Skip to content
2000
Volume 32, Issue 8
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The unique characteristics of nanoparticles (NPs) have captivated scientists in various fields of research. However, their safety profile has not been fully scrutinized. In this regard, the effects of NPs on the reproductive system of animals and humankind have been a matter of concern. In this article, we will review the potential reproductive toxicity of various types of NPs, including carbon nanomaterials, dendrimers, quantum dots, silica, gold, and magnetic nanoparticles, reported in the literature. We also mention some notable cases where NPs have elicited beneficial effects on the reproductive system. This review provides extensive insight into the effects of various NPs on sperm and ovum and the outcomes of their passage through blood-testis and placental barriers and accumulation in the reproductive organs.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230815101141
2023-09-27
2025-04-16
Loading full text...

Full text loading...

References

  1. KirtaneA.R. VermaM. KarandikarP. FurinJ. LangerR. TraversoG. Nanotechnology approaches for global infectious diseases.Nat. Nanotechnol.202116436938410.1038/s41565‑021‑00866‑833753915
    [Google Scholar]
  2. Hashemi Goradel N.; Ghiyami-Hour F.; Jahangiri S.; Negahdari B.; Sahebkar A.; Masoudifar A.; Mirzaei H.; Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910.10.1002/jcp.26029
  3. DolaiJ. MandalK. JanaN.R. Nanoparticle size effects in biomedical applications.ACS Appl. Nano Mater.2021476471649610.1021/acsanm.1c00987
    [Google Scholar]
  4. ChatterjeeS. ChatterjeeS. Various nanoparticles and their in vivo toxicity: A review.EC Agric202062227
    [Google Scholar]
  5. DongL. TangS. DengF. GongY. ZhaoK. ZhouJ. LiangD. FangJ. HeckerM. GiesyJ.P. BaiX. ZhangH. Shape-dependent toxicity of alumina nanoparticles in rat astrocytes.Sci. Total Environ.201969015816610.1016/j.scitotenv.2019.06.53231284190
    [Google Scholar]
  6. HougaardK.S. CampagnoloL. Chavatte-PalmerP. TarradeA. Rousseau-RalliardD. ValentinoS. ParkM.V.D.Z. de JongW.H. WolterinkG. PiersmaA.H. RossB.L. HutchisonG.R. HansenJ.S. VogelU. JacksonP. SlamaR. PietroiustiA. CasseeF.R. A perspective on the developmental toxicity of inhaled nanoparticles.Reprod. Toxicol.20155611814010.1016/j.reprotox.2015.05.01526050605
    [Google Scholar]
  7. SiqueiraP.R. SouzaJ.P. EstevãoB.M. AlteiW.F. CarmoT.L.L. SantosF.A. AraújoH.S.S. ZucolottoV. FernandesM.N. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line.Aquat. Toxicol.202224810619910.1016/j.aquatox.2022.10619935613511
    [Google Scholar]
  8. MohammadiE. ZeinaliM. Mohammadi-SardooM. IranpourM. BehnamB. MandegaryA. The effects of functionalization of carbon nanotubes on toxicological parameters in mice.Hum. Exp. Toxicol.20203991147116710.1177/096032711989998831957491
    [Google Scholar]
  9. BilalM. OhE. LiuR. BregerJ.C. MedintzI.L. CohenY. Bayesian network resource for meta-analysis: Cellular toxicity of quantum dots.Small.20191534190051010.1002/smll.20190051031207082
    [Google Scholar]
  10. ChengK.F. YangF.C. WuK.H. LiuX.M. Evaluation and efficacy of metal oxides in terms of antibacterial activity and toxic chemical degradation.Mater. Sci. Eng. C.20189361562210.1016/j.msec.2018.08.03430274094
    [Google Scholar]
  11. DjurišićA.B. LeungY.H. NgA.M.C. XuX.Y. LeeP.K.H. DeggerN. WuR.S.S. Toxicity of metal oxide nanoparticles: Mechanisms, characterization, and avoiding experimental artefacts.Small2015111264410.1002/smll.20130394725303765
    [Google Scholar]
  12. HougaardK.S. JacksonP. JensenK.A. SlothJ.J. LöschnerK. LarsenE.H. BirkedalR.K. VibenholtA. BoisenA.M.Z. WallinH. VogelU. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice.Part. Fibre Toxicol.2010711610.1186/1743‑8977‑7‑1620546558
    [Google Scholar]
  13. MarinhoC.S. MatiasM.V.F. ToledoE.K.M. SmaniottoS. Ximenes-da-SilvaA. TonholoJ. SantosE.L. MachadoS.S. ZantaC.L.P.S. Toxicity of silver nanoparticles on different tissues in adult Danio rerio.Fish Physiol. Biochem.202147223924910.1007/s10695‑020‑00909‑233405064
    [Google Scholar]
  14. SantosA. VeigaF. FigueirasA. Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications.Materials.20191316510.3390/ma1301006531877717
    [Google Scholar]
  15. WeissM. FanJ. ClaudelM. SonntagT. DidierP. RonzaniC. LebeauL. PonsF. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential.J. Nanobiotechnology2021191510.1186/s12951‑020‑00747‑733407567
    [Google Scholar]
  16. AslaniH. Ebrahimi KosariT. NaseriS. NabizadehR. KhazaeiM. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing.Environ. Sci. Pollut. Res. Int.20182520201542016810.1007/s11356‑018‑2023‑129748803
    [Google Scholar]
  17. BostanH.B. RezaeeR. ValokalaM.G. TsarouhasK. GolokhvastK. TsatsakisA.M. KarimiG. Cardiotoxicity of nano-particles.Life Sci.2016165919910.1016/j.lfs.2016.09.01727686832
    [Google Scholar]
  18. Di GiampaoloL. ZaccarielloG. BenedettiA. VecchiottiG. CaposanoF. SabbioniE. GroppiF. ManentiS. NiuQ. PomaA.M.G. Di GioacchinoM. PetrarcaC. Genotoxicity and immunotoxicity of titanium dioxide-embedded mesoporous silica nanoparticles (TiO2@ MSN) in primary peripheral human blood mononuclear cells (PBMC).Nanomaterials.202111227010.3390/nano1102027033494245
    [Google Scholar]
  19. El KholyS. GiesyJ.P. Al NaggarY. Consequences of a short-term exposure to a sub lethal concentration of CdO nanoparticles on key life history traits in the fruit fly (Drosophila melanogaster).J. Hazard. Mater.202141012467110.1016/j.jhazmat.2020.12467133349477
    [Google Scholar]
  20. KrishnaiahD. KhiariM. KlibetF. KechridZ. Oxidative stress toxicity effect of potential metal nanoparticles on human cells, Toxicology.Elsevier202110711710.1016/B978‑0‑12‑819092‑0.00012‑1
    [Google Scholar]
  21. LiuX. TangJ. WangL. GiesyJ.P. Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145.Ecotoxicol. Environ. Saf.201815812313010.1016/j.ecoenv.2018.04.00729677594
    [Google Scholar]
  22. ShiQ. TangJ. WangL. LiuR. GiesyJ.P. Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism.Ecotoxicol. Environ. Saf.202121311204110.1016/j.ecoenv.2021.11204133601174
    [Google Scholar]
  23. YungM.M.N. FougèresP.A. LeungY.H. LiuF. DjurišićA.B. GiesyJ.P. LeungK.M.Y. Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae.Sci. Rep.2017711590910.1038/s41598‑017‑15988‑029162907
    [Google Scholar]
  24. AengenheisterL. DugershawB.B. ManserP. WichserA. SchoenenbergerR. WickP. HeslerM. KohlY. StraskrabaS. SuterM.J.F. Buerki-ThurnherrT. Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models.Eur. J. Pharm. Biopharm.201914248849710.1016/j.ejpb.2019.07.01831330257
    [Google Scholar]
  25. ArishaA.H. AhmedM.M. KamelM.A. AttiaY.A. HusseinM.M.A. Morin ameliorates the testicular apoptosis, oxidative stress, and impact on blood–testis barrier induced by photo-extracellularly synthesized silver nanoparticles.Environ. Sci. Pollut. Res. Int.20192628287492876210.1007/s11356‑019‑06066‑131376127
    [Google Scholar]
  26. TangW. FanW. LauJ. DengL. ShenZ. ChenX. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics.Chem. Soc. Rev.201948112967301410.1039/C8CS00805A31089607
    [Google Scholar]
  27. FanS. JiaoY. KhanR. JiangX. JavedA.R. AliA. ZhangH. ZhouJ. NaeemM. MurtazaG. LiY. YangG. ZamanQ. ZubairM. GuanH. ZhangX. MaH. JiangH. AliH. DilS. ShahW. AhmadN. ZhangY. ShiQ. Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans.Am. J. Hum. Genet.2021108232433610.1016/j.ajhg.2021.01.01033508233
    [Google Scholar]
  28. FeugangJ.M. YoungbloodR.C. GreeneJ.M. FahadA.S. MonroeW.A. WillardS.T. RyanP.L. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa.J. Nanobiotechnology.20121014510.1186/1477‑3155‑10‑4523241497
    [Google Scholar]
  29. LeiR. BaiX. ChangY. LiJ. QinY. ChenK. GuW. XiaS. ZhangJ. WangZ. XingG. Effects of fullerenol nanoparticles on rat oocyte meiosis resumption.Int. J. Mol. Sci.201819369910.3390/ijms1903069929494500
    [Google Scholar]
  30. NirmalN.K. AwasthiK.K. JohnP.J. Effects of nano-graphene oxide on testis, epididymis and fertility of wistar rats.Basic Clin. Pharmacol. Toxicol.2017121320221010.1111/bcpt.1278228371123
    [Google Scholar]
  31. ZhangW. YangL. KuangH. YangP. AguilarZ.P. WangA. FuF. XuH. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating.J. Hazard. Mater.2016318616910.1016/j.jhazmat.2016.06.04827399148
    [Google Scholar]
  32. YanS.Q. XingR. ZhouY.F. LiK.L. SuY.Y. QiuJ.F. ZhangY.H. ZhangK.Q. HeY. LuX.P. XuS.Q. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism.Sci. Rep.2016613418210.1038/srep3418227669995
    [Google Scholar]
  33. BasakiM. KeykavusiK. SahraiyN. Ali ShahbazfarA. Maternal exposure to iron oxide nanoparticles is associated with ferroptosis in the brain: A chicken embryo model analysis.J. Anim. Physiol. Anim. Nutr.202110561127113510.1111/jpn.1353333719111
    [Google Scholar]
  34. ShiL. YangR. YueW. XunW. ZhangC. RenY. ShiL. LeiF. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats.Anim. Reprod. Sci.20101182-424825410.1016/j.anireprosci.2009.10.00319914014
    [Google Scholar]
  35. MuruganM.A. GangadharanB. MathurP.P. Antioxidative effect of fullerenol on goat epididymal spermatozoa.Asian J. Androl.20024214915212085108
    [Google Scholar]
  36. SrdjenovicB. Milic-TorresV. GrujicN. StankovK. DjordjevicA. VasovicV. Antioxidant properties of fullerenol C60(OH)24 in rat kidneys, testes, and lungs treated with doxorubicin.Toxicol. Mech. Methods201020629830510.3109/15376516.2010.48562220491520
    [Google Scholar]
  37. LherbierA. Vander MarckenG. Van TroeyeB. Botello-MéndezA.R. AdjizianJ.J. HautierG. GonzeX. RignaneseG.M. CharlierJ.C. Lithiation properties of s p 2 carbon allotropes.Phys. Rev. Mater.20182808540810.1103/PhysRevMaterials.2.085408
    [Google Scholar]
  38. MohajeriM. BehnamB. SahebkarA. Biomedical applications of carbon nanomaterials: Drug and gene delivery potentials.J. Cell. Physiol.2019234129831910.1002/jcp.2689930078182
    [Google Scholar]
  39. GeorgakilasV. PermanJ.A. TucekJ. ZborilR. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures.Chem. Rev.2015115114744482210.1021/cr500304f26012488
    [Google Scholar]
  40. KovelE.S. KicheevaA.G. VnukovaN.G. ChurilovG.N. StepinE.A. KudryashevaN.S. Toxicity and antioxidant activity of fullerenol c60, 70 with low number of oxygen substituents.Int. J. Mol. Sci.20212212638210.3390/ijms2212638234203700
    [Google Scholar]
  41. DjordjevicA. SrdjenovicB. SekeM. PetrovicD. InjacR. MrdjanovicJ. Review of synthesis and antioxidant potential of fullerenol nanoparticles.J. Nanomater.2015201511510.1155/2015/567073
    [Google Scholar]
  42. GoncharO.O. MaznychenkoA.V. BulgakovaN.V. VereshchakaI.V. TomiakT. RitterU. PrylutskyyY.I. MankovskaI.M. KostyukovA.I. C60 fullerene prevents restraint stress-induced oxidative disorders in rat tissues: possible involvement of the Nrf2/ARE-antioxidant pathway.Oxid. Med. Cell. Longev.2018201811710.1155/2018/251867630538799
    [Google Scholar]
  43. GharbiN. PressacM. HadchouelM. SzwarcH. WilsonS.R. MoussaF. [60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity.Nano Lett.20055122578258510.1021/nl051866b16351219
    [Google Scholar]
  44. BakryR. VallantR.M. Najam-ul-HaqM. RainerM. SzaboZ. HuckC.W. BonnG.K. Medicinal applications of fullerenes.Int. J. Nanomedicine20072463964918203430
    [Google Scholar]
  45. ChenZ. MaoR. LiuY. Fullerenes for cancer diagnosis and therapy: Preparation, biological and clinical perspectives.Curr. Drug Metab.20121381035104510.2174/13892001280285012822380017
    [Google Scholar]
  46. SureshL. BondiliJ.S. BrahmanP.K. Development of proof of concept for prostate cancer detection: an electrochemical immunosensor based on fullerene-C60 and copper nanoparticles composite film as diagnostic tool.Mater. Today Chem.20201610025710.1016/j.mtchem.2020.100257
    [Google Scholar]
  47. BalR. TürkG. TuzcuM. YilmazO. OzercanI. KulogluT. GürS. NedzvetskyV.S. TykhomyrovA.A. AndrievskyG.V. BaydasG. NazirogluM. Protective effects of nanostructures of hydrated C60 fullerene on reproductive function in streptozotocin-diabetic male rats.Toxicology.20112823698110.1016/j.tox.2010.12.00321163323
    [Google Scholar]
  48. MirkovS.M. DjordjevicA.N. AndricN.L. AndricS.A. KosticT.S. BogdanovicG.M. Vojinovic-MiloradovM.B. KovacevicR.Z. Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60(OH)24.Nitric Oxide200411220120710.1016/j.niox.2004.08.00315491853
    [Google Scholar]
  49. CasimirD. AlghamdiH. AhmedI.Y. Garcia-SanchezR. MisraP. Raman Spectroscopy of Graphene, Graphite and Graphene Nanoplatelets, 2D Materials.IntechOpen201913
    [Google Scholar]
  50. EinafsharE. KhodadadipoorZ. NejabatM. RamezaniM. Synthesis, characterization and application of α, β, and γ cyclodextrin-conjugated graphene oxide for removing cadmium ions from aqueous media.J. Polym. Environ.202129103161317310.1007/s10924‑021‑02064‑y
    [Google Scholar]
  51. YousefiM. DadashpourM. HejaziM. HasanzadehM. BehnamB. de la GuardiaM. ShadjouN. MokhtarzadehA. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria.Mater. Sci. Eng. C20177456858110.1016/j.msec.2016.12.12528254332
    [Google Scholar]
  52. Ghasemipour AfsharE. ZarrabiA. DehshahriA. AshrafizadehM. DehghannoudehG. BehnamB. MandegaryA. PardakhtyA. MohammadinejadR. TavakolS. Graphene as a promising multifunctional nanoplatform for glioblastoma theranostic applications.FlatChem20202210017310.1016/j.flatc.2020.100173
    [Google Scholar]
  53. GuZ. ZhuS. YanL. ZhaoF. ZhaoY. Graphene-based smart platforms for combined cancer therapy.Adv. Mater.2019319180066210.1002/adma.20180066230039878
    [Google Scholar]
  54. NurunnabiM. ParvezK. NafiujjamanM. RevuriV. KhanH.A. FengX. LeeY. Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges.RSC Adv.2015552421414216110.1039/C5RA04756K
    [Google Scholar]
  55. SabaN. JawaidM. Functionalized graphene reinforced hybrid nanocomposites and their applications.Synthesis, Processing and Applications Micro and Nano Technologies201920521810.1016/B978‑0‑12‑814548‑7.00010‑6
    [Google Scholar]
  56. DevasenaT. FrancisA.P. RamaprabhuS. Toxicity of graphene: An update.Rev. Environ. Contam. Toxicol.2021259517610.1007/398_2021_7834611755
    [Google Scholar]
  57. LiD. HuX. ZhangS. Biodegradation of graphene-based nanomaterials in blood plasma affects their biocompatibility, drug delivery, targeted organs and antitumor ability.Biomaterials.2019202122510.1016/j.biomaterials.2019.02.02030826536
    [Google Scholar]
  58. AsgharW. ShafieeH. VelascoV. SahV.R. GuoS. El AssalR. InciF. RajagopalanA. JahangirM. AnchanR.M. MutterG.L. OzkanM. OzkanC.S. DemirciU. Toxicology study of single-walled carbon nanotubes and reduced graphene oxide in human sperm.Sci. Rep.2016613027010.1038/srep3027027538480
    [Google Scholar]
  59. KuckiM. AengenheisterL. DienerL. RipplA.V. VranicS. NewmanL. VazquezE. KostarelosK. WickP. Buerki-ThurnherrT. Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity.2D Mater.20185303501410.1088/2053‑1583/aab9e2
    [Google Scholar]
  60. XuS. ZhangZ. ChuM. Long-term toxicity of reduced graphene oxide nanosheets: Effects on female mouse reproductive ability and offspring development.Biomaterials.20155418820010.1016/j.biomaterials.2015.03.01525907052
    [Google Scholar]
  61. ShinJ.H. HanS.G. KimJ.K. KimB.W. HwangJ.H. LeeJ.S. LeeJ.H. BaekJ.E. KimT.G. KimK.S. LeeH.S. SongN.W. AhnK. YuI.J. 5-Day repeated inhalation and 28-day post-exposure study of graphene.Nanotoxicology.2015981023103110.3109/17435390.2014.99830625697182
    [Google Scholar]
  62. LiangS. XuS. ZhangD. HeJ. ChuM. Reproductive toxicity of nanoscale graphene oxide in male mice.Nanotoxicology.2015919210510.3109/17435390.2014.89338024621344
    [Google Scholar]
  63. AkhavanO. GhaderiE. HashemiE. AkbariE. Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals.Carbon.20159530931710.1016/j.carbon.2015.08.017
    [Google Scholar]
  64. BernabòN. FontanaA. SanchezM.R. ValbonettiL. CapacchiettiG. ZappacostaR. GrecoL. MarchisioM. LanutiP. ErcolinoE. BarboniB. Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model.Carbon.201812942843710.1016/j.carbon.2017.12.042
    [Google Scholar]
  65. QuG. WangX. LiuQ. LiuR. YinN. MaJ. ChenL. HeJ. LiuS. JiangG. The ex vivo and in vivo biological performances of graphene oxide and the impact of surfactant on graphene oxide’s biocompatibility.J. Environ. Sci.201325587388110.1016/S1001‑0742(12)60252‑624218816
    [Google Scholar]
  66. SasidharanA. SwaroopS. KoduriC.K. GirishC.M. ChandranP. PanchakarlaL.S. SomasundaramV.H. GowdG.S. NairS. KoyakuttyM. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: A three month study.Carbon.20159551152410.1016/j.carbon.2015.08.074
    [Google Scholar]
  67. FuC. LiuT. LiL. LiuH. LiangQ. MengX. Effects of graphene oxide on the development of offspring mice in lactation period.Biomaterials.201540233110.1016/j.biomaterials.2014.11.01425498802
    [Google Scholar]
  68. ShirasuK. KitayamaS. LiuF. YamamotoG. HashidaT. Molecular dynamics simulations and theoretical model for engineering tensile properties of single-and multi-walled carbon nanotubes.Nanomaterials.202111379510.3390/nano1103079533808899
    [Google Scholar]
  69. BasiukE.V. Monroy-PeláezM. Puente-LeeI. BasiukV.A. Direct solvent-free amination of closed-cap carbon nanotubes: A link to fullerene chemistry.Nano Lett.20044586386610.1021/nl049746b
    [Google Scholar]
  70. JohnA.R. ArumugamP. Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode.J. Power. Sources.201527738739210.1016/j.jpowsour.2014.11.151
    [Google Scholar]
  71. AhmedW. ElhissiA. DhanakV. SubramaniK. Carbon nanotubes: Applications in cancer therapy and drug delivery research, Emerging nanotechnologies in dentistry.Elsevier201837138910.1016/B978‑0‑12‑812291‑4.00018‑2
    [Google Scholar]
  72. RezayiM. MahmoodiP. LangariH. BehnamB. SahebkarA. Conjugates of curcumin with graphene and carbon nanotubes: A review on biomedical applications.Curr. Med. Chem.202027406849686310.2174/092986732666619111314574531724497
    [Google Scholar]
  73. SianiparM. KimS.H. KhoiruddinK. IskandarF. WentenI.G. Functionalized carbon nanotube (CNT) membrane: Progress and challenges.RSC Adv.2017781511755119810.1039/C7RA08570B
    [Google Scholar]
  74. ZhangM. WangW. WuF. YuanP. ChiC. ZhouN. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice.Carbon.2017123708310.1016/j.carbon.2017.07.032
    [Google Scholar]
  75. HassanpourS. BehnamB. BaradaranB. HashemzaeiM. OroojalianF. MokhtarzadehA. de la GuardiaM. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals.Talanta.202122112161010.1016/j.talanta.2020.12161033076140
    [Google Scholar]
  76. MohajeriM. BehnamB. TasbandiA. JamialahmadiT. SahebkarA. Carbon-based nanomaterials and curcumin: A review of biosensing applications.Adv. Exp. Med. Biol.20211291557410.1007/978‑3‑030‑56153‑6_4
    [Google Scholar]
  77. RezaeeM. BehnamB. BanachM. SahebkarA. The Yin and Yang of carbon nanomaterials in atherosclerosis.Biotechnol. Adv.20183682232224710.1016/j.biotechadv.2018.10.01030342084
    [Google Scholar]
  78. AhmadiH. RamezaniM. Yazdian-RobatiR. BehnamB. Razavi AzarkhiaviK. Hashem NiaA. MokhtarzadehA. Matbou RiahiM. RazaviB.M. AbnousK. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach.Chem. Biol. Interact.201727519620910.1016/j.cbi.2017.08.00428807745
    [Google Scholar]
  79. LacerdaL. BiancoA. PratoM. KostarelosK. Carbon nanotubes as nanomedicines: From toxicology to pharmacology.Adv. Drug Deliv. Rev.200658141460147010.1016/j.addr.2006.09.01517113677
    [Google Scholar]
  80. OhadiM. RezaeiP. MehrabaniM. BehnamB. AnsariM. Synthesis, characterization and toxicity assessment of the novel non covalent functionalized multi-walled carbon nanotubes with glycyrrhizin, curcumin and rutin.J. Cluster Sci.202233397598410.1007/s10876‑021‑02026‑3
    [Google Scholar]
  81. PulskampK. DiabatéS. KrugH. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants.Toxicol. Lett.20071681587410.1016/j.toxlet.2006.11.00117141434
    [Google Scholar]
  82. AminzadehZ. JamalanM. ChupaniL. LenjannezhadianH. GhaffariM.A. AberomandM. ZeinaliM. In vitro reprotoxicity of carboxyl-functionalised single- and multi-walled carbon nanotubes on human spermatozoa.Andrologia.2017499e1274110.1111/and.1274128000929
    [Google Scholar]
  83. JohanssonH.K.L. HansenJ.S. ElfvingB. LundS.P. KyjovskaZ.O. LoftS. BarfodK.K. JacksonP. VogelU. HougaardK.S. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice.Part. Fibre Toxicol.20171411710.1186/s12989‑017‑0197‑128558787
    [Google Scholar]
  84. CampagnoloL. MassimianiM. PalmieriG. BernardiniR. SacchettiC. BergamaschiA. VecchioneL. MagriniA. BottiniM. PietroiustiA. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice.Part. Fibre Toxicol.20131012110.1186/1743‑8977‑10‑2123742083
    [Google Scholar]
  85. FarombiE.O. AdedaraI.A. ForcadosG.E. AnaoO.O. AgbowoA. PatlollaA.K. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes.Environ. Toxicol.201431554355110.1002/tox.2206725410135
    [Google Scholar]
  86. BaiY. ZhangY. ZhangJ. MuQ. ZhangW. ButchE.R. SnyderS.E. YanB. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility.Nat. Nanotechnol.20105968368910.1038/nnano.2010.15320693989
    [Google Scholar]
  87. YoshidaS. HiyoshiK. IchinoseT. TakanoH. OshioS. SugawaraI. TakedaK. ShibamotoT. Effect of nanoparticles on the male reproductive system of mice.Int. J. Androl.200932433734210.1111/j.1365‑2605.2007.00865.x18217983
    [Google Scholar]
  88. HuangX. ZhangF. SunX. ChoiK.Y. NiuG. ZhangG. GuoJ. LeeS. ChenX. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development.Biomaterials.201435285686510.1016/j.biomaterials.2013.10.02724344357
    [Google Scholar]
  89. NirmalN.K. AwasthiK.K. JohnP.J. Effects of hydroxyl-functionalized multiwalled carbon nanotubes on sperm health and testes of Wistar rats.Toxicol. Ind. Health201733651952910.1177/074823371668566128073318
    [Google Scholar]
  90. FangH. CuiY. WangZ. WangS. Toxicological assessment of multi-walled carbon nanotubes combined with nonylphenol in male mice.PLoS. One.2018137e020023810.1371/journal.pone.020023830028835
    [Google Scholar]
  91. RomanD. YasmeenA. MireutaM. StiharuI. Al MoustafaA.E. Significant toxic role for single-walled carbon nanotubes during normal embryogenesis.Nanomedicine.20139794595010.1016/j.nano.2013.03.01023563045
    [Google Scholar]
  92. PhilbrookN.A. WalkerV.K. AfroozA.R.M.N. SalehN.B. WinnL.M. Investigating the effects of functionalized carbon nanotubes on reproduction and development in Drosophila melanogaster and CD-1 mice.Reprod. Toxicol.201132444244810.1016/j.reprotox.2011.09.00221963887
    [Google Scholar]
  93. PietroiustiA. MassimianiM. FenoglioI. ColonnaM. ValentiniF. PalleschiG. CamaioniA. MagriniA. SiracusaG. BergamaschiA. SgambatoA. CampagnoloL. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development.ACS. Nano.2011564624463310.1021/nn200372g21615177
    [Google Scholar]
  94. ParkE.J. ChoiJ. KimJ.H. LeeB.S. YoonC. JeongU. KimY. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison.Nanotoxicology.20161081188120210.1080/17435390.2016.120234827310831
    [Google Scholar]
  95. XuC. LiuQ. LiuH. ZhangC. ShaoW. GuA. Toxicological assessment of multi-walled carbon nanotubes in vitro: Potential mitochondria effects on male reproductive cells.Oncotarget.2016726392703927810.18632/oncotarget.968927248475
    [Google Scholar]
  96. OkoyeC.O. JonesI. ZhuM. ZhangZ. ZhangD. Manufacturing of carbon black from spent tyre pyrolysis oil - A literature review.J. Clean. Prod.202127912333610.1016/j.jclepro.2020.123336
    [Google Scholar]
  97. NiranjanR. ThakurA.K. The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways.Front. Immunol.2017876310.3389/fimmu.2017.0076328713383
    [Google Scholar]
  98. VermaN. PinkM. Schmitz-SpankeS. A new perspective on calmodulin-regulated calcium and ROS homeostasis upon carbon black nanoparticle exposure.Arch. Toxicol.20219562007201810.1007/s00204‑021‑03032‑033772346
    [Google Scholar]
  99. ChaudhuriI. Fruijtier-PöllothC. NgiewihY. LevyL. Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: A critical review.Crit. Rev. Toxicol.201848214316910.1080/10408444.2017.139174629095661
    [Google Scholar]
  100. JacksonP. HougaardK.S. BoisenA.M.Z. JacobsenN.R. JensenK.A. MøllerP. BrunborgG. GutzkowK.B. AndersenO. LoftS. VogelU. WallinH. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring.Nanotoxicology.20126548650010.3109/17435390.2011.58790221649560
    [Google Scholar]
  101. ZhangS. MengP. ChengS. JiangX. ZhangJ. QinX. TangQ. BaiL. ZouZ. ChenC. Pregnancy exposure to carbon black nanoparticles induced neurobehavioral deficits that are associated with altered m6A modification in offspring.Neurotoxicology.202081405010.1016/j.neuro.2020.07.00432783905
    [Google Scholar]
  102. SkovmandA. JensenA.C.Ø. MauriceC. MarchettiF. LauvåsA.J. KoponenI.K. JensenK.A. Goericke-PeschS. VogelU. HougaardK.S. Effects of maternal inhalation of carbon black nanoparticles on reproductive and fertility parameters in a four-generation study of male mice.Part. Fibre Toxicol.20191611310.1186/s12989‑019‑0295‑330879468
    [Google Scholar]
  103. JacksonP. HougaardK.S. VogelU. WuD. CasavantL. WilliamsA. WadeM. YaukC.L. WallinH. HalappanavarS. Exposure of pregnant mice to carbon black by intratracheal instillation: Toxicogenomic effects in dams and offspring.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20127451-2738310.1016/j.mrgentox.2011.09.01822001195
    [Google Scholar]
  104. SunY. LuoB. XuS. GuoW. HuangX. ShaoL. Atomic Cu on nanodiamond-based sp2/sp3 hybrid nanostructures for selective hydrogenation of phenylacetylene.Chem. Phys. Lett.2019723394310.1016/j.cplett.2019.03.015
    [Google Scholar]
  105. ThangarajB. SolomonP.R. RanganathanS. Synthesis of carbon quantum dots with special reference to biomass as a source-a review.Curr. Pharm. Des.201925131455147610.2174/138161282566619061815451831258064
    [Google Scholar]
  106. WangY. HuA. Carbon quantum dots: synthesis, properties and applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20142346921693910.1039/C4TC00988F
    [Google Scholar]
  107. LiH. HeX. KangZ. HuangH. LiuY. LiuJ. LianS. TsangC.H.A. YangX. LeeS.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design.Angew. Chem. Int. Ed.201049264430443410.1002/anie.20090615420461744
    [Google Scholar]
  108. YangZ.C. WangM. YongA.M. WongS.Y. ZhangX.H. TanH. ChangA.Y. LiX. WangJ. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate.Chem. Commun.20114742116151161710.1039/c1cc14860e21931886
    [Google Scholar]
  109. ZhouJ. ShengZ. HanH. ZouM. LiC. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source.Mater. Lett.201266122222410.1016/j.matlet.2011.08.081
    [Google Scholar]
  110. BakerS.N. BakerG.A. Luminescent carbon nanodots: emergent nanolights.Angew. Chem. Int. Ed.201049386726674410.1002/anie.20090662320687055
    [Google Scholar]
  111. CaoB. YuanC. LiuB. JiangC. GuanG. HanM.Y. Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots.Anal. Chim. Acta201378614615210.1016/j.aca.2013.05.01523790304
    [Google Scholar]
  112. ZhengX.T. AnanthanarayananA. LuoK.Q. ChenP. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications.Small.201511141620163610.1002/smll.201402648
    [Google Scholar]
  113. RitterK.A. LydingJ.W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.Nat. Mater.20098323524210.1038/nmat237819219032
    [Google Scholar]
  114. ZhangL. XingY. HeN. ZhangY. LuZ. ZhangJ. ZhangZ. Preparation of graphene quantum dots for bioimaging application.J. Nanosci. Nanotechnol.20121232924292810.1166/jnn.2012.569822755143
    [Google Scholar]
  115. DongY. ShaoJ. ChenC. LiH. WangR. ChiY. LinX. ChenG. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid.Carbon201250124738474310.1016/j.carbon.2012.06.002
    [Google Scholar]
  116. DattaK. KozakO. RancV. HavrdovaM. BourlinosA. ŠafářováK. HolaK. TomankovaK. ZoppellaroG. OtyepkaM. Quaternized carbon dot-modified graphene oxide for selective cell labelling–controlled nucleus and cytoplasm imaging.Chem. comm.2014502014107821078510.1039/C4CC02637C
    [Google Scholar]
  117. DahlJ.E. LiuS.G. CarlsonR.M.K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules.Science20032995603969910.1126/science.107823912459548
    [Google Scholar]
  118. BadeaI. KaurR. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.Int. J. Nanomedicine2013820322010.2147/IJN.S3734823326195
    [Google Scholar]
  119. KimD. YooJ.M. HwangH. LeeJ. LeeS.H. YunS.P. ParkM.J. LeeM. ChoiS. KwonS.H. LeeS. KwonS.H. KimS. ParkY.J. KinoshitaM. LeeY.H. ShinS. PaikS.R. LeeS.J. LeeS. HongB.H. KoH.S. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease.Nat. Nanotechnol.201813981281810.1038/s41565‑018‑0179‑y29988049
    [Google Scholar]
  120. MohammadinejadR. DehshahriA. SassanH. BehnamB. AshrafizadehM. Samareh GholamiA. PardakhtyA. MandegaryA. Preparation of carbon dot as a potential CRISPR/Cas9 plasmid delivery system for lung cancer cells.Minerva. Biotecnol.202032310611310.23736/S1120‑4826.20.02618‑X
    [Google Scholar]
  121. PfaffA. BeltzJ. ErcalN. Nanodiamonds as antioxidant carriers: Applications for drug delivery.Free Radic. Biol. Med.2018128S4810.1016/j.freeradbiomed.2018.10.080
    [Google Scholar]
  122. ScialabbaC. SciortinoA. MessinaF. BuscarinoG. CannasM. RoscignoG. CondorelliG. CavallaroG. GiammonaG. MauroN. Highly homogeneous biotinylated carbon nanodots: Red-emitting nanoheaters as theranostic agents toward precision cancer medicine.ACS Appl. Mater. Interfaces.20191122198541986610.1021/acsami.9b0492531088077
    [Google Scholar]
  123. WangK. GaoZ. GaoG. WoY. WangY. ShenG. CuiD. Systematic safety evaluation on photoluminescent carbon dots.Nanoscale Res. Lett.20138112210.1186/1556‑276X‑8‑12223497260
    [Google Scholar]
  124. JiX. XuB. YaoM. MaoZ. ZhangY. XuG. TangQ. WangX. XiaY. Graphene oxide quantum dots disrupt autophagic flux by inhibiting lysosome activity in GC-2 and TM4 cell lines.Toxicology.2016374101710.1016/j.tox.2016.11.00927845169
    [Google Scholar]
  125. RoyP. PeriasamyA.P. LinC.Y. HerG.M. ChiuW.J. LiC.L. ShuC.L. HuangC.C. LiangC.T. ChangH.T. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells.Nanoscale.2015762504251010.1039/C4NR07005D25569453
    [Google Scholar]
  126. KrishnakumarS. PaulV. AriyathA. AnoopP.D. SreekumarS. MenonD. Paul-PrasanthB. Graphene quantum dots alter proliferation and meiosis of germ cells only in genetic females of japanese medaka during early embryonic development.ACS Appl. Bio Mater.20192273774610.1021/acsabm.8b0060635016278
    [Google Scholar]
  127. WangZ.G. ZhouR. JiangD. SongJ.E. XuQ. SiJ. ChenY.P. ZhouX. GanL. LiJ.Z. ZhangH. LiuB. Toxicity of graphene quantum dots in zebrafish embryo.Biomed. Environ. Sci.201528534135110.3967/bes2015.04826055561
    [Google Scholar]
  128. YadavD. SandeepK. SrivastavaS. TripathiY.B. Dendrimers: General Features And Applications, Dendrimers for Drug Delivery.Apple Academic Press201897118
    [Google Scholar]
  129. NnadiekweC.C. NadaA. AbdulazeezI. ImamM.R. JanjuaM.R.S.A. Al-SaadiA.A. UV-absorbing benzamide-based dendrimer precursors: synthesis, theoretical calculation, and spectroscopic characterization.New J. Chem.2021461758510.1039/D1NJ04366H
    [Google Scholar]
  130. GuptaA. DubeyS. MishraM. Unique structures, properties and applications of dendrimers.J. Drug Deliv. Ther.20188632833910.22270/jddt.v8i6‑s.2083
    [Google Scholar]
  131. MariyamM. GhosalK. ThomasS. KalarikkalN. LathaM.S. Dendrimers: General aspects, applications and structural exploitations as prodrug/drug-delivery vehicles in current medicine.Mini Rev. Med. Chem.201818543945710.2174/138955751766617051209515128618985
    [Google Scholar]
  132. KesharwaniP. GothwalA. IyerA.K. JainK. ChourasiaM.K. GuptaU. Dendrimer nanohybrid carrier systems: An expanding horizon for targeted drug and gene delivery.Drug. Discov. Today.201823230031410.1016/j.drudis.2017.06.00928697371
    [Google Scholar]
  133. SikwalD.R. KalhapureR.S. GovenderT. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers.Eur. J. Pharm. Sci.20179711313410.1016/j.ejps.2016.11.01327864064
    [Google Scholar]
  134. MignaniS. RodriguesJ. TomasH. ZablockaM. ShiX. CaminadeA.M. MajoralJ.P. Dendrimers in combination with natural products and analogues as anti-cancer agents.Chem. Soc. Rev.201847251453210.1039/C7CS00550D29154385
    [Google Scholar]
  135. BrizV. Sepúlveda-CrespoD. DinizA.R. BorregoP. RodesB. de la MataF.J. GómezR. TaveiraN. Muñoz-FernándezM.Á. Development of water-soluble polyanionic carbosilane dendrimers as novel and highly potent topical anti-HIV-2 microbicides.Nanoscale.2015735146691468310.1039/C5NR03644E26274532
    [Google Scholar]
  136. Vacas CórdobaE. ArnaizE. RellosoM. Sánchez-TorresC. GarcíaF. Pérez-ÁlvarezL. GómezR. de la MataF.J. PionM. Muñoz-FernándezM.Á. Development of sulphated and naphthylsulphonated carbosilane dendrimers as topical microbicides to prevent HIV-1 sexual transmission.AIDS.20132781219122910.1097/QAD.0b013e32835f2b7a23925376
    [Google Scholar]
  137. Martín-MorenoA. Sepúlveda-CrespoD. Serramía-LoberaM.J. Perisé-BarriosA.J. Muñoz-FernándezM.A. G2-S16 dendrimer microbicide does not interfere with the vaginal immune system.J. Nanobiotechnology.20191716510.1186/s12951‑019‑0496‑931092246
    [Google Scholar]
  138. MenjogeA.R. NavathR.S. AsadA. KannanS. KimC.J. RomeroR. KannanR.M. Transport and biodistribution of dendrimers across human fetal membranes: Implications for intravaginal administration of dendrimer-drug conjugates.Biomaterials.201031185007502110.1016/j.biomaterials.2010.02.07520346497
    [Google Scholar]
  139. Ceña-DiezR. Martin-MorenoA. de la MataF.J. Gómez-RamirezR. MuñozE. ArdoyM. Muñoz-FernándezM.Á. G1-S4 or G2-S16 carbosilan dendrimer in combination with Platycodin D as a promising vaginal microbicide candidate with contraceptive activity.Int. J. Nanomedicine.2019142371238110.2147/IJN.S18849531040662
    [Google Scholar]
  140. Ceña-DiezR. García-BroncanoP. Javier de la MataF. GómezR. ResinoS. Muñoz-FernándezM.Á. G2-S16 dendrimer as a candidate for a microbicide to prevent HIV-1 infection in women.Nanoscale.20179279732974210.1039/C7NR03034G28675217
    [Google Scholar]
  141. García-BroncanoP. Ceña-DiezR. de la MataF.J. GómezR. ResinoS. Muñoz-FernándezM.Á. Efficacy of carbosilane dendrimers with an antiretroviral combination against HIV-1 in the presence of semen-derived enhancer of viral infection.Eur. J. Pharmacol.201781115516310.1016/j.ejphar.2017.05.06028577966
    [Google Scholar]
  142. CalienniM.N. FeasD.A. IgartúaD.E. ChiaramoniN.S. AlonsoS.V. PrietoM.J. Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages.Toxicol. Appl. Pharmacol.201733711110.1016/j.taap.2017.10.00328993268
    [Google Scholar]
  143. King HeidenT.C. DenglerE. KaoW.J. HeidemanW. PetersonR.E. Developmental toxicity of low generation PAMAM dendrimers in zebrafish.Toxicol. Appl. Pharmacol.20072251707910.1016/j.taap.2007.07.00917764713
    [Google Scholar]
  144. HarperS. PryorJ. HarperB. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish.Int. J. Nanomedicine201491947195610.2147/IJN.S6022024790436
    [Google Scholar]
  145. IllingM. BacherG. KümmellT. ForchelA. AnderssonT.G. HommelD. JobstB. LandwehrG. Lateral quantization effects in lithographically defined CdZnSe/ZnSe quantum dots and quantum wires.Appl. Phys. Lett.199567112412610.1063/1.115504
    [Google Scholar]
  146. KamatP.V. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters.J. Phys. Chem. C200811248187371875310.1021/jp806791s
    [Google Scholar]
  147. KaviyarasuK. AyeshamariamA. ManikandanE. KennedyJ. LadchumananandasivamR. Umbelino GomesU. JayachandranM. MaazaM. Solution processing of CuSe quantum dots: Photocatalytic activity under RhB for UV and visible-light solar irradiation.Mater. Sci. Eng. B20162101910.1016/j.mseb.2016.05.002
    [Google Scholar]
  148. GreenM. WilliamsonP. SamalovaM. DavisJ. BrovelliS. DobsonP. CacialliF. Synthesis of type II/type I CdTe/CdS/ZnS quantum dots and their use in cellular imaging.J. Mater. Chem.200919448341834610.1039/b913292a
    [Google Scholar]
  149. MingK. KimJ. BiondiM.J. SyedA. ChenK. LamA. OstrowskiM. RebbapragadaA. FeldJ.J. ChanW.C.W. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients.ACS. Nano.2015933060307410.1021/nn507279225661584
    [Google Scholar]
  150. EdisonT.N.J.I. AtchudanR. SethuramanM.G. ShimJ.J. LeeY.R. Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications.J. Photochem. Photobiol. B201616115416110.1016/j.jphotobiol.2016.05.01727236237
    [Google Scholar]
  151. HongG. AntarisA.L. DaiH. Near-infrared fluorophores for biomedical imaging.Nat. Biomed. Eng.201711001010.1038/s41551‑016‑0010
    [Google Scholar]
  152. SunZ. FangW. ZhaoL. ChenH. HeX. LiW. TianP. HuangZ. g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction.Environ. Int.201913010489810.1016/j.envint.2019.06.00831228786
    [Google Scholar]
  153. MaF. JiangS. ZhangC. SiRNA-directed self-assembled quantum dot biosensor for simultaneous detection of multiple microRNAs at the single-particle level.Biosens. Bioelectron.202015711217710.1016/j.bios.2020.11217732250933
    [Google Scholar]
  154. AmiriG. ValipoorA. ParivarK. ModaresiM. NooriA. GharamalekiH. TaheriJ. KazemiA. Comparison of toxicity of CdSe: ZnS quantum dots on male reproductive system in different stages of development in mice.Int. J. Fertil. Steril.20169451252010.22074/ijfs.2015.461026985339
    [Google Scholar]
  155. LiX. YangX. YuwenL. YangW. WengL. TengZ. WangL. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice.Biomaterials.201696243210.1016/j.biomaterials.2016.04.01427135714
    [Google Scholar]
  156. XuG. LinS. LawW.C. RoyI. LinX. MeiS. MaH. ChenS. NiuH. WangX. The invasion and reproductive toxicity of QDs-transferrin bioconjugates on preantral follicle in vitro.Theranostics.20122773474510.7150/thno.429022916073
    [Google Scholar]
  157. QuY. LiW. ZhouY. LiuX. ZhangL. WangL. LiY. IidaA. TangZ. ZhaoY. ChaiZ. ChenC. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism.Nano Lett.20111183174318310.1021/nl201391e21721562
    [Google Scholar]
  158. HsiehM.S. ShiaoN.H. ChanW.H. Cytotoxic effects of CdSe quantum dots on maturation of mouse oocytes, fertilization, and fetal development.Int. J. Mol. Sci.20091052122213510.3390/ijms1005212219564943
    [Google Scholar]
  159. ChuM. WuQ. YangH. YuanR. HouS. YangY. ZouY. XuS. XuK. JiA. ShengL. Transfer of quantum dots from pregnant mice to pups across the placental barrier.Small.20106567067810.1002/smll.20090204920143348
    [Google Scholar]
  160. LiuL. SunM. LiQ. ZhangH. AlvarezP.J.J. LiuH. ChenW. Genotoxicity and cytotoxicity of cadmium sulfide nanomaterials to mice: Comparison between nanorods and nanodots.Environ. Eng. Sci.201431737338010.1089/ees.2013.041725053877
    [Google Scholar]
  161. AkhavanO. HashemiE. ZareH. ShamsaraM. TaghaviniaN. HeidariF. Influence of heavy nanocrystals on spermatozoa and fertility of mammals.Mater. Sci. Eng. C201669525910.1016/j.msec.2016.06.05527612688
    [Google Scholar]
  162. XuG. LinX. YongK-T. RoyI. QuJ. WangX. Visualization of reproduction toxicity of QDs for in vitro oocytes maturation.Proceedings of the SPIE2009751975191W10.1117/12.843521
    [Google Scholar]
  163. AminaS.J. GuoB. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle.Int. J. Nanomedicine.2020159823985710.2147/IJN.S27909433324054
    [Google Scholar]
  164. BouhelierA. Field-enhanced scanning near-field optical microscopy.Microsc. Res. Tech.200669756357910.1002/jemt.2032816770767
    [Google Scholar]
  165. EngelS. FritzE.C. RavooB.J. New trends in the functionalization of metallic gold: from organosulfur ligands to N-heterocyclic carbenes.Chem. Soc. Rev.20174682057207510.1039/C7CS00023E28272608
    [Google Scholar]
  166. RajanA. VilasV. PhilipD. Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles.J. Mol. Liq.201521233133910.1016/j.molliq.2015.09.013
    [Google Scholar]
  167. SenganiM. vD.R. Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats.Environ. Toxicol. Pharmacol.201750111910.1016/j.etap.2017.01.00728110133
    [Google Scholar]
  168. CarnovaleC. BryantG. ShuklaR. BansalV. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona.ACS. Omega.20194124225610.1021/acsomega.8b03227
    [Google Scholar]
  169. MorettiE. TerzuoliG. RenieriT. IacoponiF. CastelliniC. GiordanoC. CollodelG. In vitro effect of gold and silver nanoparticles on human spermatozoa.Andrologia.201345639239610.1111/and.1202823116262
    [Google Scholar]
  170. AengenheisterL. DietrichD. SadeghpourA. ManserP. DienerL. WichserA. KarstU. WickP. Buerki-ThurnherrT. Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models.J. Nanobiotechnology.20181617910.1186/s12951‑018‑0406‑630309365
    [Google Scholar]
  171. MuothC. GroßgartenM. KarstU. RuizJ. AstrucD. MoyaS. DienerL. GriederK. WichserA. JochumW. WickP. Buerki-ThurnherrT. Impact of particle size and surface modification on gold nanoparticle penetration into human placental microtissues.Nanomedicine.201712101119113310.2217/nnm‑2017‑042828447888
    [Google Scholar]
  172. MyllynenP.K. LoughranM.J. HowardC.V. SormunenR. WalshA.A. VähäkangasK.H. Kinetics of gold nanoparticles in the human placenta.Reprod. Toxicol.200826213013710.1016/j.reprotox.2008.06.00818638543
    [Google Scholar]
  173. WiwanitkitV. SereemaspunA. RojanathanesR. Effect of gold nanoparticles on spermatozoa: The first world report.Fertil. Steril.2009911e7e810.1016/j.fertnstert.2007.08.02118054925
    [Google Scholar]
  174. TianX. ZhuM. DuL. WangJ. FanZ. LiuJ. ZhaoY. NieG. Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy.Small.20139142432243910.1002/smll.20130081723761193
    [Google Scholar]
  175. Semmler-BehnkeM. LipkaJ. WenkA. HirnS. SchäfflerM. TianF. SchmidG. OberdörsterG. KreylingW.G. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat.Part. Fibre Toxicol.20141113310.1186/s12989‑014‑0033‑925928666
    [Google Scholar]
  176. YangH. SunC. FanZ. TianX. YanL. DuL. LiuY. ChenC. LiangX. AndersonG.J. KeelanJ.A. ZhaoY. NieG. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy.Sci. Rep.20122184710.1038/srep0084723150793
    [Google Scholar]
  177. YahyaeiB. NouriM. BakheradS. HassaniM. PouraliP. Effects of biologically produced gold nanoparticles: Toxicity assessment in different rat organs after intraperitoneal injection.AMB. Express.2019913810.1186/s13568‑019‑0762‑030888557
    [Google Scholar]
  178. StelzerR. HutzR.J. Gold nanoparticles enter rat ovarian granulosa cells and subcellular organelles, and alter in vitro estrogen accumulation.J. Reprod. Dev.200955668569010.1262/jrd.2024119789424
    [Google Scholar]
  179. NazariM. TalebiA.R. Hosseini SharifabadM. AbbasiA. KhoradmehrA. DanafarA.H. Acute and chronic effects of gold nanoparticles on sperm parameters and chromatin structure in Mice.Int. J. Reprod. Biomed.2016141063764210.29252/ijrm.14.10.63727921087
    [Google Scholar]
  180. ZakhidovS.T. RudoyV.M. Dement’evaO.V. MudzhiriN.M. MakarovaN.V. ZeleninaI.A. AndreevaL.E. MarshakT.L. Effect of ultrasmall gold nanoparticles on the murine native sperm chromatin.Biol. Bull. Russ. Acad. Sci.201542647948510.1134/S106235901506013826852475
    [Google Scholar]
  181. TaylorU. BarchanskiA. PetersenS. KuesW.A. BaulainU. GamradL. SajtiL. BarcikowskiS. RathD. Gold nanoparticles interfere with sperm functionality by membrane adsorption without penetration.Nanotoxicology.20148S111812710.3109/17435390.2013.85932124289310
    [Google Scholar]
  182. ZhangX-D. Chen Song Wang Shen Wu Fan Fan SunY. LiuP. LongW. Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice.Int. J. Nanomedicine.201382409241910.2147/IJN.S4637623861586
    [Google Scholar]
  183. LeeJ.K. KimT.S. BaeJ.Y. JungA.Y. LeeS.M. SeokJ.H. RohH.S. SongC.W. ChoiM.J. JeongJ. ChungB.H. LeeY.G. JeongJ. ChoW.S. Organ-specific distribution of gold nanoparticles by their surface functionalization.J. Appl. Toxicol.201535657358010.1002/jat.307525348882
    [Google Scholar]
  184. MamaevaV. SahlgrenC. LindénM. Mesoporous silica nanoparticles in medicine - Recent advances.Adv. Drug Deliv. Rev.201365568970210.1016/j.addr.2012.07.01822921598
    [Google Scholar]
  185. DekkersS. BouwmeesterH. BosP.M.J. PetersR.J.B. RietveldA.G. OomenA.G. Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica.Nanotoxicology.20137436737710.3109/17435390.2012.66225022394279
    [Google Scholar]
  186. BabaeiM. AbnousK. TaghdisiS.M. TaghaviS. Sh SaljooghiA. RamezaniM. AlibolandiM. Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo.Eur. J. Pharm. Biopharm.2020156849610.1016/j.ejpb.2020.08.02632882423
    [Google Scholar]
  187. PhamT. BuiT. NguyenV. BuiT. TranT. PhanQ. PhamT. HoangT. Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: Characteristics, mechanisms, and application for antibiotic removal.Polymers.201810222010.3390/polym1002022030966256
    [Google Scholar]
  188. BagheriE. AnsariL. AbnousK. TaghdisiS.M. CharbgooF. RamezaniM. AlibolandiM. Silica based hybrid materials for drug delivery and bioimaging.J. Control. Release.2018277577610.1016/j.jconrel.2018.03.01429550399
    [Google Scholar]
  189. Eivazzadeh-KeihanR. ChenabK.K. Taheri-LedariR. MosaferJ. HashemiS.M. MokhtarzadehA. MalekiA. HamblinM.R. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering.Mater. Sci. Eng. C202010711026710.1016/j.msec.2019.11026731761248
    [Google Scholar]
  190. BagheriE. NaserifarM. RamezaniP. RamezaniM. AlibolandiM. Silica− polymer hybrid nanoparticles for drug delivery and bioimaging, Hybrid Nanomaterials for Drug Delivery.Elsevier202222724310.1016/B978‑0‑323‑85754‑3.00002‑2
    [Google Scholar]
  191. KatsumitiA. ArosteguiI. OronM. GillilandD. Valsami-JonesE. CajaravilleM.P. Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: Relevance of size, shape and additives.Nanotoxicology.20151021910.3109/17435390.2015.103909225962683
    [Google Scholar]
  192. KimI.Y. JoachimE. ChoiH. KimK. Toxicity of silica nanoparticles depends on size, dose, and cell type.Nanomedicine.20151161407141610.1016/j.nano.2015.03.00425819884
    [Google Scholar]
  193. HassankhaniR. EsmaeillouM. TehraniA.A. NasirzadehK. KhadirF. MaadiH. In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice.Environ. Sci. Pollut. Res. Int.20152221127113210.1007/s11356‑014‑3413‑725113834
    [Google Scholar]
  194. HigashisakaK. NakashimaA. IwaharaY. AokiA. NakayamaM. YanagiharaI. LinY. NaganoK. TsunodaS. SaitoS. YoshiokaY. TsutsumiY. Neutrophil depletion exacerbates pregnancy complications, including placental damage, induced by silica nanoparticles in mice.Front. Immunol.20189185010.3389/fimmu.2018.0185030135689
    [Google Scholar]
  195. MorishitaY. YoshiokaY. SatohH. NojiriN. NaganoK. AbeY. KamadaH. TsunodaS. NabeshiH. YoshikawaT. TsutsumiY. Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice.Biochem. Biophys. Res. Commun.2012420229730110.1016/j.bbrc.2012.02.15322417826
    [Google Scholar]
  196. XuY. WangN. YuY. LiY. LiY.B. YuY.B. ZhouX.Q. SunZ.W. Exposure to silica nanoparticles causes reversible damage of the spermatogenic process in mice.PLoS. One.201497e10157210.1371/journal.pone.010157225003337
    [Google Scholar]
  197. PluskotaA. HorzowskiE. BossingerO. von MikeczA. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: Silica-nanoparticles induce reproductive senescence.PLoS. One.200948e662210.1371/journal.pone.000662219672302
    [Google Scholar]
  198. XueZ.G. ZhuS.H. PanQ. LiangD.S. LiY.M. LiuX.H. XiaK. XiaJ.H. Biotoxicology and biodynamics of silica nanoparticle.Zhong Nan Da Xue Xue Bao Yi Xue Ban20063116816562665
    [Google Scholar]
  199. XueZ. LiangD. LiY. LongZ. PanQ. LiuX. WuL. ZhuS. CaiF. DaiH. TangB. XiaK. XiaJ. Silica nanoparticle is a possible safe carrier for gene therapy.Chin. Sci. Bull.200550202323232710.1007/BF03183743
    [Google Scholar]
  200. LiuJ. YangM. JingL. RenL. WeiJ. ZhangJ. ZhangF. DuanJ. ZhouX. SunZ. Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice.Environ. Sci. Pollut. Res. Int.20182543423343410.1007/s11356‑017‑0724‑529151191
    [Google Scholar]
  201. LeclercL. KleinJ.P. ForestV. BoudardD. MartiniM. PourchezJ. BlanchinM.G. CottierM. Testicular biodistribution of silica-gold nanoparticles after intramuscular injection in mice.Biomed. Microdevices20151746610.1007/s10544‑015‑9968‑326044201
    [Google Scholar]
  202. PoulsenM.S. MoseT. MarounL.L. MathiesenL. KnudsenL.E. RyttingE. Kinetics of silica nanoparticles in the human placenta.Nanotoxicology20159S1798610.3109/17435390.2013.81225923742169
    [Google Scholar]
  203. ZhouX-Q. RenL. ZhangJ. ZouY. ZhangL. WeiJ. ShiZ. LiY. GuoC. SunZ. Silica nanoparticles induce reversible damage of spermatogenic cells via RIPK1 signal pathways in C57 mice.Int. J. Nanomedicine2016112251226410.2147/IJN.S10226827307728
    [Google Scholar]
  204. ZhangJ. RenL. ZouY. ZhangL. WeiJ. LiY. WangJ. SunZ. ZhouX. Silica nanoparticles induce start inhibition of meiosis and cell cycle arrest via down-regulating meiotic relevant factors.Toxicol. Res.2016551453146410.1039/C6TX00236F30090449
    [Google Scholar]
  205. LiuJ. LiX. ZhouG. ZhangY. SangY. WangJ. LiY. GeW. SunZ. ZhouX. Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice.Environ. Pollut.202128411744610.1016/j.envpol.2021.11744634058501
    [Google Scholar]
  206. XuB. MaoZ. JiX. YaoM. ChenM. ZhangX. HangB. LiuY. TangW. TangQ. XiaY. miR-98 and its host gene Huwe1 target Caspase-3 in silica nanoparticles-treated male germ cells.Sci. Rep.2015511293810.1038/srep1293826263183
    [Google Scholar]
  207. ZhangF. YouX. ZhuT. GaoS. WangY. WangR. YuH. QianB. Silica nanoparticles enhance germ cell apoptosis by inducing reactive oxygen species (ROS) formation in Caenorhabditis elegans.J. Toxicol. Sci.202045311712910.2131/jts.45.11732147635
    [Google Scholar]
  208. LiuJ. LiX. ZhouG. SangY. ZhangY. ZhaoY. GeW. SunZ. ZhouX. Silica nanoparticles induce spermatogenesis disorders via L3MBTL2-DNA damage-p53 apoptosis and RNF8-ubH2A/ubH2B pathway in mice.Environ. Pollut.2020265Pt A11497410.1016/j.envpol.2020.11497432554096
    [Google Scholar]
  209. García-MerinoB. BringasE. OrtizI. Synthesis and applications of surface-modified magnetic nanoparticles: Progress and future prospects.Rev. Chem. Eng.202138710.1515/revce‑2020‑0072
    [Google Scholar]
  210. GuoW. FuZ. ZhangZ. WangH. LiuS. FengW. ZhaoX. GiesyJ.P. Synthesis of Fe3O4 magnetic nanoparticles coated with cationic surfactants and their applications in Sb(V) removal from water.Sci. Total Environ.202071013630210.1016/j.scitotenv.2019.13630231927285
    [Google Scholar]
  211. NakhlbandA. Kholafazad-KordashtH. RahimiM. MokhtarzadehA. SoleymaniJ. Applications of magnetic materials in the fabrication of microfluidic-based sensing systems: Recent advances.Microchem. J.202217310704210.1016/j.microc.2021.107042
    [Google Scholar]
  212. RajputS. PittmanC.U.Jr MohanD. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water.J. Colloid Interface Sci.201646833434610.1016/j.jcis.2015.12.00826859095
    [Google Scholar]
  213. ShahjueeT. MasoudpanahS.M. MirkazemiS.M. Coprecipitation synthesis of CoFe2O4 nanoparticles for hyperthermia.J. Ultrafine Grained Nanostruct. Mater.20175010511010.22059/JUFGNSM.2017.02.04
    [Google Scholar]
  214. ZhangQ. YangX. GuanJ. Applications of magnetic nanomaterials in heterogeneous catalysis.ACS Appl. Nano Mater.2019284681469710.1021/acsanm.9b00976
    [Google Scholar]
  215. HuangJ. LiY. OrzaA. LuQ. GuoP. WangL. YangL. MaoH. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches.Adv. Funct. Mater.201626223818383610.1002/adfm.20150418527790080
    [Google Scholar]
  216. TietzeR. ZalogaJ. UnterwegerH. LyerS. FriedrichR.P. JankoC. PöttlerM. DürrS. AlexiouC. Magnetic nanoparticle-based drug delivery for cancer therapy.Biochem. Biophys. Res. Commun.2015468346347010.1016/j.bbrc.2015.08.02226271592
    [Google Scholar]
  217. UlbrichK. HoláK. ŠubrV. BakandritsosA. TučekJ. ZbořilR. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies.Chem. Rev.201611695338543110.1021/acs.chemrev.5b0058927109701
    [Google Scholar]
  218. AttariE. NosratiH. DanafarH. Kheiri ManjiliH. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier.J. Biomed. Mater. Res. A2019107112492250010.1002/jbm.a.3675531298774
    [Google Scholar]
  219. Ben-David MakhlufS. QasemR. RubinsteinS. GedankenA. BreitbartH. Loading magnetic nanoparticles into sperm cells does not affect their functionality.Langmuir.200622239480948210.1021/la061988z17073466
    [Google Scholar]
  220. LimS.S. KimY. ParkY. KimJ.I. ParkI.S. HahmK.S. ShinS.Y. The role of the central l- or d-Pro residue on structure and mode of action of a cell-selective α-helical IsCT-derived antimicrobial peptide.Biochem. Biophys. Res. Commun.200533441329133510.1016/j.bbrc.2005.07.02916040002
    [Google Scholar]
  221. Correia CarreiraS. WalkerL. PaulK. SaundersM. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST.Nanotoxicology.20159S1667810.3109/17435390.2013.83331723927440
    [Google Scholar]
  222. MüllerE. GräfeC. WiekhorstF. BergemannC. WeidnerA. DutzS. ClementJ. Magnetic nanoparticles interact and pass an in vitro co-culture blood-placenta barrier model.Nanomaterials.20188210810.3390/nano802010829443880
    [Google Scholar]
  223. KwonJ.T. HwangS.K. JinH. KimD.S. Minai-TehraniA. YoonH.J. ChoiM. YoonT.J. HanD.Y. KangY.W. YoonB.I. LeeJ.K. ChoM.H. Body distribution of inhaled fluorescent magnetic nanoparticles in the mice.J. Occup. Health.20085011610.1539/joh.50.118285638
    [Google Scholar]
  224. NooriA. ParivarK. ModaresiM. MessripourM. YousefiM.H. AmiriG.R. Effect of magnetic iron oxide nanoparticles on pregnancy and testicular development of mice.Afr. J. Biotechnol.20111012211227
    [Google Scholar]
  225. CaldeiraD.F. PauliniF. SilvaR.C. AzevedoR.B. LucciC.M. In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure.Int. J. Hyperthermia.201834441542210.1080/02656736.2017.134164628605996
    [Google Scholar]
  226. RingwoodA.H. Levi-PolyachenkoN. CarrollD.L. Fullerene exposures with oysters: Embryonic, adult, and cellular responses.Environ. Sci. Technol.200943187136714110.1021/es900621j19806754
    [Google Scholar]
  227. SrdjenovicB. SlavicM. StankovK. KladarN. JovićD. SekeM. BogdanovićV. Size distribution of fullerenol nanoparticles in cell culture medium and their influence on antioxidative enzymes in Chinese hamster ovary cells.Hem. Ind.201569442543110.2298/HEMIND131218054S
    [Google Scholar]
  228. SnyderR.W. FennellT.R. WingardC.J. MortensenN.P. HollandN.A. ShannahanJ.H. PathmasiriW. LewinA.H. SumnerS.C.J. Distribution and biomarker of carbon-14 labeled fullerene C60([14C(U)]C60) in pregnant and lactating rats and their offspring after maternal intravenous exposure.J. Appl. Toxicol.201535121438145110.1002/jat.317726081520
    [Google Scholar]
  229. SumiN. ChitraK.C. Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish, Anabas testudineus (Bloch, 1792).Aquat. Toxicol.201921019620610.1016/j.aquatox.2019.03.00330870666
    [Google Scholar]
  230. VidanapathiranaA.K. ThompsonL.C. MannE.E. OdomJ.T. HollandN.A. SumnerS.J. HanL. LewinA.H. FennellT.R. BrownJ.M. WingardC.J. PVP formulated fullerene (C60) increases Rho-kinase dependent vascular tissue contractility in pregnant Sprague Dawley rats.Reprod. Toxicol.2014498610010.1016/j.reprotox.2014.07.07425088243
    [Google Scholar]
  231. SumiN. ChitraK.C. Possible role of C60 fullerene in the induction of reproductive toxicity in the freshwater fish, Anabas testudineus (Bloch, 1792).Environ. Sci. Pollut. Res. Int.20202716196031961510.1007/s11356‑020‑08509‑632219653
    [Google Scholar]
  232. SumnerS.C.J. FennellT.R. SnyderR.W. TaylorG.F. LewinA.H. Distribution of carbon-14 labeled C60 ([14C]C60) in the pregnant and in the lactating dam and the effect of C60 exposure on the biochemical profile of urine.J. Appl. Toxicol.200930435436010.1002/jat.150320063269
    [Google Scholar]
  233. TaoX. FortnerJ.D. ZhangB. HeY. ChenY. HughesJ.B. Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: Evaluation of sub-lethal reproductive responses and accumulation.Chemosphere.200977111482148710.1016/j.chemosphere.2009.10.02719897225
    [Google Scholar]
  234. TsuchiyaT. OguriI. YamakoshiY.N. MiyataN. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo.FEBS Lett.1996393113914510.1016/0014‑5793(96)00812‑58804443
    [Google Scholar]
  235. VapaI. TorresV.M. DjordjevicA. VasovicV. SrdjenovicB. SimicV.D. PopovićJ.K. Effect of fullerenol C60(OH)24 on lipid peroxidation of kidneys, testes and lungs in rats treated with doxorubicine.Eur. J. Drug Metab. Pharmacokinet.201237430130710.1007/s13318‑012‑0092‑y22527972
    [Google Scholar]
  236. MylaA. DasmahapatraA.K. TchounwouP.B. Sex-reversal and histopathological assessment of potential endocrine-disrupting effects of graphene oxide on japanese medaka (Oryzias latipes) larvae.Chemosphere.202127913076810.1016/j.chemosphere.2021.13076834134430
    [Google Scholar]
  237. ManjunathaB. ParkS.H. KimK. KundapurR.R. LeeS.J. In vivo toxicity evaluation of pristine graphene in developing zebrafish (Danio rerio) embryos.Environ. Sci. Pollut. Res. Int.20182513128211282910.1007/s11356‑018‑1420‑929476369
    [Google Scholar]
  238. WuQ. ZhaoY. LiY. WangD. Molecular signals regulating translocation and toxicity of graphene oxide in the nematode Caenorhabditis elegans.Nanoscale.2014619112041121210.1039/C4NR02688H25124895
    [Google Scholar]
  239. ChenY. HuX. SunJ. ZhouQ. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis.Nanotoxicology.201510111110.3109/17435390.2015.100503225704117
    [Google Scholar]
  240. ChatterjeeN. KimY. YangJ. RocaC.P. JooS.W. ChoiJ. A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in Caenorhabditis elegans exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO).Nanotoxicology.2017111768610.1080/17435390.2016.126727327901397
    [Google Scholar]
  241. YangX. YangQ. ZhengG. HanS. ZhaoF. HuQ. FuZ. Developmental neurotoxicity and immunotoxicity induced by graphene oxide in zebrafish embryos.Environ. Toxicol.2018344tox.2269510.1002/tox.2269530549182
    [Google Scholar]
  242. LiuY. HanW. XuZ. FanW. PengW. LuoS. Comparative toxicity of pristine graphene oxide and its carboxyl, imidazole or polyethylene glycol functionalized products to Daphnia magna: A two generation study.Environ. Pollut.201823721822710.1016/j.envpol.2018.02.02129486455
    [Google Scholar]
  243. PattammattelA. PandeP. KuttappanD. PugliaM. BasuA.K. AmalaradjouM.A. KumarC.V. Controlling the graphene–bio interface: Dispersions in animal sera for enhanced stability and reduced toxicity.Langmuir.20173349141841419410.1021/acs.langmuir.7b0285429144756
    [Google Scholar]
  244. YangJ. ZhaoY. WangY. WangH. WangD. Toxicity evaluation and translocation of carboxyl functionalized graphene in Caenorhabditis elegans.Toxicol. Res.2015461498151010.1039/C5TX00137D
    [Google Scholar]
  245. SkovmandA. Jacobsen LauvåsA. ChristensenP. VogelU. Sørig HougaardK. Goericke-PeschS. Pulmonary exposure to carbonaceous nanomaterials and sperm quality.Part. Fibre Toxicol.20181511010.1186/s12989‑018‑0242‑829386028
    [Google Scholar]
  246. ZanniE. De BellisG. BraccialeM.P. BroggiA. SantarelliM.L. SartoM.S. PalleschiC. UccellettiD. Graphite nanoplatelets and Caenorhabditis elegans: Insights from an in vivo model.Nano Lett.20121262740274410.1021/nl204388p22612766
    [Google Scholar]
  247. Ramal-SanchezM. ValbonettiL. TsikisG. DubuissonF. BlacheM.C. LabasV. DruartX. FontanaA. MermillodP. BarboniB. Saint-DizierM. BernaboN. Graphene oxide: A glimmer of hope for assisted reproductive technology.Carbon.201915051853010.1016/j.carbon.2019.05.055
    [Google Scholar]
  248. ZhaoY. WuQ. WangD. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans.Biomaterials.201679152410.1016/j.biomaterials.2015.11.05226686978
    [Google Scholar]
  249. MesaričT. SepčićK. DrobneD. MakovecD. FaimaliM. MorganaS. FalugiC. GambardellaC. Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus).Aquat. Toxicol.201516315816610.1016/j.aquatox.2015.04.01225897690
    [Google Scholar]
  250. BernabòN. Machado-SimoesJ. ValbonettiL. Ramal-SanchezM. CapacchiettiG. FontanaA. ZappacostaR. PalestiniP. BottoL. MarchisioM. LanutiP. CiullaM. Di StefanoA. FioroniE. SpinaM. BarboniB. Graphene Oxide increases mammalian spermatozoa fertilizing ability by extracting cholesterol from their membranes and promoting capacitation.Sci. Rep.201991815510.1038/s41598‑019‑44702‑531148593
    [Google Scholar]
  251. DziewięckaM. Karpeta-KaczmarekJ. AugustyniakM. Rost-RoszkowskaM. Short-term in vivo exposure to graphene oxide can cause damage to the gut and testis.J. Hazard. Mater.2017328808910.1016/j.jhazmat.2017.01.01228092742
    [Google Scholar]
  252. HashemiE. AkhavanO. ShamsaraM. RahighiR. EsfandiarA. TayefehA.R. Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa.RSC Adv.2014452272132722310.1039/c4ra01047g
    [Google Scholar]
  253. KimY. JeongJ. YangJ. JooS.W. HongJ. ChoiJ. Graphene oxide nano-bio interaction induces inhibition of spermatogenesis and disturbance of fatty acid metabolism in the nematode Caenorhabditis elegans.Toxicology.2018410839510.1016/j.tox.2018.09.00630218681
    [Google Scholar]
  254. ZhaoJ. LuoW. XuY. LingJ. DengL. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis.Sci. Total. Environ.202176614265210.1016/j.scitotenv.2020.14265233092835
    [Google Scholar]
  255. QuY. YangB. JiangX. MaX. LuC. ChenC. Multiwalled carbon nanotubes inhibit steroidogenesis by disrupting steroidogenic acute regulatory protein expression and redox status.J. Nanosci. Nanotechnol.201717291492510.1166/jnn.2017.1264729671476
    [Google Scholar]
  256. IvaniS. KarimiI. TabatabaeiS.R.F. SyedmoradiL. Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice.Toxicol. Ind. Health.20163271293130110.1177/074823371455538825500757
    [Google Scholar]
  257. LimJ.H. KimS.H. ShinI.S. ParkN.H. MoonC. KangS.S. KimS.H. ParkS.C. KimJ.C. Maternal exposure to multi-wall carbon nanotubes does not induce embryo-fetal developmental toxicity in rats.Birth Defects Res. B Dev. Reprod. Toxicol.2011921697610.1002/bdrb.2028321254368
    [Google Scholar]
  258. QiW. BiJ. ZhangX. WangJ. WangJ. LiuP. LiZ. WuW. Damaging effects of multi-walled carbon nanotubes on pregnant mice with different pregnancy times.Sci. Rep.201441435210.1038/srep0435224619025
    [Google Scholar]
  259. ChengJ. ChengS.H. Influence of carbon nanotube length on toxicity to zebrafish embryos.Int. J. Nanomedicine.201273731373910.2147/IJN.S3045922904621
    [Google Scholar]
  260. ChatterjeeN. YangJ. KimH.M. JoE. KimP.J. ChoiK. ChoiJ. Potential toxicity of differential functionalized multiwalled carbon nanotubes (MWCNT) in human cell line (BEAS2B) and Caenorhabditis elegans.J. Toxicol. Environ. Health. A.20147722-241399140810.1080/15287394.2014.95175625343289
    [Google Scholar]
  261. Thompson LCV.A.K. ThompsonL.C. OdomJ. HollandN.A. SumnerS.J. FennellT.R. BrownJ.M. WingardC.J. Vascular tissue contractility changes following late gestational exposure to multi-walled carbon nanotubes or their dispersing vehicle in Sprague Dawley rats.J. Nanomed. Nanotechnol.20145320110.4172/2157‑7439.100020127066300
    [Google Scholar]
  262. HougaardK.S. JacksonP. KyjovskaZ.O. BirkedalR.K. De TemmermanP.J. BrunelliA. VerleysenE. MadsenA.M. SaberA.T. PojanaG. MastJ. MarcominiA. JensenK.A. WallinH. SzarekJ. MortensenA. VogelU. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice.Reprod. Toxicol.201341869710.1016/j.reprotox.2013.05.00623714338
    [Google Scholar]
  263. IvaniS. KarimiI. TabatabaeiS.R.F. Biosafety of multiwalled carbon nanotube in mice: A behavioral toxicological approach.J. Toxicol. Sci.20123761191120510.2131/jts.37.119123208434
    [Google Scholar]
  264. VasyukovaI.A. GribanovskiiS.L. GusevA.A. UbogovA.Y. KhaliullinT.O. FatkhutdinovaL.M. TkachevA.G. Assessment of reproductive toxicity of multiwalled carbon nanotubes and their putative effects on population ecology of mouselike rodents.Nanotechnol. Russ.2015105-645846710.1134/S1995078015030179
    [Google Scholar]
  265. SanandS. KumarS. BaraN. KaulG. Comparative evaluation of half-maximum inhibitory concentration and cytotoxicity of silver nanoparticles and multiwalled carbon nanotubes using buffalo bull spermatozoa as a cell model.Toxicol. Ind. Health.201834964065210.1177/074823371878338930003841
    [Google Scholar]
  266. GmoshinskiI.V. ShumakovaA.A. ShipelinV.A. MusaevaA.D. AntsiferovaA.A. TikhomirovS.A. KhotimchenkoS.A. The effect of 92-day subacute exposure to single-walled carbon nanotubes on trace element homeostasis in wistar rats.Nanotechnol. Russ.2019143-414915810.1134/S1995078019020071
    [Google Scholar]
  267. TangS. TangY. ZhongL. MuratK. AsanG. YuJ. JianR. WangC. ZhouP. Short- and long-term toxicities of multi-walled carbon nanotubes in vivo and in vitro.J. Appl. Toxicol.2012321190091210.1002/jat.274822760929
    [Google Scholar]
  268. OnodaA. TakedaK. UmezawaM. Dose-dependent induction of astrocyte activation and reactive astrogliosis in mouse brain following maternal exposure to carbon black nanoparticle.Part. Fibre Toxicol.2017141410.1186/s12989‑017‑0184‑628148272
    [Google Scholar]
  269. BoisenA.M.Z. ShipleyT. JacksonP. WallinH. NellemannC. VogelU. YaukC.L. HougaardK.S. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells.Reprod. Toxicol.201341454810.1016/j.reprotox.2013.06.06823871697
    [Google Scholar]
  270. KirwinC.J. LeBlancJ.V. ThomasW.C. HaworthS.R. KirbyP.E. ThilagarA. BowmanJ.T. BrusickD.J. Evaluation of the genetic activity of industrially produced carbon black.J. Toxicol. Environ. Health19817697398910.1080/152873981095300397021866
    [Google Scholar]
  271. LinY.H. ZhuangS.X. WangY.L. LinS. HongZ.W. LiuY. XuL. LiF.P. XuB.H. ChenM.H. HeS.W. LiaoB.Q. FuX.P. JiangZ.Q. WangH.L. The effects of graphene quantum dots on the maturation of mouse oocytes and development of offspring.J. Cell. Physiol.20192348138201383110.1002/jcp.2806230644094
    [Google Scholar]
  272. MohanN. ChenC.S. HsiehH.H. WuY.C. ChangH.C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans.Nano Lett.20101093692369910.1021/nl102190920677785
    [Google Scholar]
  273. ZhangD. ZhangZ. WuY. FuK. ChenY. LiW. ChuM. Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health.Biomaterials.201919421523210.1016/j.biomaterials.2018.12.00130578043
    [Google Scholar]
  274. Karpeta-KaczmarekJ. DziewięckaM. AugustyniakM. Rost-RoszkowskaM. Effects of short-term exposure of Acheta domesticus to nanodiamonds in food: DNA damage but no histological alteration in tissues.Carbon.201611045846810.1016/j.carbon.2016.09.053
    [Google Scholar]
  275. BurdI. ZhangF. DadaT. MishraM.K. BorbievT. LesniakW.G. BaghlafH. KannanS. KannanR.M. Fetal uptake of intra-amniotically delivered dendrimers in a mouse model of intrauterine inflammation and preterm birth.Nanomedicine.20141061343135110.1016/j.nano.2014.03.00824657482
    [Google Scholar]
  276. LiT. ChenQ. ZhengY. ZhangP. ChenX. LuJ. LvY. SunS. ZengW. PAMAM-cRGD mediating efficient siRNA delivery to spermatogonial stem cells.Stem Cell Res. Ther.201910139910.1186/s13287‑019‑1506‑431852526
    [Google Scholar]
  277. DingY. YangY. ChenJ. ChenH. WuY. JinL. Toxic effects of ZnSe/ZnS quantum dots on the reproduction and genotoxiticy of rare minnow (Gobiocypris rarus).Comp. Biochem. Physiol. C. Toxicol. Pharmacol.202124710906510.1016/j.cbpc.2021.10906533915279
    [Google Scholar]
  278. YangL. KuangH. ZhangW. WeiH. XuH. Quantum dots cause acute systemic toxicity in lactating rats and growth restriction of offspring.Nanoscale.20181024115641157710.1039/C8NR01248B29892752
    [Google Scholar]
  279. XuG. LinG. LinS. WuN. DengY. FengG. ChenQ. QuJ. ChenD. ChenS. NiuH. MeiS. YongK.T. WangX. The reproductive toxicity of CdSe/ZnS quantum dots on the in vivo ovarian function and in vitro fertilization.Sci. Rep.2016613767710.1038/srep3767727876896
    [Google Scholar]
  280. HsuP.C.L. O’CallaghanM. Al-SalimN. HurstM.R.H. Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans.Environ. Toxicol. Chem.201231102366237410.1002/etc.196722847876
    [Google Scholar]
  281. ZhangW. LinK. SunX. DongQ. HuangC. WangH. GuoM. CuiX. Toxicological effect of MPA–CdSe QDs exposure on zebrafish embryo and larvae.Chemosphere.2012891525910.1016/j.chemosphere.2012.04.01222595531
    [Google Scholar]
  282. ChenY. YangY. OuF. LiuL. LiuX. WangZ.J. JinL. InP/ZnS QDs exposure induces developmental toxicity in rare minnow (Gobiocypris rarus) embryos.Environ. Toxicol. Pharmacol.201860283610.1016/j.etap.2018.04.00529655014
    [Google Scholar]
  283. QuM. QiuY. LvR. YueY. LiuR. YangF. WangD. LiY. Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode Caenorhabditis elegans.Ecotoxicol. Environ. Saf.2019173546210.1016/j.ecoenv.2019.02.01830769203
    [Google Scholar]
  284. LiuJ. YangC. LiuJ. HuR. HuY. ChenH. LawW.C. SwihartM.T. YeL. WangK. YongK.T. Effects of cd-based quantum dot exposure on the reproduction and offspring of kunming mice over multiple generations.Nanotheranostics.201711233710.7150/ntno.1775329071177
    [Google Scholar]
  285. BlickleyT.M. MatsonC.W. VreelandW.N. RittschofD. Di GiulioR.T. McClellan-GreenP.D. Dietary CdSe/ZnS quantum dot exposure in estuarine fish: Bioavailability, oxidative stress responses, reproduction, and maternal transfer.Aquat. Toxicol.2014148273910.1016/j.aquatox.2013.12.02124440963
    [Google Scholar]
  286. WangZ. ZhangS. QuG. LiuS. The capability of quantum dots in crossing the placental barrier and the potential influence on erythrocytes.J. Nanosci. Nanotechnol.201313106529653210.1166/jnn.2013.774324245110
    [Google Scholar]
  287. ZalgevicieneV. KulvietisV. BulotieneD. DidziapetrieneJ. RotomskisR. The effect of nanoparticles in rats during critical periods of pregnancy.Medicina.20124853710.3390/medicina48050037
    [Google Scholar]
  288. HongW. KuangH. HeX. YangL. YangP. ChenB. AguilarZ. XuH. CdSe/ZnS quantum dots impaired the first two generations of placenta growth in an animal model, based on the Shh signaling pathway.Nanomaterials.20199225710.3390/nano902025730769773
    [Google Scholar]
  289. ZalgevicieneV. KulvietisV. BulotieneD. ZurauskasE. LaurinavicieneA. SkripkaA. RotomskisR. Quantum dots mediated embryotoxicity via placental damage.Reprod. Toxicol.20177322223110.1016/j.reprotox.2017.08.01628843702
    [Google Scholar]
  290. Karolczak-BayattiM. ForbesK. HornJ. TeesaluT. HarrisL.K. WestwoodM. AplinJ.D. IGF signalling and endocytosis in the human villous placenta in early pregnancy as revealed by comparing quantum dot conjugates with a soluble ligand.Nanoscale.20191125122851229510.1039/C8NR10337B31211316
    [Google Scholar]
  291. AmbrosoneA. MatteraL. MarchesanoV. QuartaA. SushaA.S. TinoA. RogachA.L. TortiglioneC. Mechanisms underlying toxicity induced by CdTe quantum dots determined in an invertebrate model organism.Biomaterials.20123371991200010.1016/j.biomaterials.2011.11.04122169823
    [Google Scholar]
  292. PachecoA. MartinsA. GuilherminoL. Toxicological interactions induced by chronic exposure to gold nanoparticles and microplastics mixtures in Daphnia magna.Sci. Total Environ.2018628-62947448310.1016/j.scitotenv.2018.02.08129453176
    [Google Scholar]
  293. SadauskasE. WallinH. StoltenbergM. VogelU. DoeringP. LarsenA. DanscherG. Kupffer cells are central in the removal of nanoparticles from the organism.Part. Fibre Toxicol.2007411010.1186/1743‑8977‑4‑1017949501
    [Google Scholar]
  294. LarsonJ.K. CarvanM.J.III TeeguardenJ.G. WatanabeG. TayaK. KrystofiakE. HutzR.J. Low-dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway ex vivo independent of oxidative stress.Nanotoxicology.20148885686610.3109/17435390.2013.83720823992423
    [Google Scholar]
  295. TruongL. ZaikovaT. RichmanE.K. HutchisonJ.E. TanguayR.L. Media ionic strength impacts embryonic responses to engineered nanoparticle exposure.Nanotoxicology.20126769169910.3109/17435390.2011.60444021809903
    [Google Scholar]
  296. Bar-IlanO. AlbrechtR.M. FakoV.E. FurgesonD.Y. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos.Small.20095161897191010.1002/smll.20080171619437466
    [Google Scholar]
  297. TiedemannD. TaylorU. RehbockC. JakobiJ. KleinS. KuesW.A. BarcikowskiS. RathD. Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes.Analyst.2014139593194210.1039/C3AN01463K24171189
    [Google Scholar]
  298. DayalN. ThakurM. PatilP. SinghD. VanageG. JoshiD.S. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio).J. Nanopart. Res.2016181029110.1007/s11051‑016‑3549‑0
    [Google Scholar]
  299. RattanapinyopitukK. ShimadaA. MoritaT. SakuraiM. AsanoA. HasegawaT. InoueK. TakanoH. Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles.J. Vet. Med. Sci.201476337738710.1292/jvms.13‑051224257253
    [Google Scholar]
  300. TsyganovaN.A. KhairullinR.M. TerentyukG.S. KhlebtsovB.N. BogatyrevV.A. DykmanL.A. ErykovS.N. KhlebtsovN.G. Penetration of pegylated gold nanoparticles through rat placental barrier.Bull. Exp. Biol. Med.2014157338338510.1007/s10517‑014‑2572‑325065320
    [Google Scholar]
  301. BalanskyR. LongobardiM. GanchevG. IltchevaM. NedyalkovN. AtanasovP. ToshkovaR. De FloraS. IzzottiA. Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice.Mutat. Res-fund. Mol. M.20137511424810.1016/j.mrfmmm.2013.08.006
    [Google Scholar]
  302. SungJ.H. JiJ.H. ParkJ.D. SongM.Y. SongK.S. RyuH.R. YoonJ.U. JeonK.S. JeongJ. HanB.S. ChungY.H. ChangH.K. LeeJ.H. KimD.W. KelmanB.J. YuI.J. Subchronic inhalation toxicity of gold nanoparticles.Part. Fibre Toxicol.2011811610.1186/1743‑8977‑8‑1621569586
    [Google Scholar]
  303. D’ErricoJ.N. DohertyC. FournierS.B. RenkelN. KallontziS. GoedkenM. FabrisL. BuckleyB. StapletonP.A. Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion.Biomed. Pharmacother.201911710914810.1016/j.biopha.2019.10914831347503
    [Google Scholar]
  304. PatelM. SiddiqiN.J. SharmaP. AlhomidaA.S. KhanH.A. Reproductive toxicity of pomegranate peel extract synthesized gold nanoparticles: A multigeneration study in C. elegans.J. Nanomater.201920191710.1155/2019/8767943
    [Google Scholar]
  305. SmallT. Ochoa-ZapaterM.A. GallelloG. RiberaA. RomeroF.M. TorreblancaA. GarceráM.D. Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach.Sci. Total Environ.201656588288810.1016/j.scitotenv.2016.02.03226905368
    [Google Scholar]
  306. LiuY. LiX. XiaoS. LiuX. ChenX. XiaQ. LeiS. LiH. ZhongZ. XiaoK. The effects of gold nanoparticles on Leydig cells and male reproductive function in mice.Int. J. Nanomedicine.2020159499951410.2147/IJN.S27660633281445
    [Google Scholar]
  307. ZakhidovS.T. PavlyuchenkovaS.M. MarshakT.L. RudoyV.M. Dement’evaO.V. ZeleninaI.A. SkuridinS.G. MakarovA.A. KhokhlovA.N. EvdokimovY.M. Effect of gold nanoparticles on mouse spermatogenesis.Biol. Bull. Russ. Acad. Sci.201239322923610.1134/S106235901203015622834311
    [Google Scholar]
  308. BarchanskiA. TaylorU. SajtiC.L. GamradL. KuesW.A. RathD. BarcikowskiS. Bioconjugated gold nanoparticles penetrate into spermatozoa depending on plasma membrane status.J. Biomed. Nanotechnol.20151191597160710.1166/jbn.2015.209426485929
    [Google Scholar]
  309. BehnammorshediM. NazemH. The effect of gold nanoparticle on luteinizing hormone, follicle stimulating hormone, testosterone and testis in male rat.Biomed. Res. J.2015262348352
    [Google Scholar]
  310. De JongW.H. HagensW.I. KrystekP. BurgerM.C. SipsA.J.A.M. GeertsmaR.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.Biomaterials.200829121912191910.1016/j.biomaterials.2007.12.03718242692
    [Google Scholar]
  311. ChoW.S. ChoM. JeongJ. ChoiM. ChoH.Y. HanB.S. KimS.H. KimH.O. LimY.T. ChungB.H. JeongJ. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles.Toxicol. Appl. Pharmacol.20092361162410.1016/j.taap.2008.12.02319162059
    [Google Scholar]
  312. BalasubramanianS.K. JittiwatJ. ManikandanJ. OngC.N. YuL.E. OngW.Y. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats.Biomaterials.20103182034204210.1016/j.biomaterials.2009.11.07920044133
    [Google Scholar]
  313. LiW.Q. WangF. LiuZ.M. WangY.C. WangJ. SunF. Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility.Small.201399-101708171410.1002/smll.20120107922911975
    [Google Scholar]
  314. AsharaniP.V. lianwuY. GongZ. ValiyaveettilS. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.Nanotoxicology.201151435410.3109/17435390.2010.48920721417687
    [Google Scholar]
  315. VelikorodnayaY.I. PocheptsovA.Y. SokolovO.I. BogatyrevV.A. DykmanL.A. Effect of gold nanoparticles on proliferation and apoptosis during spermatogenesis in rats.Nanotechnol. Russ.2015109-1081481910.1134/S1995078015050201
    [Google Scholar]
  316. ZakhidovS.T. PavlyuchenkovaS.M. SamoylovA.V. MudzhiriN.M. MarshakT.L. RudoyV.M. Dement’evaO.V. ZeleninaI.A. SkuridinS.G. YevdokimovY.M. Bovine sperm chromatin is not protected from the effects of ultrasmall gold nanoparticles.Biol. Bull. Russ. Acad. Sci.201340649349910.1134/S106235901306014925518549
    [Google Scholar]
  317. ZakhidovS.T. MarshakT.L. MalolinaE.A. KulibinA.Y. ZeleninaI.A. PavluchenkovaS.M. RudoiV.M. Dement’evaO.V. SkuridinS.G. EvdokimovY.M. Gold nanoparticles disturb nuclear chromatin decondensation in mouse sperm in vitro.Biochem. Suppl. Ser. A: Membr. Cell Biol.20104329329610.1134/S1990747810030074
    [Google Scholar]
  318. GuptaH. SinghD. VanageG. JoshiD. ThakurM. Evaluation of histopathological and ultrastructural changes in the testicular cells of Wistar rats post chronic exposure to gold nanoparticles.2018
    [Google Scholar]
  319. TianJ. LiJ. YinH. MaL. ZhangJ. ZhaiQ. DuanS. ZhangL. In vitro and in vivo uterine metabolic disorders induced by silica nanoparticle through the AMPK signaling pathway.Sci. Total Environ.202176214315210.1016/j.scitotenv.2020.14315233139001
    [Google Scholar]
  320. YamanS. ÇömelekoğluÜ. DeğirmenciE. Determination of the Effect of SiO2 Nanoparticles on Spontaneous Activity of Rat Uterus Smooth Muscles using Wavelet Scalogram Analysis, EMBEC & NBC.Springer201711712010.1007/978‑981‑10‑5122‑7_30
    [Google Scholar]
  321. WolterbeekA. OosterwijkT. SchneiderS. LandsiedelR. de GrootD. van EeR. WoutersM. van de SandtH. Oral two-generation reproduction toxicity study with NM-200 synthetic amorphous silica in Wistar rats.Reprod. Toxicol.20155614715410.1016/j.reprotox.2015.03.00625817409
    [Google Scholar]
  322. LiW.J. ZhouX.L. LiuB.L. DaiJ.J. SongP. TengY. Effect of nanoparticles on the survival and development of vitrified porcine GV oocytes.Cryo Lett.201637640140528072426
    [Google Scholar]
  323. PintoS.R. Helal-NetoE. PaumgarttenF. FelzenswalbI. Araujo-LimaC.F. Martínez-MáñezR. Santos-OliveiraR. Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles: the case of magnetic core mesoporous silica nanoparticles.Artif. Cells Nanomed. Biotechnol.201846sup252753810.1080/21691401.2018.146060329688037
    [Google Scholar]
  324. YamashitaK. YoshiokaY. HigashisakaK. MimuraK. MorishitaY. NozakiM. YoshidaT. OguraT. NabeshiH. NaganoK. AbeY. KamadaH. MonobeY. ImazawaT. AoshimaH. ShishidoK. KawaiY. MayumiT. TsunodaS. ItohN. YoshikawaT. YanagiharaI. SaitoS. TsutsumiY. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice.Nat. Nanotechnol.20116532132810.1038/nnano.2011.4121460826
    [Google Scholar]
  325. PietroiustiA. VecchioneL. MalvindiM.A. AruC. MassimianiM. CamaioniA. MagriniA. BernardiniR. SabellaS. PompaP.P. CampagnoloL. Relevance to investigate different stages of pregnancy to highlight toxic effects of nanoparticles: The example of silica.Toxicol. Appl. Pharmacol.2018342606810.1016/j.taap.2018.01.02629407774
    [Google Scholar]
  326. GambardellaC. MorganaS. BariG.D. RamoinoP. BraminiM. DiasproA. FalugiC. FaimaliM. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development.Chemosphere.201513948649510.1016/j.chemosphere.2015.07.07226291678
    [Google Scholar]
  327. ZhouG. LiuJ. LiX. SangY. ZhangY. GaoL. WangJ. YuY. GeW. SunZ. ZhouX. Silica nanoparticles inducing the apoptosis via microRNA-450b-3p targeting MTCH2 in mice and spermatocyte cell.Environ. Pollut.202127711677110.1016/j.envpol.2021.11677133652185
    [Google Scholar]
  328. SunF. WangX. ZhangP. ChenZ. GuoZ. ShangX. Reproductive toxicity investigation of silica nanoparticles in male pubertal mice.Environ. Sci. Pollut. Res. Int.20222924366403665410.1007/s11356‑021‑18215‑635064498
    [Google Scholar]
  329. FanY.O. ZhangY.H. ZhangX.P. LiuB. MaY.X. JinY.H. Comparative study of nanosized and microsized silicon dioxide on spermatogenesis function of male rats.Wei. Sheng. Yen. Chiu.200635554955317086700
    [Google Scholar]
  330. ZhangJ. LiuJ. RenL. WeiJ. ZhangF. LiY. GuoC. DuanJ. SunZ. ZhouX. Silica nanoparticles induce abnormal mitosis and apoptosis via PKC-δ mediated negative signaling pathway in GC-2 cells of mice.Chemosphere.201820894295010.1016/j.chemosphere.2018.05.17830068038
    [Google Scholar]
  331. BarkalinaN. JonesC. KashirJ. CooteS. HuangX. MorrisonR. TownleyH. CowardK. Effects of mesoporous silica nanoparticles upon the function of mammalian sperm in vitro.Nanomedicine.201410485987010.1016/j.nano.2013.10.01124200525
    [Google Scholar]
  332. RenL. ZhangJ. WangJ. WeiJ. LiuJ. LiX. ZhuY. LiY. GuoC. DuanJ. SunZ. ZhouX. Silica nanoparticles induce spermatocyte cell apoptosis through microRNA-2861 targeting death receptor pathway.Chemosphere.201922870972010.1016/j.chemosphere.2019.04.11631071558
    [Google Scholar]
  333. ZhangL. WeiJ. DuanJ. GuoC. ZhangJ. RenL. LiuJ. LiY. SunZ. ZhouX. Silica nanoparticles exacerbates reproductive toxicity development in high-fat diet-treated Wistar rats.J. Hazard. Mater.202038412136110.1016/j.jhazmat.2019.12136131606252
    [Google Scholar]
  334. Al-HusseiniA.M.H. Al-khauzayH.A.L. Effects of silica nanoparticles on some indicators of fertility and histological changes in male rats.J. Glob. Pharma Technol.20091057987
    [Google Scholar]
  335. CaixetaM.B. AraújoP.S. RodriguesC.C. GonçalvesB.B. AraújoO.A. BevilaquaG.B. MalafaiaG. SilvaL.D. RochaT.L. Risk assessment of iron oxide nanoparticles in an aquatic ecosystem: A case study on Biomphalaria glabrata.J. Hazard. Mater.202140112339810.1016/j.jhazmat.2020.12339832763694
    [Google Scholar]
  336. ChenH. WangB. FengW. DuW. OuyangH. ChaiZ. BiX. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence.Nanotoxicology.20159330231210.3109/17435390.2014.92918924964248
    [Google Scholar]
  337. FariniV.L. CamañoC.V. YbarraG. VialeD.L. VicheraG. YakisichJ.S. RadrizzaniM. Improvement of bovine semen quality by removal of membrane-damaged sperm cells with DNA aptamers and magnetic nanoparticles.J. Biotechnol.2016229334110.1016/j.jbiotec.2016.05.00827164256
    [Google Scholar]
  338. KatebiS. EsmaeiliA. GhaediK. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system.J. Magn. Magn. Mater.201640218418910.1016/j.jmmm.2015.11.057
    [Google Scholar]
  339. WangX. ZhangJ. YangX. TangZ. HuY. ChenB. TangJ. In vivo assessment of hepatotoxicity, nephrotoxicity and biodistribution using 3-aminopropyltriethoxysilane-coated magnetic nanoparticles (APTS-MNPs) in ICR mice.Chin. Sci. Bull.201459161800180810.1007/s11434‑014‑0296‑4
    [Google Scholar]
  340. FahmyH.M. Oxidative impact of carob leaf extract–synthesized iron oxide magnetic nanoparticles on the kidney, liver, testis, and spleen of wistar rats.BioNanoSci.202010546110.1007/s12668‑019‑00704‑1
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230815101141
Loading
/content/journals/cmc/10.2174/0929867331666230815101141
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test