoholic fatty liver disease.J. Cell. Physiol.202223742078209410.1002/jcp.3069935137416
    [Google Scholar]
  23. TavasolianF. AbdollahiE. RezaeiR. Momtazi-borojeniA.A. HenrotinY. SahebkarA. Altered expression of MicroRNAs in rheumatoid arthritis.J. Cell. Biochem.2018119147848710.1002/jcb.2620528598026
    [Google Scholar]
  24. LiuN.K. XuX.M. MicroRNA in central nervous system trauma and degenerative disorders.Physiol. Genomics2011431057158010.1152/physiolgenomics.00168.201021385946
    [Google Scholar]
  25. CondratC.E. ThompsonD.C. BarbuM.G. BugnarO.L. BobocA. CretoiuD. SuciuN. CretoiuS.M. VoineaS.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells902027631979244
    [Google Scholar]
  26. MorrisN.L. HammerA.M. CannonA.R. GagnonR.C. LiX. ChoudhryM.A. Dysregulation of microRNA biogenesis in the small intestine after ethanol and burn injury.Biochim. Biophys. Acta Mol. Basis Dis.20171863102645265310.1016/j.bbadis.2017.03.02528404517
    [Google Scholar]
  27. SzilágyiB. FejesZ. PócsiM. KappelmayerJ. NagyB.Jr Role of sepsis modulated circulating microRNAs.EJIFCC201930212814531263389
    [Google Scholar]
  28. BedreagO.H. RogobeteA.F. DumacheR. SarandanM. CradigatiA.C. PapuricaM. CraciunescuM.C. PopaD.M. LucaL. NartitaR. SandescD. Use of circulating microRNAs as biomarkers in critically ill polytrauma patients.Biomark. Genom. Med.20157413113810.1016/j.bgm.2015.11.002
    [Google Scholar]
  29. ShuklaS.K. SharmaA.K. BhartiR. KulshresthaV. KaloniaA. ShawP. Can miRNAs serve as potential markers in thermal burn injury: An in silico approach.J. Burn Care Res.2020411576410.1093/jbcr/irz18331701154
    [Google Scholar]
  30. LanH LuH WangX JinH. MicroRNAs as potential biomarkers in cancer: opportunities and challenges.Biomed. Res. Int.2015201512509410.1155/2015/12509425874201
    [Google Scholar]
  31. KrethS. HübnerM. HinskeL.C. MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine.Anesth. Analg.2018126267068110.1213/ANE.000000000000244428922229
    [Google Scholar]
  32. TerrinoniA. CalabreseC. BassoD. AitaA. CaporaliS. PlebaniM. BernardiniS. The circulating miRNAs as diagnostic and prognostic markers.Clin. Chem. Lab. Med.201957793295310.1515/cclm‑2018‑083830838832
    [Google Scholar]
  33. KadirR.R.A. AlwjwajM. BayraktutanU. MicroRNA: An emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke.Cell. Mol. Neurobiol.20204251301131933368054
    [Google Scholar]
  34. GizaD.E. Fuentes-MatteiE. BullockM.D. TudorS. GoblirschM.J. FabbriM. LupuF. YeungS.C.J. VasilescuC. CalinG.A. Cellular and viral microRNAs in sepsis: Mechanisms of action and clinical applications.Cell Death Differ.201623121906191810.1038/cdd.2016.9427740627
    [Google Scholar]
  35. DumacheR. RogobeteA.F. BedreagO.H. SarandanM. CradigatiA.C. PapuricaM. DumbuleuC.M. NartitaR. SandescD. Use of miRNAs as biomarkers in sepsis.Anal. Cell Pathol.2015201518671610.1155/2015/18671626221578
    [Google Scholar]
  36. Abd-El-FattahA.A. SadikN.A.H. ShakerO.G. AboulftouhM.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia.Cell Biochem. Biophys.201367387588410.1007/s12013‑013‑9575‑y23559272
    [Google Scholar]
  37. WangJ. ChenJ. SenS. MicroRNA as biomarkers and diagnostics.J. Cell. Physiol.20162311253010.1002/jcp.2505626031493
    [Google Scholar]
  38. WiemerE.A.C. Prognostic circulating MicroRNA biomarkers in early-stage non-small cell lung cancer: A role for miR-150.Clin. Pharmacol. Ther.2018103696897010.1002/cpt.97229285749
    [Google Scholar]
  39. WangH. PengR. WangJ. QinZ. XueL. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage.Clin. Epigenetics20181015910.1186/s13148‑018‑0492‑129713393
    [Google Scholar]
  40. SaliminejadK. Khorram KhorshidH.R. GhaffariS.H. Why have microRNA biomarkers not been translated from bench to clinic?.Future Oncol.201915880180310.2217/fon‑2018‑081230652506
    [Google Scholar]
  41. BenzF. RoyS. TrautweinC. RoderburgC. LueddeT. Circulating MicroRNAs as biomarkers for sepsis.Int. J. Mol. Sci.20161717810.3390/ijms1701007826761003
    [Google Scholar]
  42. DardenD.B. StortzJ.A. HollenM.K. CoxM.C. AppleC.G. HawkinsR.B. RinconJ.C. LopezM.C. WangZ. NavarroE. HagenJ.E. ParvataneniH.K. BruskoM.A. KladdeM. BacherR. BrumbackB.A. BrakenridgeS.C. BakerH.V. CogleC.R. MohrA.M. EfronP.A. Identification of unique mRNA and miRNA expression patterns in bone marrow hematopoietic stem and progenitor cells after trauma in older adults.Front. Immunol.202011128910.3389/fimmu.2020.0128932670283
    [Google Scholar]
  43. PapuricaM. RogobeteA.F. SandescD. CradigatiC.A. SarandanM. CrisanD.C. HorhatF.G. BorugaO. DumacheR. NilimaK.R. NituR. StancaH. BedreagO.H. The expression of nuclear transcription factor kappa B (NF-κB) in the case of critically Ill polytrauma patients with sepsis and its interactions with microRNAs.Biochem. Genet.201654433734710.1007/s10528‑016‑9727‑z27003424
    [Google Scholar]
  44. ZhuJ. ChenZ. MengZ. JuM. ZhangM. WuG. GuoH. TianZ. Electroacupuncture alleviates surgical trauma-induced hypothalamus pituitary adrenal axis hyperactivity via microRNA-142.Front. Mol. Neurosci.20171030810.3389/fnmol.2017.0030829021740
    [Google Scholar]
  45. BratuL. RogobeteA. PapuricaM. SandescD. CradigatiC. SarandanM. DumacheR. PopoviciS. CrisanD. StancaH. TanasescuS. BedreagO. Literature research regarding miRNAs’ expression in the assessment and evaluation of the critically Ill polytrauma patient with traumatic brain and spinal cord injury.Clin. Lab.20166210/20162019202410.7754/Clin.Lab.2016.16032728164531
    [Google Scholar]
  46. StricklandE.R. WollerS.A. HookM.A. GrauJ.W. MirandaR.C. The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine.Neurochem. Int.201477404910.1016/j.neuint.2014.05.00524867772
    [Google Scholar]
  47. SongJ. LiN. XiaY. GaoZ. ZouS.F. YanY.H. LiS.H. WangY. MengY.K. YangJ.X. KangT.G. Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation.J. Mol. Neurosci.201660111512910.1007/s12031‑016‑0784‑x27389368
    [Google Scholar]
  48. WuJ. LiJ. ChenW.K. LiuS. LiuJ.H. ZhangJ.S. FangK.W. MicroRNA-214 affects fibroblast differentiation of adipose-derived mesenchymal stem cells by targeting mitofusin-2 during pelvic floor dysfunction in SD rats with birth trauma.Cell. Physiol. Biochem.20174251870188710.1159/00047957028772265
    [Google Scholar]
  49. SimeoliR. MontagueK. JonesH.R. CastaldiL. ChambersD. KelleherJ.H. VaccaV. PitcherT. GristJ. Al-AhdalH. WongL.F. PerrettiM. LaiJ. MouritzenP. HeppenstallP. MalcangioM. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma.Nat. Commun.201781177810.1038/s41467‑017‑01841‑529176651
    [Google Scholar]
  50. WangW. TangS. LiH. LiuR. SuY. ShenL. SunM. NingB. MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma.Exp. Cell Res.20183701243010.1016/j.yexcr.2018.06.00229883711
    [Google Scholar]
  51. ChenL. DongR. LuY. ZhouY. LiK. ZhangZ. PengM. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice.Brain Behav. Immun.20197818820110.1016/j.bbi.2019.01.02030685530
    [Google Scholar]
  52. LuísA. HacklM. JafarmadarM. KeiblC. JilgeJ.M. GrillariJ. BahramiS. KozlovA.V. Circulating miRNAs associated with ER stress and organ damage in a preclinical model of trauma hemorrhagic shock.Front. Med.2020756809610.3389/fmed.2020.56809633072784
    [Google Scholar]
  53. ChenLJ YangL ChengX XueYK ChenLB Overexpression of miR-24 is involved in the formation of hypocoagulation state after severe trauma by inhibiting the synthesis of coagulation factor X.Dis. Markers20172017364969310.1155/2017/3649693.28694557
    [Google Scholar]
  54. LiZ. NiJ. Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma.Exp. Ther. Med.20171455069507410.3892/etm.2017.518329201216
    [Google Scholar]
  55. ZhuJ. ChenZ. TianJ. MengZ. JuM. WuG. TianZ. miR-34b attenuates trauma-induced anxiety-like behavior by targeting CRHR1.Int. J. Mol. Med.20174019010010.3892/ijmm.2017.298128498394
    [Google Scholar]
  56. PatelM. CaiQ. DingD. SalviR. HuZ. HuB.H. The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma.PLoS One201383e5847110.1371/journal.pone.005847123472202
    [Google Scholar]
  57. StricklandE.R. HookM.A. BalaramanS. HuieJ.R. GrauJ.W. MirandaR.C. MicroRNA dysregulation following spinal cord contusion: Implications for neural plasticity and repair.Neuroscience201118614616010.1016/j.neuroscience.2011.03.06321513774
    [Google Scholar]
  58. ChenY. SunJ. ChenW. WuG. WangY. ZhuK. WangJ. miR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation.Signal Transduct. Target. Ther.2019412710.1038/s41392‑019‑0061‑x31637007
    [Google Scholar]
  59. LiangP. LvC. JiangB. LongX. ZhangP. ZhangM. XieT. HuangX. MicroRNA profiling in denatured dermis of deep burn patients.Burns201238453454010.1016/j.burns.2011.10.01422360957
    [Google Scholar]
  60. SongJ. SaemanM.R. BaerL.A. CaiA.R. WadeC.E. WolfS.E. Exercise altered the skeletal muscle MicroRNAs and gene expression profiles in burn rats with hindlimb unloading.J. Burn Care Res.2017381111910.1097/BCR.000000000000044427753701
    [Google Scholar]
  61. HuD. YuY. WangC. LiD. TaiY. FangL. microRNA-98 mediated microvascular hyperpermeability during burn shock phase via inhibiting FIH-1.Eur. J. Med. Res.20152015110.1186/s40001‑015‑0141‑525903459
    [Google Scholar]
  62. HaijunZ. YonghuiY. JiakeC. HongjieD. Detection of the microRNA expression profile in skeletal muscles of burn trauma at the early stage in rats.Ulus. Travma Acil Cerrahi Derg.201521424124726374409
    [Google Scholar]
  63. YuY. LiX. LiuL. ChaiJ. HaijunZ. ChuW. YinH. MaL. DuanH. XiaoM. miR-628 promotes burn-induced skeletal muscle atrophy via targeting IRS1.Int. J. Biol. Sci.201612101213122410.7150/ijbs.1549627766036
    [Google Scholar]
  64. ZhouJ. LianH. ZhaoT. XuG. MicroRNA-451 increases vascular permeability and suppresses angiogenesis in pulmonary burn injury in a rat model.Adv. Clin. Exp. Med.202029111241124810.17219/acem/12629933269809
    [Google Scholar]
  65. LiuJ.S. DuJ. ChengX. ZhangX.Z. LiY. ChenX.L. Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury.J. Chin. Med. Assoc.2019821289590110.1097/JCMA.000000000000018931800531
    [Google Scholar]
  66. LiX. LiuL. YangJ. YuY. ChaiJ. WangL. MaL. YinH. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation.EBioMedicine20168728210.1016/j.ebiom.2016.04.03027428420
    [Google Scholar]
  67. KeJ. BianX. LiuH. LiB. HuoR. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression.Mol. Med.20192515410.1186/s10020‑019‑0122‑131829167
    [Google Scholar]
  68. JiangB. TangY. WangH. ChenC. YuW. SunH. DuanM. LinX. LiangP. Down-regulation of long non-coding RNA HOTAIR promotes angiogenesis via regulating miR-126/SCEL pathways in burn wound healing.Cell Death Dis.20201116110.1038/s41419‑020‑2247‑031974341
    [Google Scholar]
  69. YuY. ChaiJ. ZhangH. ChuW. LiuL. MaL. DuanH. LiB. LiD. miR-194 Promotes burn-induced hyperglycemia via attenuating IGF-IR expression.Shock201442657858410.1097/SHK.000000000000025825186839
    [Google Scholar]
  70. ZhouJ. ZhangX. LiangP. RenL. ZengJ. ZhangM. ZhangP. HuangX. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury.Biol. Open20165321121910.1242/bio.01491026794609
    [Google Scholar]
  71. YanY. WuR. BoY. ZhangM. ChenY. WangX. HuangM. LiuB. ZhangL. Induced pluripotent stem cells-derived microvesicles accelerate deep second-degree burn wound healing in mice through miR-16-5p-mediated promotion of keratinocytes migration.Theranostics202010229970998310.7150/thno.4663932929328
    [Google Scholar]
  72. LuoJ. ZhanJ. YouH. ChengX. MicroRNA-146a/Toll-like receptor 4 signaling protects against severe burn-induced remote acute lung injury in rats via anti-inflammation.Mol. Med. Rep.20181768377838410.3892/mmr.2018.887729658581
    [Google Scholar]
  73. LiuL. YinH. HaoX. SongH. ChaiJ. DuanH. ChangY. YangL. WuY. HanS. WangX. YueX. ChiY. LiuW. WangQ. WangH. BaiH. ShiX. LiS. Down-Regulation of miR-301a-3p reduces burn-induced vascular endothelial apoptosis by potentiating hMSC-secreted IGF-1 and PI3K/Akt/FOXO3a pathway.iScience202023810138310.1016/j.isci.2020.10138332745988
    [Google Scholar]
  74. YuY. YangL. HanS. WuY. LiuL. ChangY. WangX. ChaiJ. MIR-190B Alleviates cell autophagy and burn-induced Skeletal muscle wasting via modulating PHLPP1/Akt/FoxO3A signaling pathway.Shock201952551352110.1097/SHK.000000000000128430407372
    [Google Scholar]
  75. ShiM. ZongX. ChenL. GuoX. DingX. MiR-506-3p regulates autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression. In Vitro Cell. Dev. Biol. Anim.202056752253210.1007/s11626‑020‑00472‑332754856
    [Google Scholar]
  76. CaoW. FengY. LncRNA XIST promotes extracellular matrix synthesis, proliferation and migration by targeting miR-29b-3p/COL1A1 in human skin fibroblasts after thermal injury.Biol. Res.20195215210.1186/s40659‑019‑0260‑531540582
    [Google Scholar]
  77. PodsiadA. StandifordT.J. BallingerM.N. EakinR. ParkP. KunkelS.L. MooreB.B. BhanU. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway.Am. J. Physiol. Lung Cell. Mol. Physiol.20163105L465L47510.1152/ajplung.00224.201526589478
    [Google Scholar]
  78. WuX WuC GuW JiH ZhuL. Serum exosomal micrornas predict acute respiratory distress syndrome events in patients with severe community-acquired pneumonia.Biomed. Res. Int.20192019361202010.1155/2019/361202031467883
    [Google Scholar]
  79. HuangS. FengC. ZhaiY.Z. ZhouX. LiB. WangL.L. ChenW. LvF.Q. LiT.S. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis.Exp. Ther. Med.20171341235124410.3892/etm.2017.415128413462
    [Google Scholar]
  80. LiuZ. YuH. GuoQ. MicroRNA-20a promotes inflammation via the nuclear factor-κB signaling pathway in pediatric pneumonia.Mol. Med. Rep.201817161261729115456
    [Google Scholar]
  81. HuangF ZhangJ YangD ZhangY HuangJ YuanY LiX LuG MicroRNA expression profile of whole blood is altered in adenovirus-infected pneumonia children.Mediators Inflamm.20182018232064010.1155/2018/232064030405317
    [Google Scholar]
  82. HuangF. BaiJ. ZhangJ. YangD. FanH. HuangL. ShiT. LuG. Identification of potential diagnostic biomarkers for pneumonia caused by adenovirus infection in children by screening serum exosomal microRNAs.Mol. Med. Rep.20191954306431410.3892/mmr.2019.1010730942467
    [Google Scholar]
  83. HermannS. BrandesF. KirchnerB. BuschmannD. BorrmannM. KleinM. KotschoteS. BoninM. ReithmairM. KaufmannI. SchellingG. PfafflM.W. Diagnostic potential of circulating cell-free microRNAs for community-acquired pneumonia and pneumonia-related sepsis.J. Cell. Mol. Med.20202420120541206410.1111/jcmm.1583732916773
    [Google Scholar]
  84. WangY. LiH. ShiY. WangS. XuY. LiH. LiuD. miR-143-3p impacts on pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal pneumonia by regulating TLR4/MyD88/NF-κB pathway.Biosci. Rep.2020407BSR2019341910.1042/BSR20193419
    [Google Scholar]
  85. ZhangL. YanH. WangH. WangL. BaiB. MaY. TieY. XiZ. MicroRNA (miR)-429 promotes inflammatory injury by targeting kruppel-like factor 4 (KLF4) in neonatal pneumonia.Curr. Neurovasc. Res.202017110210910.2174/156720261766620012814363432003671
    [Google Scholar]
  86. ChuC. LeiX. LiY. LuoY. DingY. ZhouW. JiW. High expression of miR-222-3p in children with Mycoplasma pneumoniae pneumonia.Ital. J. Pediatr.201945116310.1186/s13052‑019‑0750‑731842954
    [Google Scholar]
  87. FeiS. CaoL. PanL. microRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells.Mol. Med. Rep.20181734019402629328418
    [Google Scholar]
  88. GaoW. YangH. MicroRNA-124-3p attenuates severe community-acquired pneumonia progression in macrophages by targeting tumor necrosis factor receptor-associated factor 6.Int. J. Mol. Med.20194321003101030535475
    [Google Scholar]
  89. ChenC. LinS. ZhouL. WangJ. ChenJ. YuR. LuoH. LuJ. XueZ. ChenM. MicroRNA-127-5p attenuates severe pneumonia via tumor necrosis factor receptor-associated factor 1.Exp. Ther. Med.20202032856286210.3892/etm.2020.899732765782
    [Google Scholar]
  90. GuoL. WangQ. ZhangD. MicroRNA-4485 ameliorates severe influenza pneumonia via inhibition of the STAT3/PI3K/AKT signaling pathway.Oncol. Lett.2020205110.3892/ol.2020.1207832963621
    [Google Scholar]
  91. ZhangJ. MaoF. ZhaoG. WangH. YanX. ZhangQ. Long non-coding RNA SNHG16 promotes lipopolysaccharides-induced acute pneumonia in A549 cells via targeting miR-370-3p/IGF2 axis.Int. Immunopharmacol.20207810606510.1016/j.intimp.2019.10606531841752
    [Google Scholar]
  92. YinL. MaY. WangW. ZhuY. The critical function of miR-1323/Il6 axis in children with Mycoplasma pneumoniae pneumonia.J. Pediatr.202097555255833347836
    [Google Scholar]
  93. LiS. CuiW. SongQ. ZhouY. LiJ. miRNA-302e attenuates inflammation in infantile pneumonia though the RelA/BRD4/NF-κB signaling pathway.Int. J. Mol. Med.2019441475610.3892/ijmm.2019.419431115487
    [Google Scholar]
  94. Ruiz-CastillaM. RocaO. MasclansJ.R. BarretJ.P. Recent advances in biomarkers in severe burns. Shock: Injury, Inflammation, and Sepsis.Lab. Clin. Approaches.2016452117125
    [Google Scholar]
  95. KaddouraI. Abu-SittahG. IbrahimA. KaramanoukianR. PapazianN. Burn injury: Review of pathophysiology and therapeutic modalities in major burns.Ann. Burns Fire Disasters20173029510229021720
    [Google Scholar]
  96. SonkolyE. WeiT. JansonP.C.J. SääfA. LundebergL. Tengvall-LinderM. NorstedtG. AleniusH. HomeyB. ScheyniusA. StåhleM. PivarcsiA. MicroRNAs: Novel regulators involved in the pathogenesis of psoriasis?PLoS One200727e61010.1371/journal.pone.000061017622355
    [Google Scholar]
  97. PanJ. YeZ. ZhangN. LouT. CaoZ. MicroRNA-217 regulates interstitial pneumonia via IL-6.Biotechnol. Biotechnol. Equip.20183261541154710.1080/13102818.2018.1519379
    [Google Scholar]
  98. KingsleyS.M.K. BhatB.V. Role of microRNAs in sepsis.Inflamm. Res.201766755356910.1007/s00011‑017‑1031‑928258291
    [Google Scholar]
  99. Van LooverenK. Van WyngeneL. LibertC. An extracellular microRNA can rescue lives in sepsis.EMBO Rep.2020211e4919310.15252/embr.20194919331724800
    [Google Scholar]
  100. Shankar-HariM. LordG.M. How might a diagnostic microRNA signature be used to speed up the diagnosis of sepsis?Expert Rev. Mol. Diagn.201414324925110.1586/14737159.2014.89915124649814
    [Google Scholar]
  101. SøndergaardE.S. AlamiliM. CoskunM. GögenurI. MicroRNA’s are novel biomarkers in sepsis – A systematic review.Trends Anaesth. Crit. Care.20155515115610.1016/j.tacc.2015.08.001
    [Google Scholar]
  102. ZhangW. JiaJ. LiuZ. SiD. MaL. ZhangG. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0.BMC Pulm. Med.20191919310.1186/s12890‑019‑0836‑431088429
    [Google Scholar]
  103. XuR. ShaoZ. CaoQ. MicroRNA-144-3p enhances LPS induced septic acute lung injury in mice through downregulating Caveolin-2.Immunol. Lett.2021231182510.1016/j.imlet.2020.12.01533418009
    [Google Scholar]
  104. LiuD. WangZ. WangH. RenF. LiY. ZouS. XuJ. XieL. The protective role of miR-223 in sepsis-induced mortality.Sci. Rep.20201011769110.1038/s41598‑020‑74965‑233077816
    [Google Scholar]
  105. DangCP LeelahavanichkulA Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis.PLoS One2020157e023603810.1371/journal.pone.023603832658933
    [Google Scholar]
  106. WangX. GuH. QinD. YangL. HuangW. EssandohK. WangY. CaldwellC.C. PengT. ZingarelliB. FanG.C. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis.Sci. Rep.2015511372110.1038/srep1372126348153
    [Google Scholar]
  107. TongL. TangC. CaiC. GuanX. Upregulation of the microRNA rno-miR-146b-5p may be involved in the development of intestinal injury through inhibition of Kruppel- like factor 4 in intestinal sepsis.Bioengineered20201111334134910.1080/21655979.2020.185147633200654
    [Google Scholar]
  108. JiangL. NiJ. ShenG. XiaZ. ZhangL. XiaS. PanS. QuH. LiX. Upregulation of endothelial cell-derived exosomal microRNA-125b-5p protects from sepsis-induced acute lung injury by inhibiting topoisomerase II alpha.Inflamm. Res.202170220521610.1007/s00011‑020‑01415‑033386874
    [Google Scholar]
  109. ZhuH.C. SongW.W. ZhaoM.L. ZhangR.M. TianX. Effect of miR-132 on lung injury in sepsis rats via regulating Sirt1 expression.Eur. Rev. Med. Pharmacol. Sci.20212521042104933577060
    [Google Scholar]
  110. AnR FengJ XiC XuJ SunL. MiR-146a attenuates sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression.Oxid. Med. Cell Longev.20182018716305710.1155/2018/716305730224945
    [Google Scholar]
  111. GaoM. WangX. ZhangX. HaT. MaH. LiuL. KalbfleischJ.H. GaoX. KaoR.L. WilliamsD.L. LiC. Attenuation of cardiac dysfunction in polymicrobial sepsis by MicroRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression.J. Immunol.2015195267268210.4049/jimmunol.140315526048146
    [Google Scholar]
  112. FunahashiY. KatoN. MasudaT. NishioF. KitaiH. IshimotoT. KosugiT. TsuboiN. MatsudaN. MaruyamaS. KadomatsuK. miR-146a targeted to splenic macrophages prevents sepsis-induced multiple organ injury.Lab. Invest.20199981130114210.1038/s41374‑019‑0190‑430700845
    [Google Scholar]
  113. SongY. DouH. LiX. ZhaoX. LiY. LiuD. JiJ. LiuF. DingL. NiY. HouY. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis.Stem Cells20173551208122110.1002/stem.256428090688
    [Google Scholar]
  114. SangZ ZhangP WeiY DongS. MiR-214-3p attenuates sepsis-induced myocardial dysfunction in mice by inhibiting autophagy through PTEN/AKT/mTOR pathway.Biomed. Res. Int.20202020140903810.1155/2020/140903832714974
    [Google Scholar]
  115. ZhengG QiuG GeM MengJ ZhangG WangJ HuangR ShuQ XuJ MiR-10a in peripheral blood mononuclear cells is a biomarker for sepsis and has anti-inflammatory function.Mediators Inflamm.20202020437098310.1155/2020/437098332214905
    [Google Scholar]
  116. DuX TianD WeiJ YanC HuP WuX YangW ZhuZ MiR-199a-5p exacerbated intestinal barrier dysfunction through inhibiting surfactant protein D and activating NF- κ B pathway in sepsis.Mediators Inflamm.20202020827502610.1155/2020/827502632508527
    [Google Scholar]
  117. QinL.Y. WangM.X. ZhangH. MiR-133a alleviates renal injury caused by sepsis by targeting BNIP3L.Eur. Rev. Med. Pharmacol. Sci.20202452632263932196613
    [Google Scholar]
  118. TackeF. RoderburgC. BenzF. CardenasD.V. LueddeM. HippeH.J. FreyN. VucurM. GautheronJ. KochA. TrautweinC. LueddeT. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients.Crit. Care Med.20144251096110410.1097/CCM.000000000000013124413579
    [Google Scholar]
  119. ChenL. XieW. WangL. ZhangX. LiuE. KouQ. MiRNA-133a aggravates inflammatory responses in sepsis by targeting SIRT1.Int. Immunopharmacol.20208810684810.1016/j.intimp.2020.10684832771944
    [Google Scholar]
  120. ZhangJ. WangC.J. TangX.M. WeiY.K. Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: A Chinese population-based study.Eur. Rev. Med. Pharmacol. Sci.201822144604461030058697
    [Google Scholar]
  121. ZhouY. SongY. ShaikhZ. LiH. ZhangH. CaudleY. ZhengS. YanH. HuD. StuartC. YinD. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2.Oncotarget2017829473174732910.18632/oncotarget.1763628525390
    [Google Scholar]
  122. CaoY.Y. WangZ. WangZ.H. JiangX.G. LuW.H. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling.Int. Immunopharmacol.20219010721810.1016/j.intimp.2020.107218
    [Google Scholar]
  123. Vasques-NóvoaF. LaundosT.L. CerqueiraR.J. Quina-RodriguesC. Soares-dos-ReisR. BaganhaF. RibeiroS. MendonçaL. GonçalvesF. ReguengaC. VerhesenW. CarneiroF. PaivaJ.A. SchroenB. Castro-ChavesP. Pinto-do-ÓP. NascimentoD.S. HeymansS. Leite-MoreiraA.F. Roncon-AlbuquerqueR.Jr MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotensin II reactivity in septic shock.Crit. Care Med.2018469e945e95410.1097/CCM.000000000000329629979224
    [Google Scholar]
  124. LiuJ. ShiK. ChenM. XuL. HongJ. HuB. YangX. SunR. Elevated miR-155 expression induces immunosuppression via CD39 + regulatory T-cells in sepsis patient.Int. J. Infect. Dis.20154013514110.1016/j.ijid.2015.09.01626433115
    [Google Scholar]
  125. LvX. ZhangY. CuiY. RenY. LiR. RongQ. Inhibition of microRNA-155 relieves sepsis-induced liver injury through inactivating the JAK/STAT pathway.Mol. Med. Rep.20151246013601810.3892/mmr.2015.418826251957
    [Google Scholar]
  126. DuX WuM TianD ZhouJ WangL ZhanL. MicroRNA-21 contributes to acute liver injury in LPS-induced sepsis mice by inhibiting PPAR α expression.PPAR Res.20202020663302210.1155/2020/663302233424957
    [Google Scholar]
  127. ShengB. ZhaoL. ZangX. ZhenJ. ChenW. miR-375 ameliorates sepsis by downregulating miR-21 level via inhibiting JAK2-STAT3 signaling.Biomed. Pharmacother.20178625426110.1016/j.biopha.2016.11.14728006751
    [Google Scholar]
  128. FuD. DongJ. LiP. TangC. ChengW. XuZ. ZhouW. GeJ. XiaC. ZhangZ. MiRNA-21 has effects to protect kidney injury induced by sepsis.Biomed. Pharmacother.2017941138114410.1016/j.biopha.2017.07.09828821165
    [Google Scholar]
  129. WangS. WangJ. ZhangZ. MiaoH. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis.J. Nephrol.201730454355010.1007/s40620‑017‑0405‑y28497421
    [Google Scholar]
  130. van der HeideV. MöhnleP. RinkJ. BriegelJ. KrethS. Down-regulation of MicroRNA-31 in CD4+ T cells contributes to immunosuppression in human sepsis by promoting TH2skewing.Anesthesiology2016124490892210.1097/ALN.000000000000103126978146
    [Google Scholar]
  131. LiuY. GuanH. ZhangJ.L. ZhengZ. WangH.T. TaoK. HanS.C. SuL.L. HuD. Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1.Am. J. Physiol. Cell Physiol.20183144C449C45510.1152/ajpcell.00173.201729351405
    [Google Scholar]
  132. LiuL. LiT.M. LiuX.R. BaiY.P. LiJ. TangN. WangX.B. MicroRNA-140 inhibits skeletal muscle glycolysis and atrophy in endotoxin-induced sepsis in mice via the WNT signaling pathway.Am. J. Physiol. Cell Physiol.20193172C189C19910.1152/ajpcell.00419.201831042421
    [Google Scholar]
  133. SunW. LiH. GuJ. Up-regulation of microRNA-574 attenuates lipopolysaccharide- or cecal ligation and puncture-induced sepsis associated with acute lung injury.Cell Biochem. Funct.202038784785810.1002/cbf.349632090367
    [Google Scholar]
  134. WangH. ZhangP. ChenW. FengD. JiaY. XieL. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects.Clin. Chem. Lab. Med.20125081423142810.1515/cclm‑2011‑082622868808
    [Google Scholar]
  135. WangH.J. DengJ. WangJ.Y. ZhangP.J. XinZ. XiaoK. FengD. JiaY.H. LiuY.N. XieL.X. Serum miR-122 levels are related to coagulation disorders in sepsis patients.Clin. Chem. Lab. Med.201452692793310.1515/cclm‑2013‑089924421215
    [Google Scholar]
  136. GaoM. YuT. LiuD. ShiY. YangP. ZhangJ. WangJ. LiuY. ZhangX. Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1.Clin. Sci.2021135234736510.1042/CS2020057333416075
    [Google Scholar]
  137. ZhangL.N. TianH. ZhouX.L. TianS.C. ZhangX.H. WuT.J. Upregulation of microRNA-351 exerts protective effects during sepsis by ameliorating skeletal muscle wasting through the Tead- 4 -mediated blockade of the Hippo signaling pathway.FASEB J.201832126934694710.1096/fj.201800151RR30040486
    [Google Scholar]
  138. McClureC. McPeakM.B. YoussefD. YaoZ.Q. McCallC.E. El GazzarM. Stat3 and C/EBPβ synergize to induce miR-21 and miR-181b expression during sepsis.Immunol. Cell Biol.2017951425510.1038/icb.2016.6327430527
    [Google Scholar]
  139. TodP. RókaB. KaucsárT. SzatmáriK. VizovišekM. VidmarR. FonovičM. SzénásiG. HamarP. Time-dependent mirna profile during septic acute kidney injury in mice.Int. J. Mol. Sci.20202115531610.3390/ijms2115531632727087
    [Google Scholar]
  140. ZhengD. YuY. LiM. WangG. ChenR. FanG.C. MartinC. XiongS. PengT. Inhibition of MicroRNA 195 prevents apoptosis and multiple-organ injury in mouse models of sepsis.J. Infect. Dis.2016213101661167010.1093/infdis/jiv76026704614
    [Google Scholar]
  141. MaH. WangX. HaT. GaoM. LiuL. WangR. YuK. KalbfleischJ.H. KaoR.L. WilliamsD.L. LiC. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κb activation and p53-mediated apoptotic signaling.J. Infect. Dis.2016214111773178310.1093/infdis/jiw44927683819
    [Google Scholar]
  142. ZhangH. LiH. ShaikhA. CaudleY. YaoB. YinD. Inhibition of MicroRNA-23b attenuates immunosuppression during late sepsis through NIK, TRAF1, and XIAP.J. Infect. Dis.2018218230031110.1093/infdis/jiy11629506272
    [Google Scholar]
  143. ZhangH. CaudleY. ShaikhA. YaoB. YinD. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN.Biomed. Pharmacother.201810386987810.1016/j.biopha.2018.04.09229710503
    [Google Scholar]
  144. ChengD.L. FangH.X. LiangY. ZhaoY. ShiC. MicroRNA-34a promotes iNOS secretion from pulmonary macrophages in septic suckling rats through activating STAT3 pathway.Biomed. Pharmacother.20181051276128210.1016/j.biopha.2018.06.06330021364
    [Google Scholar]
  145. LiY. KeJ. PengC. WuF. SongY. microRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis.Biomed. Pharmacother.201810827127910.1016/j.biopha.2018.08.06430223098
    [Google Scholar]
  146. ZhenJ. ChenW. ZhaoL. ZangX. LiuY. A negative Smad2/miR-9/ANO1 regulatory loop is responsible for LPS-induced sepsis.Biomed. Pharmacother.201911610901610.1016/j.biopha.2019.10901631174089
    [Google Scholar]
  147. WangZ. RuanZ. MaoY. DongW. ZhangY. YinN. JiangL. miR-27a is up regulated and promotes inflammatory response in sepsis.Cell. Immunol.2014290219019510.1016/j.cellimm.2014.06.00625043848
    [Google Scholar]
  148. GaoX.L. LiJ.Q. DongY.T. ChengE.J. GongJ.N. QinY.L. HuangY.Q. YangJ.J. WangS.J. AnD.D. Upregulation of microRNA-335-5p reduces inflammatory responses by inhibiting FASN through the activation of AMPK/ULK1 signaling pathway in a septic mouse model.Cytokine201811046647810.1016/j.cyto.2018.05.01629866515
    [Google Scholar]
  149. ZhengG. PanM. JinW. JinG. HuangY. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway.Int. Immunopharmacol.20174561210.1016/j.intimp.2017.01.02928147298
    [Google Scholar]
  150. LingY. LiZ.Z. ZhangJ.F. ZhengX.W. LeiZ.Q. ChenR.Y. FengJ.H. RETRACTED: MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome.Life Sci.20182101810.1016/j.lfs.2018.08.03730121199
    [Google Scholar]
  151. XuF. YuanJ. TianS. ChenY. ZhouF. MicroRNA-92a serves as a risk factor in sepsis-induced ARDS and regulates apoptosis and cell migration in lipopolysaccharide-induced HPMEC and A549 cell injury.Life Sci.202025611795710.1016/j.lfs.2020.11795732534035
    [Google Scholar]
  152. WangH. BeiY. ShenS. HuangP. ShiJ. ZhangJ. SunQ. ChenY. YangY. XuT. KongX. XiaoJ. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2.J. Mol. Cell. Cardiol.201694435310.1016/j.yjmcc.2016.03.01427033308
    [Google Scholar]
  153. PfeifferD. RoßmanithE. LangI. FalkenhagenD. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an in vitro sepsis model.PLoS One2017126e017985010.1371/journal.pone.017985028662100
    [Google Scholar]
  154. RahmelT. SchäferS.T. FreyU.H. AdamzikM. PetersJ. Increased circulating microRNA-122 is a biomarker for discrimination and risk stratification in patients defined by sepsis-3 criteria.PLoS One2018135e019763710.1371/journal.pone.019763729782519
    [Google Scholar]
  155. ZhuJ. LinX. YanC. YangS. ZhuZ. RETRACTED ARTICLE: microRNA-98 protects sepsis mice from cardiac dysfunction, liver and lung injury by negatively regulating HMGA2 through inhibiting NF-κB signaling pathway.Cell Cycle201918161948196410.1080/15384101.2019.163586931234706
    [Google Scholar]
  156. LiuZ. YangD. GaoJ. XiangX. HuX. LiS. WuW. CaiJ. TangC. ZhangD. DongZ. Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis.Theranostics20201026119631197510.7150/thno.5009333204323
    [Google Scholar]
  157. ChenL. YuL. ZhangR. ZhuL. ShenW. Correlation of microRNA-146a/b with disease risk, biochemical indices, inflammatory cytokines, overall disease severity, and prognosis of sepsis.Medicine20209922e1975410.1097/MD.000000000001975432481361
    [Google Scholar]
  158. HuangZ. XuH. MicroRNA-181a-5p regulates inflammatory response of macrophages in sepsis.Open Med.201914189990810.1515/med‑2019‑010631844680
    [Google Scholar]
  159. YounesN. ZhouL. AmatullahH. MeiS.H.J. HerreroR. LorenteJ.A. StewartD.J. MarsdenP. LilesW.C. HuP. dos SantosC.C. Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice.Thorax202075755656710.1136/thoraxjnl‑2019‑21356132546573
    [Google Scholar]
  160. LiM. LiW. RenF.Q. ZhangM. miRNA-186 improves sepsis induced renal injury via PTEN/PI3K/AKT/P53 pathway.Open Med.202015125426010.1515/med‑2020‑003632292821
    [Google Scholar]
  161. MöhnleP. HirschbergerS. HinskeL.C. BriegelJ. HübnerM. WeisS. DimopoulosG. BauerM. Giamarellos-BourboulisE.J. KrethS. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis.Mol. Med.20182415410.1186/s10020‑018‑0056‑z30332984
    [Google Scholar]
  162. ZhaoX. LiuD. GongW. ZhaoG. LiuL. YangL. HouY. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143.Stem Cells201432252153310.1002/stem.154324105952
    [Google Scholar]
  163. WangL. WangK. TianZ. miR-128-3p inhibits NRP1 expression and promotes inflammatory response to acute kidney injury in sepsis.Inflammation20204351772177910.1007/s10753‑020‑01251‑832500307
    [Google Scholar]
  164. SunJ. SunX. ChenJ. LiaoX. HeY. WangJ. ChenR. HuS. QiuC. microRNA-27b shuttled by mesenchymal stem cell-derived exosomes prevents sepsis by targeting JMJD3 and downregulating NF-κB signaling pathway.Stem Cell Res. Ther.20211211410.1186/s13287‑020‑02068‑w
    [Google Scholar]
  165. GeC. LiuJ. DongS. miRNA-214 protects sepsis-induced myocardial injury.Shock201850111211810.1097/SHK.000000000000097828858140
    [Google Scholar]
  166. VisitchanakunP. TangtanatakulP. TrithiphenO. SoonthornchaiW. WongphoomJ. TachaboonS. SrisawatN. LeelahavanichkulA. Plasma miR-370-3P as a biomarker of sepsis-associated encephalopathy, the transcriptomic profiling analysis of microrna-arrays from mouse brains.Shock202054334735710.1097/SHK.000000000000147331743302
    [Google Scholar]
  167. YanJ. YangF. WangD. LuY. LiuL. WangZ. MicroRNA-217 modulates inflammation, oxidative stress, and lung injury in septic mice via SIRT1.Free Radic. Res.202055111033207945
    [Google Scholar]
  168. ZhangW LuF XieY LinY ZhaoT TaoS MiR-23b negatively regulates sepsis-induced inflammatory responses by targeting ADAM10 in human THP-1 monocytes.Mediators Inflamm.20192019530654110.1155/2019/530654131780861
    [Google Scholar]
  169. FatmiA. RebiahiS.A. ChabniN. ZerroukiH. AzzaouiH. ElhabiriY. BenmansourS. Ibáñez-CabellosJ.S. SmahiM.C-E. AribiM. García-GiménezJ.L. PallardóF.V. miRNA-23b as a biomarker of culture-positive neonatal sepsis.Mol. Med.20202619410.1186/s10020‑020‑00217‑8
    [Google Scholar]
  170. YangM ZhaoL SunM. Diagnostic Value of miR-103 in patients with sepsis and noninfectious SIRS and its regulatory role in LPS-induced inflammatory response by targeting TLR4.Int. J. Genomics20202020219830810.1155/2020/219830832455124
    [Google Scholar]
  171. ZhuXG ZhangTN WenR LiuCF Overexpression of miR-150-5p alleviates apoptosis in sepsis-induced myocardial depression.Biomed. Res. Int.20202020302318610.1155/2020/302318632908879
    [Google Scholar]
  172. WangH.F. LiY. WangY.Q. LiH.J. DouL. MicroRNA-494-3p alleviates inflammatory response in sepsis by targeting TLR6.Eur. Rev. Med. Pharmacol. Sci.20192372971297731002148
    [Google Scholar]
  173. LiJ.M. ZhangH. ZuoY.J. MicroRNA-218 alleviates sepsis inflammation by negatively regulating VOPP1 via JAK/STAT pathway.Eur. Rev. Med. Pharmacol. Sci.201822175620562630229837
    [Google Scholar]
  174. LiX. YaoL. ZengX. HuB. ZhangX. WangJ. ZhuR. YuQ. miR-30c-5p alleviated pyroptosis during sepsis-induced acute kidney injury via targeting TXNIP.Inflammation202144121722810.1007/s10753‑020‑01323‑932892306
    [Google Scholar]
  175. ChenX. ChenY. DaiL. WangN. MiR-96-5p alleviates inflammatory responses by targeting NAMPT and regulating the NF-κB pathway in neonatal sepsis.Biosci. Rep.2020407BSR2020126710.1042/BSR20201267
    [Google Scholar]
  176. WangX. WangY. KongM. YangJ. MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN.Biosci. Rep.2020406BSR2020052710.1042/BSR2020052732412059
    [Google Scholar]
  177. ChenS. DingR. HuZ. YinX. XiaoF. ZhangW. YanS. LvC. MicroRNA-34a inhibition alleviates lung injury in cecal ligation and puncture induced septic mice.Front. Immunol.202011182910.3389/fimmu.2020.0182932903604
    [Google Scholar]
  178. SzilágyiB. FejesZ. PóliskaS. PócsiM. CzimmererZ. PatsalosA. FenyvesiF. RusznyákÁ. NagyG. KerekesG. BerhésM. SzűcsI. KunapuliS.P. KappelmayerJ. NagyB.Jr Reduced miR-26b expression in megakaryocytes and platelets contributes to elevated level of platelet activation status in Sepsis.Int. J. Mol. Sci.202021386610.3390/ijms2103086632013235
    [Google Scholar]
  179. WuY. LiP. GoodwinA.J. CookJ.A. HalushkaP.V. ZingarelliB. FanH. MiR-145a regulation of pericyte dysfunction in a Murine model of Sepsis.J. Infect. Dis.202022261037104510.1093/infdis/jiaa18432285112
    [Google Scholar]
  180. WangJ. YuM. YuG. BianJ. DengX. WanX. ZhuK. Serum miR-146a and miR-223 as potential new biomarkers for sepsis.Biochem. Biophys. Res. Commun.2010394118418810.1016/j.bbrc.2010.02.14520188071
    [Google Scholar]
  181. MaY. LiuY. HouH. YaoY. MengH. MiR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells.Biochem. Biophys. Res. Commun.2018500382883710.1016/j.bbrc.2018.04.16829689269
    [Google Scholar]
  182. VasilescuC. RossiS. ShimizuM. TudorS. VeroneseA. FerracinM. NicolosoM.S. BarbarottoE. PopaM. StanciuleaO. FernandezM.H. TulbureD. Bueso-RamosC.E. NegriniM. CalinG.A. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis.PLoS One2009410e740510.1371/journal.pone.000740519823581
    [Google Scholar]
  183. RoderburgC. LueddeM. Vargas CardenasD. VucurM. ScholtenD. FreyN. KochA. TrautweinC. TackeF. LueddeT. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis.PLoS One201381e5461210.1371/journal.pone.005461223372743
    [Google Scholar]
  184. LiuL. YanL.N. SuiZ. MicroRNA-150 affects endoplasmic reticulum stress via MALAT1-miR-150 axis-mediated NF-κB pathway in LPS-challenged HUVECs and septic mice.Life Sci.202126511874410.1016/j.lfs.2020.118744
    [Google Scholar]
  185. LingL. ZhangS.H. ZhiL.D. LiH. WenQ.K. LiG. ZhangW.J. RETRACTED: MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2.Biomed. Pharmacother.201810441141910.1016/j.biopha.2018.05.04229787988
    [Google Scholar]
  186. CaoX. ZhangC. ZhangX. ChenY. ZhangH. MiR-145 negatively regulates TGFBR2 signaling responsible for sepsis-induced acute lung injury.Biomed. Pharmacother.201911185285810.1016/j.biopha.2018.12.13830841464
    [Google Scholar]
  187. PanW. WeiN. XuW. WangG. GongF. LiN. MicroRNA-124 alleviates the lung injury in mice with septic shock through inhibiting the activation of the MAPK signaling pathway by downregulating MAPK14.Int. Immunopharmacol.20197610583510.1016/j.intimp.2019.10583531476692
    [Google Scholar]
  188. OuyangH. TanY. LiQ. XiaF. XiaoX. ZhengS. LuJ. ZhongJ. HuY. RETRACTED: MicroRNA-208-5p regulates myocardial injury of sepsis mice via targeting SOCS2-mediated NF-κB/HIF-1α pathway.Int. Immunopharmacol.20208110620410.1016/j.intimp.2020.10620432086130
    [Google Scholar]
  189. YangP. XiongW. ChenX. LiuJ. YeZ. Overexpression of miR-129-5p mitigates sepsis-induced acute lung injury by targeting high mobility group Box 1.J. Surg. Res.2020256233010.1016/j.jss.2020.05.10132682121
    [Google Scholar]
  190. HeZ. WangH. YueL. Endothelial progenitor cells-secreted extracellular vesicles containing microRNA-93-5p confer protection against sepsis-induced acute kidney injury via the KDM6B/H3K27me3/TNF-α axis.Exp. Cell Res.2020395211217310.1016/j.yexcr.2020.11217332679234
    [Google Scholar]
  191. ChenL. LuQ. DengF. PengS. YuanJ. LiuC. DuX. miR-103a-3p could attenuate sepsis-induced liver injury by targeting HMGB1.Inflammation20204362075208610.1007/s10753‑020‑01275‑032556802
    [Google Scholar]
  192. ZhouJ. ChaudhryH. ZhongY. AliM.M. PerkinsL.A. OwensW.B. MoralesJ.E. McGuireF.R. ZumbrunE.E. ZhangJ. NagarkattiP.S. NagarkattiM. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology.Cytokine20157118910010.1016/j.cyto.2014.09.00325265569
    [Google Scholar]
  193. WangY. WangH. ZhangC. ZhangC. YangH. GaoR. TongZ. Plasma Hsa-miR-92a-3p in correlation with lipocalin-2 is associated with sepsis-induced coagulopathy.BMC Infect. Dis.202020115510.1186/s12879‑020‑4853‑y32075600
    [Google Scholar]
  194. ZuoT. TangQ. ZhangX. ShangF. RETRACTED: MicroRNA-410-3p binds to TLR2 and alleviates myocardial mitochondrial dysfunction and chemokine production in LPS-induced sepsis.Mol. Ther. Nucleic Acids20202227328410.1016/j.omtn.2020.07.03133230433
    [Google Scholar]
  195. FangH. LiH.F. YanJ.Y. YangM. ZhangJ.P. Dexmedetomidine-up-regulated microRNA-381 exerts anti-inflammatory effects in rats with cerebral ischaemic injury via the transcriptional factor IRF4.J. Cell. Mol. Med.20202542098210933314611
    [Google Scholar]
  196. ZhangD.L. LiuX. WangQ. LiN. WuS.H. WangC. Downregulation of microRNA-196a attenuates ischemic brain injury in rats by directly targeting HMGA1.Eur. Rev. Med. Pharmacol. Sci.201923274074830720182
    [Google Scholar]
  197. PanQ ZhengJ DuD LiaoX MaC YangY ChenY ZhongW MaX MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage.Stem. Cells Int.20182018291234710.1155/2018/291234729760722
    [Google Scholar]
  198. ShanC. MaY. MicroRNA-126/stromal cell-derived factor 1/C-X-C chemokine receptor type 7 signaling pathway promotes post-stroke angiogenesis of endothelial progenitor cell transplantation.Mol. Med. Rep.20181745300530510.3892/mmr.2018.851329393458
    [Google Scholar]
  199. LiuP. HanZ. MaQ. LiuT. WangR. TaoZ. LiG. LiF. ZhangS. LiL. JiX. ZhaoH. LuoY. Upregulation of microrna-128 in the peripheral blood of acute ischemic stroke patients is correlated with stroke severity partially through inhibition of neuronal cell cycle reentry.Cell Transplant.201928783985010.1177/096368971984684831037985
    [Google Scholar]
  200. ChenC. LingC. GongJ. LiC. ZhangL. GaoS. LiZ. HuangT. WangH. GuoY. Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis.Aging20201213132341325410.18632/aging.10343132644942
    [Google Scholar]
  201. SunY. GuiH. LiQ. LuoZ.M. ZhengM.J. DuanJ.L. LiuX. MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke.CNS Neurosci. Ther.20131910813-81910.1111/cns.1214223826665
    [Google Scholar]
  202. LiuX. LiF. ZhaoS. LuoY. KangJ. ZhaoH. YanF. LiS. JiX. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke.Stroke20134471973198010.1161/STROKEAHA.111.00061323696548
    [Google Scholar]
  203. LiS. LuG. WangD. HeJ.L. ZuoL. WangH. GuZ.T. ZhouJ.S. YanF.L. DengQ.W. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression.Eur. J. Neurol.20202781625163710.1111/ene.1428232337817
    [Google Scholar]
  204. LiD.B. LiuJ.L. WangW. LuoX.M. ZhouX. LiJ.P. CaoX.L. LongX.H. ChenJ.G. QinC. Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats.Front. Aging Neurosci.201810FEB2410.3389/fnagi.2018.0002429467645
    [Google Scholar]
  205. ChenY. SongY. HuangJ. QuM. ZhangY. GengJ. ZhangZ. LiuJ. YangG.Y. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke.Front. Neurol.20178FEB5710.3389/fneur.2017.0005728289400
    [Google Scholar]
  206. WangZ.Q. LiK. HuangJ. HuoT.T. LvP.Y. MicroRNA Let-7i Is a promising serum biomarker for post-stroke cognitive impairment and alleviated OGD-induced cell damage in vitro by regulating Bcl-2.Front. Neurosci.20201421510.3389/fnins.2020.0021532265630
    [Google Scholar]
  207. MoJ.L. LiuQ. KouZ.W. WuK.W. YangP. ChenX.H. SunF.Y. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6.Glia20186671346136210.1002/glia.2330829451327
    [Google Scholar]
  208. MoJ.L. PanZ.G. ChenX. LeiY. LvL.L. QianC. SunF.Y. MicroRNA-365 knockdown prevents ischemic neuronal injury by activating oxidation resistance 1-mediated antioxidant signals.Neurosci. Bull.201935581582510.1007/s12264‑019‑00371‑y30977043
    [Google Scholar]
  209. YanQ. SunS. YuanS. WangX. ZhangZ. Inhibition of microRNA -9-5p and microRNA -128-3p can inhibit ischemic stroke-related cell death in vitro and in vivo.IUBMB Life202072112382239010.1002/iub.235732797712
    [Google Scholar]
  210. BullerB. LiuX. WangX. ZhangR.L. ZhangL. Hozeska-SolgotA. ChoppM. ZhangZ.G. MicroRNA-21 protects neurons from ischemic death.FEBS J.2010277204299430710.1111/j.1742‑4658.2010.07818.x20840605
    [Google Scholar]
  211. FangH. LiH.F. YangM. WangR.R. WangQ.Y. ZhengP.C. ZhangF.X. ZhangJ.P. RETRACTED: microRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1.Biomed. Pharmacother.201911310867110.1016/j.biopha.2019.10867130875657
    [Google Scholar]
  212. ChiW. MengF. LiY. LiP. WangG. ChengH. HanS. LiJ. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B.Brain Res.20141592223310.1016/j.brainres.2014.09.07225304362
    [Google Scholar]
  213. LiuN.N. DongZ.L. HanL.L. MicroRNA-410 inhibition of the TIMP2-dependent MAPK pathway confers neuroprotection against oxidative stress-induced apoptosis after ischemic stroke in mice.Brain Res. Bull.2018143455710.1016/j.brainresbull.2018.09.00930240841
    [Google Scholar]
  214. HuangL. MaQ. LiY. LiB. ZhangL. Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice.Exp. Neurol.2018300415010.1016/j.expneurol.2017.10.02429111308
    [Google Scholar]
  215. MaQ. DasguptaC. LiY. BajwaN.M. XiongF. HardingB. HartmanR. ZhangL. Inhibition of microRNA-210 provides neuroprotection in hypoxic–ischemic brain injury in neonatal rats.Neurobiol. Dis.20168920221210.1016/j.nbd.2016.02.01126875527
    [Google Scholar]
  216. MengZ.Y. KangH.L. DuanW. ZhengJ. LiQ.N. ZhouZ.J. MicroRNA-210 promotes accumulation of neural precursor cells around ischemic foci after cerebral ischemia by regulating the SOCS1-STAT3-VEGF-C pathway.J. Am. Heart Assoc.201875e00505210.1161/JAHA.116.00505229478968
    [Google Scholar]
  217. MaQ. DasguptaC. ShenG. LiY. ZhangL. MicroRNA-210 downregulates TET2 and contributes to inflammatory response in neonatal hypoxic-ischemic brain injury.J. Neuroinflammation2021181610.1186/s12974‑020‑02068‑w33402183
    [Google Scholar]
  218. LiB. DasguptaC. HuangL. MengX. ZhangL. MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy.Cell. Mol. Immunol.202017997699110.1038/s41423‑019‑0257‑631300734
    [Google Scholar]
  219. CaoY. ZhangH. LuX. WangJ. ZhangX. SunS. BaoZ. TianW. NingS. WangL. CuiL. Overexpression of MicroRNA-9a-5p ameliorates nlrp1 inflammasome-mediated ischemic injury in rats following ischemic stroke.Neuroscience202044410611710.1016/j.neuroscience.2020.01.00831954830
    [Google Scholar]
  220. LiuX.S. ChoppM. WangX.L. ZhangL. Hozeska-SolgotA. TangT. KassisH. ZhangR.L. ChenC. XuJ. ZhangZ.G. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke.J. Biol. Chem.201328818124781248810.1074/jbc.M112.44902523511639
    [Google Scholar]
  221. DengW. FanC. ZhaoY. MaoY. LiJ. ZhangY. TengJ. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP.J. Cell. Mol. Med.20202418109871100010.1111/jcmm.1573232790238
    [Google Scholar]
  222. XuX. WenZ. ZhaoN. XuX. WangF. GaoJ. JiangY. LiuX. MicroRNA-1906, a novel regulator of toll-like receptor 4, ameliorates ischemic injury after experimental stroke in mice.J. Neurosci.20173743104981051510.1523/JNEUROSCI.1139‑17.201728924010
    [Google Scholar]
  223. ZhangH. ChenG. QiuW. PanQ. ChenY. ChenY. MaX. Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke.J. Neurosci. Res.202098112290230110.1002/jnr.2469632725652
    [Google Scholar]
  224. WenY. ZhangX. DongL. ZhaoJ. ZhangC. ZhuC. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues.Mol. Med.201521119720910.2119/molmed.2014.0019925811992
    [Google Scholar]
  225. YaoK. YangQ. LiY. LanT. YuH. YuY. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats.PLoS One2020155e022882510.1371/journal.pone.022882532470970
    [Google Scholar]
  226. DongH. CuiB. HaoX. MicroRNA-22 alleviates inflammation in ischemic stroke via p38 MAPK pathways.Mol. Med. Rep.201920173574410.3892/mmr.2019.1026931115561
    [Google Scholar]
  227. VinciguerraA. FormisanoL. CerulloP. GuidaN. CuomoO. EspositoA. Di RenzoG. AnnunziatoL. PignataroG. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits.Mol. Ther.201422101829183810.1038/mt.2014.11324954474
    [Google Scholar]
  228. BuX. LiD. WangF. SunQ. ZhangZ. Protective role of astrocyte-derived exosomal microRNA-361 in cerebral ischemic-reperfusion injury by regulating the AMPK/MTOR signaling pathway and targeting CTSB.Neuropsychiatr. Dis. Treat.2020161863187710.2147/NDT.S26074832801720
    [Google Scholar]
  229. DhirajD.K. ChrysanthouE. MallucciG.R. BushellM. miRNAs-19b, -29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke.PLoS One2013812e8371710.1371/journal.pone.008371724376737
    [Google Scholar]
  230. ChangL. ZhangW. ShiS. PengY. WangD. ZhangL. ZhangJ. RETRACTED ARTICLE: microRNA-195 attenuates neuronal apoptosis in rats with ischemic stroke through inhibiting KLF5-mediated activation of the JNK signaling pathway.Mol. Med.20202613110.1186/s10020‑020‑00150‑w32272873
    [Google Scholar]
  231. WangP. LiangJ. LiY. LiJ. YangX. ZhangX. HanS. LiS. LiJ. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy.Neurochem. Res.20143971279129110.1007/s11064‑014‑1310‑624771295
    [Google Scholar]
  232. WangP. LiangX. LuY. ZhaoX. LiangJ. MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway.Neurochem. Res.201641102627263510.1007/s11064‑016‑1975‑027300700
    [Google Scholar]
  233. LiuX.S. ChoppM. PanW.L. WangX.L. FanB.Y. ZhangY. KassisH. ZhangR.L. ZhangX.M. ZhangZ.G. MicroRNA-146a promotes oligodendrogenesis in stroke.Mol. Neurobiol.201754122723710.1007/s12035‑015‑9655‑726738853
    [Google Scholar]
  234. BamM. YangX. SenS. ZumbrunE.E. DennisL. ZhangJ. NagarkattiP.S. NagarkattiM. Characterization of dysregulated miRNA in peripheral blood mononuclear cells from ischemic stroke patients.Mol. Neurobiol.20185521419142910.1007/s12035‑016‑0347‑828168424
    [Google Scholar]
  235. VijayanM. AlamriF.F. Al ShoyaibA. KaramyanV.T. ReddyP.H. Novel miRNA PC-5P-12969 in ischemic stroke.Mol. Neurobiol.201956106976698510.1007/s12035‑019‑1562‑x30953313
    [Google Scholar]
  236. CaseyS. GoasdoueK. MillerS.M. BrennanG.P. CowinG. O’MahonyA.G. BurkeC. HallbergB. BoylanG.B. SullivanA.M. HenshallD.C. O’KeeffeG.W. MooneyC. BjorkmanT. MurrayD.M. Temporally altered mirna expression in a piglet model of hypoxic ischemic brain injury.Mol. Neurobiol.202057104322434410.1007/s12035‑020‑02018‑w32720074
    [Google Scholar]
  237. PengG. YuanY. WuS. HeF. HuY. LuoB. MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke.Transl. Stroke Res.20156643744510.1007/s12975‑015‑0422‑x26415639
    [Google Scholar]
  238. van KralingenJ.C. McFallA. OrdE.N.J. CoyleT.F. BissettM. McClureJ.D. McCabeC. MacraeI.M. DawsonJ. WorkL.M. Altered extracellular vesicle microrna expression in ischemic stroke and small vessel disease.Transl. Stroke Res.201910549550810.1007/s12975‑018‑0682‑330617992
    [Google Scholar]
  239. DengY. ChenD. GaoF. LvH. ZhangG. SunX. LiuL. MoD. MaN. SongL. HuoX. YanT. ZhangJ. MiaoZ. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2.J. Biol. Eng.20191317110.1186/s13036‑019‑0193‑031485266
    [Google Scholar]
  240. LiY. MaoL. GaoY. BaralS. ZhouY. HuB. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1.Sci. Rep.2015511331610.1038/srep1331626294080
    [Google Scholar]
  241. YangX. TangX. SunP. ShiY. LiuK. HassanS.H. StetlerR.A. ChenJ. YinK.J. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke.Stroke20174871941194710.1161/STROKEAHA.117.01728428546328
    [Google Scholar]
  242. StanzioneR BianchiF CotugnoM MarchittiS ForteM BuscetiC RyskalinL FornaiF VolpeM RubattuS A decrease of brain MicroRNA-122 level is an early marker of cerebrovascular disease in the stroke-prone spontaneously hypertensive rat.Oxid. Med. Cell Longev.20172017120642010.1155/2017/120642028751928
    [Google Scholar]
  243. LiL DongL ZhaoJ HeW ChuB ZhangJ WuZ ZhaoC ChengJ YaoW WangH Circulating miRNA-3552 as a potential biomarker for ischemic stroke in rats.Biomed. Res. Int.20202020450139310.1155/2020/450139332724801
    [Google Scholar]
  244. TabetF. LeeS. ZhuW. LevinM.G. TothC.L. Cuesta TorresL.F. VinhA. KimH.A. ChuH.X. EvansM.A. KuzmichM.E. DrummondG.R. RemaleyA.T. RyeK.A. SobeyC.G. VickersK.C. microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke.J. Cereb. Blood Flow Metab.20204061300131510.1177/0271678X1985863731296130
    [Google Scholar]
  245. SunL.Q. GuoG.L. ZhangS. YangL.L. Effects of MicroRNA-592-5p on hippocampal neuron injury following hypoxic-ischemic brain damage in neonatal mice-involvement of PGD2/DP and PTGDR.Cell. Physiol. Biochem.201845245847310.1159/00048692329402808
    [Google Scholar]
  246. SongH. ZhangX. ChenR. MiaoJ. WangL. CuiL. JiH. LiuY. Cortical neuron-derived exosomal MicroRNA-181c-3p inhibits neuroinflammation by downregulating CXCL1 in astrocytes of a rat model with ischemic brain injury.Neuroimmunomodulation201926521723310.1159/00050269431665717
    [Google Scholar]
  247. FanJ. XuW. NanS. ChangM. ZhangY. MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand 4-mediated notch signaling pathway.Cerebrovasc. Dis.2020491395410.1159/00050395031927543
    [Google Scholar]
  248. YongY.X. YangH. LianJ. XuX.W. HanK. HuM.Y. WangH.C. ZhouL.M. RETRACTED ARTICLE: Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis.Cell Cycle201918161868188110.1080/15384101.2019.163213331204565
    [Google Scholar]
  249. MaQ. ZhaoH. TaoZ. WangR. LiuP. HanZ. MaS. LuoY. JiaJ. MicroRNA-181c exacerbates brain injury in acute Ischemic stroke.Aging Dis.20167670571410.14336/AD.2016.032028053821
    [Google Scholar]
  250. XieK. CaiY. YangP. DuF. WuK. Upregulating microRNA-874-3p inhibits CXCL12 expression to promote angiogenesis and suppress inflammatory response in ischemic stroke.Am. J. Physiol. Cell Physiol.20203193C579C58810.1152/ajpcell.00001.202032608990
    [Google Scholar]
  251. GengW. TangH. LuoS. LvY. LiangD. KangX. HongW. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation.Am. J. Transl. Res.201911278079230899379
    [Google Scholar]
  252. HuangL.G. LiJ.P. PangX.M. ChenC.Y. XiangH.Y. FengL.B. SuS.Y. LiS.H. ZhangL. LiuJ.L. MicroRNA-29c correlates with neuroprotection induced by FNS by targeting both birc2 and bak1 in rat brain after stroke.CNS Neurosci. Ther.201521649650310.1111/cns.1238325678279
    [Google Scholar]
  253. DuL. JiangY. SunY. Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression.Neurotoxicology202183283910.1016/j.neuro.2020.12.00633309839
    [Google Scholar]
  254. LiQ. HeQ. BaralS. MaoL. LiY. JinH. ChenS. AnT. XiaY. HuB. MicroRNA-493 regulates angiogenesis in a rat model of ischemic stroke by targeting MIF.FEBS J.201628391720173310.1111/febs.1369726929185
    [Google Scholar]
  255. SiW. LiY. YeS. LiZ. LiuY. KuangW. ChenD. ZhuM. Methyltransferase 3 Mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke.Front. Mol. Neurosci.20201310310.3389/fnmol.2020.0010332581712
    [Google Scholar]
  256. ZhangN. ZhongJ. HanS. LiY. YinY. LiJ. MicroRNA-378 alleviates cerebral ischemic injury by negatively regulating apoptosis executioner caspase-3.Int. J. Mol. Sci.2016179142710.3390/ijms1709142727598143
    [Google Scholar]
  257. MatsuokaH. TamuraA. KineharaM. ShimaA. UdaA. TaharaH. MichiharaA. Levels of tight junction protein CLDND1 are regulated by microRNA-124 in the cerebellum of stroke-prone spontaneously hypertensive rats.Biochem. Biophys. Res. Commun.2018498481782310.1016/j.bbrc.2018.03.06329530526
    [Google Scholar]
  258. MiaoW. YanY. BaoT. JiaW. YangF. WangY. ZhuY. YinM. HanJ. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124.Biomed. Pharmacother.202012610978610.1016/j.biopha.2019.109786
    [Google Scholar]
  259. ZhouX. SuS. LiS. PangX. ChenC. LiJ. LiuJ. MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro.Brain Res.20161648Pt A13614310.1016/j.brainres.2016.07.03427449900
    [Google Scholar]
  260. ChenZ. HuY. LuR. GeM. ZhangL. MicroRNA-374a-5p inhibits neuroinflammation in neonatal hypoxic-ischemic encephalopathy via regulating NLRP3 inflammasome targeted Smad6.Life Sci.202025211766410.1016/j.lfs.2020.11766432304765
    [Google Scholar]
  261. O’SullivanM.P. LooneyA.M. MoloneyG.M. FinderM. HallbergB. ClarkeG. BoylanG.B. MurrayD.M. Validation of altered umbilical cord blood microrna expression in neonatal hypoxic-ischemic encephalopathy.JAMA Neurol.201976333334110.1001/jamaneurol.2018.418230592487
    [Google Scholar]
  262. LusardiT.A. FarrC.D. FaulknerC.L. PignataroG. YangT. LanJ. SimonR.P. SaugstadJ.A. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex.J. Cereb. Blood Flow Metab.201030474475610.1038/jcbfm.2009.25320010955
    [Google Scholar]
  263. HanX.R. WenX. WangY.J. WangS. ShenM. ZhangZ.F. FanS.H. ShanQ. WangL. LiM.Q. HuB. SunC.H. WuD.M. LuJ. ZhengY.L. Retracted: Micro RNA -140-5p elevates cerebral protection of dexmedetomidine against hypoxic–ischaemic brain damage via the Wnt/β-catenin signalling pathway.J. Cell. Mol. Med.20182263167318210.1111/jcmm.1359729536658
    [Google Scholar]
  264. JiangC. DongN. FengJ. HaoM. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway.Pflugers Arch.2021473112113010.1007/s00424‑020‑02490‑233196911
    [Google Scholar]
  265. ScherrerN. FaysF. MuellerB. LuftA. FluriF. Christ-CrainM. DevauxY. KatanM. Microrna 150-5p improves risk classification for mortality within 90 days after acute ischemic stroke.J. Stroke201719332333210.5853/jos.2017.0042329037006
    [Google Scholar]
  266. PandiG. NakkaV.P. DharapA. RoopraA. VemugantiR. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage.PLoS One201383e5803910.1371/journal.pone.005803923516428
    [Google Scholar]
  267. FeiS. CaoL. LiS. RETRACTED: microRNA-139-5p alleviates neurological deficit in hypoxic-ischemic brain damage via HDAC4 depletion and BCL-2 activation.Brain Res. Bull.2021169738010.1016/j.brainresbull.2020.12.02033400954
    [Google Scholar]
  268. CheF. DuH. ZhangW. ChengZ. TongY. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF-κB and VEGF pathway.Mol. Med. Rep.20181722724273029207094
    [Google Scholar]
  269. ZhouL. YangW. YaoE. LiH. WangJ. WangK. ZhongX. PengZ. HuangX. Microrna-488-3p regulates neuronal cell death in cerebral ischemic stroke through vacuolar protein sorting 4b (VPS4B).Neuropsychiatr. Dis. Treat.202117415510.2147/NDT.S25566633442254
    [Google Scholar]
  270. SongW. WangT. ShiB. WuZ. WangW. YangY. Neuroprotective effects of microRNA-140-5p on ischemic stroke in mice via regulation of the TLR4/NF-κB axis.Brain Res. Bull.202116881610.1016/j.brainresbull.2020.10.02033246036
    [Google Scholar]
  271. LiuX.S. ChoppM. ZhangR.L. TaoT. WangX.L. KassisH. Hozeska-SolgotA. ZhangL. ChenC. ZhangZ.G. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway.PLoS One201168e2346110.1371/journal.pone.002346121887253
    [Google Scholar]
  272. LiJ. LvH. CheY. microRNA-381-3p confers protection against ischemic stroke through promoting angiogenesis and inhibiting inflammation by suppressing cebpb and Map3k8.Cell. Mol. Neurobiol.20204081307131910.1007/s10571‑020‑00815‑432297103
    [Google Scholar]
  273. YooH. KimJ. LeeA.R. LeeJ.M. KimO.J. KimJ.K. OhS.H. Alteration of microRNA 340-5p and arginase-1 expression in peripheral blood cells during acute ischemic stroke.Mol. Neurobiol.20195653211322110.1007/s12035‑018‑1295‑230112629
    [Google Scholar]
  274. HouK. LiG. ZhaoJ. XuB. ZhangY. YuJ. XuK. Correction to: Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway.J. Neuroinflammation202017120310.1186/s12974‑020‑01872‑8
    [Google Scholar]
  275. KimT. MehtaS.L. Morris-BlancoK.C. ChokkallaA.K. ChelluboinaB. LopezM. SullivanR. KimH.T. CookT.D. KimJ.Y. KimH. KimC. VemugantiR. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein.Sci. Signal.201811560eaat428510.1126/scisignal.aat428530538177
    [Google Scholar]
  276. WeiN. XiaoL. XueR. ZhangD. ZhouJ. RenH. GuoS. XuJ. MicroRNA-9 mediates the cell apoptosis by targeting bcl2l11 in ischemic stroke.Mol. Neurobiol.201653106809681710.1007/s12035‑015‑9605‑426660116
    [Google Scholar]
  277. JicklingG.C. AnderB.P. ShroffN. OrantiaM. StamovaB. Dykstra-AielloC. HullH. ZhanX. LiuD. SharpF.R. Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke.Neurology201687212198220510.1212/WNL.000000000000335427784773
    [Google Scholar]
  278. YuX. LiX. microRNA-1906 protects cerebral ischemic injury through activating Janus kinase 2/signal transducer and activator of transcription 3 pathway in rats.Neuroreport2020311287187810.1097/WNR.000000000000145632427806
    [Google Scholar]
  279. ZhaoH. LiG. WangR. TaoZ. MaQ. ZhangS. HanZ. YanF. LiF. LiuP. MaS. JiX. LuoY. Silencing of microRNA-494 inhibits the neurotoxic Th1 shift via regulating HDAC2-STAT4 cascade in ischaemic stroke.Br. J. Pharmacol.2020177112814410.1111/bph.1485231465536
    [Google Scholar]
  280. YuP. ChenW. Advances in the diagnosis of exosomal miRNAs in ischemic stroke.Neuropsychiatr. Dis. Treat.2019152339234310.2147/NDT.S21678431695378
    [Google Scholar]
  281. VasudevaK. MunshiA. miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers.Eur. J. Neurosci.20205263610362710.1111/ejn.1469532022336
    [Google Scholar]
  282. ChakrabortyC. SharmaA.R. SharmaG. LeeS.S. Therapeutic advances of miRNAs: A preclinical and clinical update.J. Adv. Res.20212812713810.1016/j.jare.2020.08.01233364050
    [Google Scholar]
  283. CalinG.A. DumitruC.D. ShimizuM. BichiR. ZupoS. NochE. AldlerH. RattanS. KeatingM. RaiK. RassentiL. KippsT. NegriniM. BullrichF. CroceC.M. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci.20029924155241552910.1073/pnas.24260679912434020
    [Google Scholar]
  284. RomanoG. AcunzoM. Nana-SinkamP. microRNAs as novel therapeutics in cancer.Cancers2021137152610.3390/cancers1307152633810332
    [Google Scholar]
  285. FortunatoO. IorioM.V. The therapeutic potential of MicroRNAs in cancer: Illusion or opportunity?Pharmaceuticals2020131243810.3390/ph1312043833271894
    [Google Scholar]
  286. ChenB. XiaZ. DengY.N. YangY. ZhangP. ZhuH. XuN. LiangS. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis.Open Biol.20199118021210.1098/rsob.18021230958116
    [Google Scholar]
  287. GiridharK.V. KohliM. WangL. Is microRNA expression profile in prostate cancer dependent on clinicopathologic stage or cell subtype?Transl. Cancer Res.20165S6S1139S114110.21037/tcr.2016.11.25
    [Google Scholar]
  288. SegalM. SlackF.J. Challenges identifying efficacious miRNA therapeutics for cancer.Expert Opin. Drug Discov.202015998799210.1080/17460441.2020.176577032421364
    [Google Scholar]
  289. CuiM. WangH. YaoX. ZhangD. XieY. CuiR. ZhangX. Circulating microRNAs in cancer: Potential and challenge.Front. Genet.20191062610.3389/fgene.2019.0062631379918
    [Google Scholar]
  290. ZhangS. ChengZ. WangY. HanT. The risks of miRNA therapeutics: In a drug target perspective.Drug Des. Devel. Ther.20211572173310.2147/DDDT.S28885933654378
    [Google Scholar]
  291. HuangD.T. RamirezP. Biomarkers in the ICU: Less is more? Yes.Intensive Care Med.2021471949610.1007/s00134‑020‑06049‑832347324
    [Google Scholar]
  292. BonneauE. NeveuB. KostantinE. TsongalisG.J. De GuireV. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market.EJIFCC201930211412731263388
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230726095222
Loading
/content/journals/cmc/10.2174/0929867331666230726095222
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarkers; Critical illness; micro-ribonucleic acids; miRNAs; morbidity; mortality
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test