Skip to content
2000
Volume 32, Issue 10
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The natural polyphenol, calebin-A, was recently discovered and identified as a novel phytopharmaceutical with anti-inflammatory, anti-tumor, and antiproliferative properties. Calebin-A occurs naturally in trace quantities in , commonly known as turmeric, from the Zingiberaceae family. Calebin-A is a curcumin analog or 'chemical cousin' of curcumin with a similar chemical structure. Although few research studies have been conducted on the pharmacological and therapeutic properties of calebin-A, it is a very promising molecule with a variety of pharmacological properties. Some studies have suggested that calebin-A is helpful in treating various cancers due to its inhibitory effect on cell growth and anti-inflammatory properties. Other studies have suggested that calebin-A may improve neurocognitive status associated with neurodegeneration caused by Alzheimer’s disease (AD) by inhibiting the aggregation of β-amyloid. Finally, several studies have proposed that calebin-A may potentially be therapeutically beneficial in treating patients with obesity. This novel compound downregulates nuclear factor (NF)-κB-mediated processes involved with cancer, such as tumor cell invasion, proliferation, metastasis, and, most profoundly, inflammation. Moreover, calebin-A influences the activities of mitogen-activated protein kinases (MAPKs) in cancer cells. The present review identifies and discusses the pharmacological and phytochemical properties of calebin-A, as well as its therapeutic benefits and limitations, for future scientists and clinicians interested in exploring calebin-A’s medicinal qualities.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673245074230925153031
2023-10-10
2025-04-01
Loading full text...

Full text loading...

References

  1. ArnasonJ.T. MataR. RomeoJ.T. Phytochemistry of medicinal plants.Springer Science Business Media199534.10.1007/978‑1‑4899‑1778‑2
    [Google Scholar]
  2. MariesR.J. Sesquiterpene Lactones Revisited. Phytochemistry of Medicinal Plants. ArnasonJ.T. MataR. RomeoJ.T. Boston, MASpringer US199533335610.1007/978‑1‑4899‑1778‑2_13
    [Google Scholar]
  3. SaxenaM. Phytochemistry of medicinal plants.J. Pharmacogn. Phytochem.20131168182
    [Google Scholar]
  4. OmosaK.L. MidiwoJ. KueteV. Curcuma longa.2017425435
    [Google Scholar]
  5. AkramM. Curcuma longa and Curcumin: A review article.Rom. J. Biol-Plant Biol.2010556570
    [Google Scholar]
  6. LestariM.L.A.D. IndrayantoG. Curcumin.Profiles Drug Subst. Excip. Relat. Methodol.20143911320410.1016/B978‑0‑12‑800173‑8.00003‑924794906
    [Google Scholar]
  7. PradityaD. KirchhoffL. BrüningJ. RachmawatiH. SteinmannJ. SteinmannE. Anti-infective properties of the golden spice curcumin.Front. Microbiol.20191091210.3389/fmicb.2019.0091231130924
    [Google Scholar]
  8. AmalrajA. PiusA. GopiS. GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives-a review.J. Tradit. Complement. Med.20177220523310.1016/j.jtcme.2016.05.00528417091
    [Google Scholar]
  9. FuY.S. ChenT.H. WengL. HuangL. LaiD. WengC.F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential.Biomed. Pharmacother.202114111188810.1016/j.biopha.2021.11188834237598
    [Google Scholar]
  10. HasanzadehS. ReadM.I. BlandA.R. MajeedM. JamialahmadiT. SahebkarA. Curcumin: An inflammasome silencer.Pharmacol. Res.202015910492110.1016/j.phrs.2020.10492132464325
    [Google Scholar]
  11. KeihanianF. SaeidiniaA. BagheriR.K. JohnstonT.P. SahebkarA. Curcumin, hemostasis, thrombosis, and coagulation.J. Cell. Physiol.201823364497451110.1002/jcp.2624929052850
    [Google Scholar]
  12. KhayatanD. RazaviS.M. ArabZ.N. NiknejadA.H. NouriK. MomtazS. GumprichtE. JamialahmadiT. AbdolghaffariA.H. BarretoG.E. SahebkarA. Protective effects of curcumin against traumatic brain injury.Biomed. Pharmacother.202215411362110.1016/j.biopha.2022.11362136055110
    [Google Scholar]
  13. MohajeriM. SahebkarA. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review.Crit. Rev. Oncol. Hematol.2018122305110.1016/j.critrevonc.2017.12.00529458788
    [Google Scholar]
  14. Mokhtari-ZaerA. MarefatiN. AtkinS.L. ButlerA.E. SahebkarA. The protective role of curcumin in myocardial ischemia–reperfusion injury.J. Cell. Physiol.2019234121422210.1002/jcp.2684829968913
    [Google Scholar]
  15. Abbas MomtaziA. SahebkarA. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile.Curr. Pharm. Des.201622284386439710.2174/138161282266616052711350127229723
    [Google Scholar]
  16. Momtazi-BorojeniA.A. HaftcheshmehS.M. EsmaeiliS.A. JohnstonT.P. AbdollahiE. SahebkarA. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.Autoimmun. Rev.201817212513510.1016/j.autrev.2017.11.01629180127
    [Google Scholar]
  17. Panahi Y.; Fazlolahzadeh O.; Atkin S.L.; Majeed M.; Butler A.E.; Johnston T.P.; Sahebkar A.; Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J. Cell. Physiol., 2019, 234(2), 1165-1178.10.1002/jcp.2709630073647
  18. Cicero A.F.G.; Sahebkar A.; Fogacci F.; Bove M.; Giovannini M.; Borghi C.; Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur. J. Nutr., 2020, 59(2), 477-483.10.1007/s00394‑019‑01916‑73079650830796508
  19. LiuW. ZhaiY. HengX. CheF.Y. ChenW. SunD. ZhaiG. Oral bioavailability of curcumin: problems and advancements.J. Drug Target.201624869470210.3109/1061186X.2016.115788326942997
    [Google Scholar]
  20. ZhangZ. ZhangR. ZouL. ChenL. AhmedY. Al BishriW. BalamashK. McClementsD.J. Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility.Food Hydrocoll.20165816017010.1016/j.foodhyd.2016.02.036
    [Google Scholar]
  21. WangL.L. HeD.D. WangS.X. DaiY.H. JuJ.M. ZhaoC.L. Preparation and evaluation of curcumin-loaded self-assembled micelles.Drug Dev. Ind. Pharm.201844456356910.1080/03639045.2017.140543129148846
    [Google Scholar]
  22. HuL. JiaY. NiuF. JiaZ. YangX. JiaoK. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle.J. Agric. Food Chem.201260297137714110.1021/jf204078t22587560
    [Google Scholar]
  23. SunY. Nanoemulsion-based delivery systems for nutraceuticals: Influence of carrier oil type on bioavailability of pterostilbene.J. Funct. Foods2015136170
    [Google Scholar]
  24. DaiL. ZhouH. WeiY. GaoY. McClementsD.J. Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method.Food Hydrocoll.20199334235010.1016/j.foodhyd.2019.02.041
    [Google Scholar]
  25. SabetS. RashidinejadA. QaziH. McGillivrayD. An efficient small intestine-targeted curcumin delivery system based on the positive-negative-negative colloidal interactions.Food Hydrocoll.2020111
    [Google Scholar]
  26. SabetS. SealC.K. SwedlundP.J. McGillivrayD.J. Depositing alginate on the surface of bilayer emulsions.Food Hydrocoll.202010010538510.1016/j.foodhyd.2019.105385
    [Google Scholar]
  27. SabetS. SealC.K. AkbarinejadA. RashidinejadA. McGillivrayD.J. “Positive-negative-negative”: A colloidal delivery system for bioactive compounds.Food Hydrocoll.202010710592210.1016/j.foodhyd.2020.105922
    [Google Scholar]
  28. TaiZ. HuangY. ZhuQ. WuW. YiT. ChenZ. LuY. Utility of Pickering emulsions in improved oral drug delivery.Drug Discov. Today202025112038204510.1016/j.drudis.2020.09.01232949702
    [Google Scholar]
  29. YounisA. Microbial transformation of curcumin and evaluation of the biological activities of the isolated metabolites.J. Pharm. Sci. Res.20168101169
    [Google Scholar]
  30. FathimaT.S. AdamsS.J. MajeedA. MuralitharanG. ThajuddinN. Study on the bioconversion of curcumin to Calebin-A using spirulina subsalsa and its taxonomic resolution using 16S rRNA analysis.Appl. Biochem. Biotechnol.202319552933294610.1007/s12010‑022‑04236‑536445680
    [Google Scholar]
  31. NairA. AmalrajA. JacobJ. KunnumakkaraA.B. GopiS. Non-curcuminoids from turmeric and their potential in cancer therapy and anticancer drug delivery formulations.Biomolecules2019911310.3390/biom901001330609771
    [Google Scholar]
  32. KimD.S.H.L. KimJ.Y. Total synthesis of calebin-A, preparation of its analogues, and their neuronal cell protectivity against β-amyloid insult.Bioorg. Med. Chem. Lett.200111182541254310.1016/S0960‑894X(01)00489‑911549465
    [Google Scholar]
  33. ParkS.Y. KimD.S.H.L. Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease.J. Nat. Prod.20026591227123110.1021/np010039x12350137
    [Google Scholar]
  34. LiY. LiS. HanY. LiuJ. ZhangJ. LiF. WangY. LiuX. YaoL. Calebin-A induces apoptosis and modulates MAPK family activity in drug resistant human gastric cancer cells.Eur. J. Pharmacol.20085911-325225810.1016/j.ejphar.2008.06.06518619958
    [Google Scholar]
  35. AggarwalB.B. YuanW. LiS. GuptaS.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.Mol. Nutr. Food Res.20135791529154210.1002/mnfr.20120083823847105
    [Google Scholar]
  36. BuhrmannC. ShayanP. BanikK. KunnumakkaraA.B. KubatkaP. KoklesovaL. ShakibaeiM. Targeting NF-κB signaling by calebin a, a compound of turmeric, in multicellular tumor microenvironment: Potential role of apoptosis induction in CRC cells.Biomedicines20208823610.3390/biomedicines808023632708030
    [Google Scholar]
  37. LaiC.S. LiaoS.N. TsaiM.L. KalyanamN. MajeedM. MajeedA. HoC.T. PanM.H. Calebin-A inhibits adipogenesis and hepatic steatosis in high-fat diet-induced obesity via activation of AMPK signaling.Mol. Nutr. Food Res.201559101883189510.1002/mnfr.20140080926108684
    [Google Scholar]
  38. BuhrmannC. BrockmuellerA. HarshaC. KunnumakkaraA.B. KubatkaP. AggarwalB.B. ShakibaeiM. Evidence that tumor microenvironment initiates epithelial-to-mesenchymal transition and Calebin A can suppress it in colorectal cancer cells.Front. Pharmacol.20211269984210.3389/fphar.2021.69984234276382
    [Google Scholar]
  39. LiouW.S. LinC. LeeP-S. KalyanamN. HoC-T. PanM-H. Calebin-A induces cell cycle arrest in human colon cancer cells and xenografts in nude mice.J. Funct. Foods20162678179110.1016/j.jff.2016.08.047
    [Google Scholar]
  40. ShojiM. NakagawaK. WatanabeA. TsudukiT. YamadaT. KuwaharaS. KimuraF. MiyazawaT. Comparison of the effects of curcumin and curcumin glucuronide in human hepatocellular carcinoma HepG2 cells.Food Chem.201415112613210.1016/j.foodchem.2013.11.02124423511
    [Google Scholar]
  41. MajeedA. NagabhushanamK. MajeedM. ThomasS. ThajuddinN. An expeditious, green and protecting-group-free synthesis of a potent secondary metabolite Calebin-A and its analogues.SynOpen201711e2e210.1055/s‑0036‑1589522
    [Google Scholar]
  42. MajeedA. MajeedM. ThajuddinN. ArumugamS. AliF. BeedeK. Biotransformation of curcumin to calebin-A: A pharmacologically important novel curcuminoid from curcuma species.J. Pure Appl. Microbiol.20191321159116810.22207/JPAM.13.2.55
    [Google Scholar]
  43. GanjiA. FarahaniI. SaeedifarA.M. MosayebiG. GhazaviA. MajeedM. JamialahmadiT. SahebkarA. Protective effects of curcumin against lipopolysaccharide-induced toxicity.Curr. Med. Chem.202128336915693010.2174/092986732866621052512470734036908
    [Google Scholar]
  44. HeidariZ. DaeiM. BoozariM. JamialahmadiT. SahebkarA. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence.Phytother. Res.20223641442145810.1002/ptr.735034904764
    [Google Scholar]
  45. RahimiK. HassanzadehK. KhanbabaeiH. HaftcheshmehS.M. AhmadiA. IzadpanahE. MohammadiA. SahebkarA. Curcumin: A dietary phytochemical for targeting the phenotype and function of dendritic cells.Curr. Med. Chem.20212881549156410.2174/1875533XMTA2fNjQ3332410550
    [Google Scholar]
  46. Mohammadi A.; Blesso C.N.; Barreto G.E.; Banach M.; Majeed M.; Sahebkar A.; Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J. Nutr. Biochem., 2019, 66, 1-16.10.1016/j.jnutbio.2018.12.00530660832
  47. MarjanehR.M. RahmaniF. HassanianS.M. RezaeiN. HashemzehiM. BahramiA. AriakiaF. FiujiH. SahebkarA. AvanA. KhazaeiM. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer.J. Cell. Physiol.2018233106785679810.1002/jcp.2653829737515
    [Google Scholar]
  48. MohammedE. El-BeihN. El-HussienyE. El-AhwanyE. HassanM. ZoheiryM. Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model.Arch. Med. Sci.202117121822710.5114/aoms.2020.9373933488874
    [Google Scholar]
  49. EignerD. ScholzD. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal.J. Ethnopharmacol.19996711610.1016/S0378‑8741(98)00234‑710616954
    [Google Scholar]
  50. MajeedA. MajeedM. ThajuddinN. ArumugamS. AliF. BeedeK. AdamsS.J. GnanamaniM. Bioconversion of curcumin into calebin-A by the endophytic fungus Ovatospora brasiliensis EPE-10 MTCC 25236 associated with Curcuma caesia.AMB Express2019917910.1186/s13568‑019‑0802‑931144200
    [Google Scholar]
  51. TyagiA.K. PrasadS. MajeedM. AggarwalB.B. Calebin A, a novel component of turmeric, suppresses NF-κB regulated cell survival and inflammatory gene products leading to inhibition of cell growth and chemosensitization.Phytomedicine20173417118110.1016/j.phymed.2017.08.02128899500
    [Google Scholar]
  52. NovaesJ. LillicoR. SayreC. NagabushanamK. MajeedM. ChenY. HoE. OliveiraA. MartinezS. AlrushaidS. DaviesN. LakowskiT. Disposition, metabolism and histone deacetylase and acetyltransferase inhibition activity of tetrahydrocurcumin and other curcuminoids.Pharmaceutics2017944510.3390/pharmaceutics904004529023392
    [Google Scholar]
  53. WangM. ZhaoJ. ZhangL. WeiF. LianY. WuY. GongZ. ZhangS. ZhouJ. CaoK. LiX. XiongW. LiG. ZengZ. GuoC. Role of tumor microenvironment in tumorigenesis.J. Cancer20178576177310.7150/jca.1764828382138
    [Google Scholar]
  54. BuhrmannC. KunnumakkaraA.B. KumarA. SamecM. KubatkaP. AggarwalB.B. ShakibaeiM. Multitargeting effects of Calebin A on malignancy of CRC cells in multicellular tumor microenvironment.Front. Oncol.20211165060310.3389/fonc.2021.65060334660256
    [Google Scholar]
  55. BuhrmannC. KunnumakkaraA. PopperB. MajeedM. AggarwalB. ShakibaeiM. Calebin A potentiates the effect of 5-FU and TNF-β (Lymphotoxin α) against human colorectal cancer cells: Potential role of NF-κB.Int. J. Mol. Sci.2020217239310.3390/ijms2107239332244288
    [Google Scholar]
  56. LeeM.J. TsaiY.J. LinM.Y. YouH.L. KalyanamN. HoC.T. PanM.H. Calebin-A induced death of malignant peripheral nerve sheath tumor cells by activation of histone acetyltransferase.Phytomedicine20195737738410.1016/j.phymed.2019.01.00130831486
    [Google Scholar]
  57. GoenkaS. NagabhushanamK. MajeedM. SimonS.R. Calebin-A, a curcuminoid analog inhibits α-MSH-induced melanogenesis in B16F10 mouse melanoma cells.Cosmetics2019635110.3390/cosmetics6030051
    [Google Scholar]
  58. ShefrinS. ManakadanA.A. SaranyaT.S. A computational study of anticancer activity of curcumin derivatives using in silico drug designing and molecular docking tools.Asian J. Chem.20183061335133910.14233/ajchem.2018.21239
    [Google Scholar]
  59. MuellerA.L. BrockmuellerA. KunnumakkaraA.B. ShakibaeiM. Calebin A, a compound of turmeric, down-regulates inflammation in tenocytes by NF-κB/scleraxis signaling.Int. J. Mol. Sci.2022233169510.3390/ijms2303169535163616
    [Google Scholar]
  60. MajeedM. NagabhushanamK. DevarajanT.V. SaklechaS. ReddyS.V.K. MundkurL. A minor metabolite from Curcuma longa effective against metabolic syndrome: results from a randomized, double-blind, placebo-controlled clinical study.Food Funct.202314104722473310.1039/D2FO03627D37114318
    [Google Scholar]
  61. LeeP.S. LuY.Y. NagabhushanamK. HoC.T. MeiH.C. PanM.H. Calebin-A prevents HFD-induced obesity in mice by promoting thermogenesis and modulating gut microbiota.J. Tradit. Complement. Med.202313211912710.1016/j.jtcme.2022.01.00136970457
    [Google Scholar]
  62. D’AlessioD.A. KahnS.E. LeusnerC.R. EnsinckJ.W. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal.J. Clin. Invest.19949352263226610.1172/JCI1172258182159
    [Google Scholar]
  63. GutzwillerJ-P. GökeB. DreweJ. HildebrandP. KettererS. HandschinD. WinterhalderR. ConenD. BeglingerC. Glucagon-like peptide-1: A potent regulator of food intake in humans.Gut1999441818610.1136/gut.44.1.819862830
    [Google Scholar]
  64. ChalichemN.S.S. JupudiS. YasamV.R. BasavanD. Dipeptidyl peptidase-IV inhibitory action of Calebin A: An in silico and in vitro analysis.J. Ayurveda Integr. Med.202112466367210.1016/j.jaim.2021.08.00834756798
    [Google Scholar]
  65. AntonyP. VijayanR.J.P.O. Identification of novel aldose reductase inhibitors from spices: A molecular docking and simulation study.PLoS One.2015109e013818610.1371/journal.pone.0138186
    [Google Scholar]
  66. TyagiA.K. PrasadS. MajeedM. AggarwalB.B. Calebin A downregulates osteoclastogenesis through suppression of RANKL signalling.Arch. Biochem. Biophys.2016593808910.1016/j.abb.2016.02.01326874195
    [Google Scholar]
  67. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  68. KumarA. AhujaA. AliJ. BabootaS. Conundrum and therapeutic potential of curcumin in drug delivery.Crit. Rev. Ther. Drug Carrier Syst.201027427931210.1615/CritRevTherDrugCarrierSyst.v27.i4.1020932240
    [Google Scholar]
  69. BishtS. MaitraA. Systemic delivery of curcumin: 21st century solutions for an ancient conundrum.Curr. Drug Discov. Technol.20096319219910.2174/15701630978905493319496751
    [Google Scholar]
  70. ZhangW. ZhengQ. SongM. XiaoJ. CaoY. HuangQ. HoC.T. LuM. A review on the bioavailability, bio-efficacies and novel delivery systems for piperine.Food Funct.202112198867888110.1039/D1FO01971F34528635
    [Google Scholar]
  71. TyagiN. SongY.H. DeR. Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy.J. Drug Target.201927439440710.1080/1061186X.2018.151404030124078
    [Google Scholar]
  72. OliveiraA.L.D.P. MartinezS.E. NagabushnamK. MajeedM. AlrushaidS. SayreC.L. DaviesN.M. Calebin A: Analytical development for pharmacokinetics study, elucidation of pharmacological activities and content analysis of natural health products.J. Pharm. Pharm. Sci.201518449451410.18433/J3231026626247
    [Google Scholar]
  73. MajeedM. NagabhushanamK. NatarajanS. BaniS. PandeyA. KarriS.K. Investigation of repeated dose (90 day) oral toxicity, reproductive/developmental toxicity and mutagenic potential of ‘Calebin A’.Toxicol. Rep.2015258058910.1016/j.toxrep.2015.03.00928962393
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673245074230925153031
Loading
/content/journals/cmc/10.2174/0109298673245074230925153031
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Calebin-A; curcumin; pharmacology; phytochemical; Polyphenol; turmeric
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test