Skip to content
2000
Volume 32, Issue 8
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

To overcome the limits of traditional antibiotic medications, novel approaches are needed to combat the growing global epidemic of Multidrug-resistant (MDR) infections. As drug-resistant bacteria develop, the importance of innovative antimicrobial methods is underscored by antibiotic abuse and misuse. The global threat of MDR microorganisms is increasing, which calls for a coordinated global response. Lipid Nanoparticles (LNPs) possess several characteristics that make them attractive choices for managing multidrug resistant (MDR) infections, as well as potential delivery systems for antimicrobial agents. Thus, LNPs improve drug solubility, stability, and targeted delivery, thereby mitigating the drawbacks of conventional antibiotic therapy. Several characteristics of LNPs, which stop MDR bacteria from developing resistance mechanisms, serve as guidelines for precision medicine. It presents a powerful approach for combating the growing concern of MDR bacteria by increasing Anti-Microbial Peptides (AMPs) bioavailability and targeting distribution to bacterial cells. LNPs have the potential to redefine antibacterial treatments for MDR illnesses in the context of this study. Further, it discusses LNP use in larger applications, such as fighting Anti-Microbial Resistance (AMR) and MDR. A complete understanding of the unique features, many uses, and importance of collaborative efforts to overcome the global challenge of antibiotic resistance are also conveyed in the study.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673314366240712105637
2024-07-15
2025-04-21
Loading full text...

Full text loading...

References

  1. World Health OrganizationGlobal antimicrobial resistance and use surveillance system (‎GLASS)‎ report: 2022.2021Available From: https://www.who.int/publications/i/item/9789240062702
  2. CassiniA. HögbergL.D. PlachourasD. QuattrocchiA. HoxhaA. SimonsenG.S. Colomb-CotinatM. KretzschmarM.E. DevleesschauwerB. CecchiniM. OuakrimD.A. OliveiraT.C. StruelensM.J. SuetensC. MonnetD.L. StraussR. MertensK. StruyfT. CatryB. LatourK. IvanovI.N. DobrevaE.G. Tambic AndraševicA. SoprekS. BudimirA. PaphitouN. ŽemlickováH. Schytte OlsenS. Wolff SönksenU. MärtinP. IvanovaM. LyytikäinenO. JalavaJ. CoignardB. EckmannsT. Abu SinM. HallerS. DaikosG.L. GikasA. TsiodrasS. KontopidouF. TóthÁ. HajduÁ. GuólaugssonÓ. KristinssonK.G. MurchanS. BurnsK. PezzottiP. GagliottiC. DumpisU. LiuimieneA. PerrinM. BorgM.A. de GreeffS.C. MonenJ.C.M. KoekM.B.G. ElstrømP. ZabickaD. DeptulaA. HryniewiczW. CaniçaM. NogueiraP.J. FernandesP.A. ManageiroV. PopescuG.A. SerbanR.I. SchréterováE. LitvováS. ŠtefkovicováM. KolmanJ. KlavsI. KorošecA. AracilB. AsensioA. Pérez-VázquezM. BillströmH. LarssonS. ReillyJ.S. JohnsonA. HopkinsS. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis.Lancet Infect. Dis.2019191566610.1016/S1473‑3099(18)30605‑430409683
    [Google Scholar]
  3. Centers for Disease Control and PreventionAntibiotic resistance threats in the United States.2019Available From: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  4. NarayanaswamyV. TorchilinV.P. Lipid-based nanoparticles in the pharmaceutical industry and translational research.Front. Microbiol.20201131910.3389/fmicb.2020.00319
    [Google Scholar]
  5. StefanovS.R. AndonovaV.Y. Lipid nanoparticulate drug delivery systems: Recent advances in the treatment of skin disorders.Pharmaceuticals20211411108310.3390/ph1411108334832865
    [Google Scholar]
  6. Hajiaghapour AsrM. DayaniF. Saedi SegherlooF. KamediA. NeillA.O. MacLoughlinR. DoroudianM. Lipid nanoparticles as promising carriers for mRNA vaccines for viral lung infections.Pharmaceutics2023154112710.3390/pharmaceutics1504112737111613
    [Google Scholar]
  7. SatapathyM.K. YenT.L. JanJ.S. TangR.D. WangJ.Y. TaliyanR. YangC.H. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB.Pharmaceutics2021138118310.3390/pharmaceutics1308118334452143
    [Google Scholar]
  8. BukhariS.I. ImamS.S. AhmadM.Z. VuddandaP.R. AlshehriS. MahdiW.A. AhmadJ. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges.Pharmaceutics202113684010.3390/pharmaceutics1306084034200251
    [Google Scholar]
  9. ThapaR.K. DiepD.B. TønnesenH.H. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: Recent advances and future prospects.J. Pharm. Investig.202151437739810.1007/s40005‑021‑00525‑z
    [Google Scholar]
  10. JonesS SuryalethaK SavithriAV. Small molecule antivirals to nanoparticles: The need of the hour to combat pandemics. Nanotechnology Platforms for Antiviral ChallengesBoca Raton, FloridaCRC Press2023125142
    [Google Scholar]
  11. Gontijo FilhoP.P. BritoC.S. QueirozL.L. ResendeD.S. AraujoB.F. RibasR.M. Spread of multidrug-resistant microorganisms: A global threat and critical healthcare problem.Revista de Epidemiologia e Controle de Infecção.201663145146
    [Google Scholar]
  12. MurrayT.S. StanleyG. KoffJ.L. Novel approaches to multidrug-resistant infections in cystic fibrosis.Clin. Chest Med.202243466767610.1016/j.ccm.2022.06.00836344073
    [Google Scholar]
  13. KarthikV. PoornimaS. VigneshwaranA. RajD.P.R.D.D. SubbaiyaR. ManikandanS. SaravananM. Nanoarchitectonics is an emerging drug/gene delivery and targeting strategy a critical review.J. Mol. Struct.2021124313084410.1016/j.molstruc.2021.130844
    [Google Scholar]
  14. TerreniM. TaccaniM. PregnolatoM. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives.Molecules2021269267110.3390/molecules2609267134063264
    [Google Scholar]
  15. WeissJ. DeckerE.A. McClementsD.J. KristbergssonK. HelgasonT. AwadT. Solid lipid nanoparticles as delivery systems for bioactive food components.Food Biophys.20083214615410.1007/s11483‑008‑9065‑8
    [Google Scholar]
  16. AlbertsB. JohnsonA. LewisJ. RaffM. RobertsK. WalterP. Membrane proteins. Molecular Biology of the Cell.4th edNew York CityGarland Science2002
    [Google Scholar]
  17. PaliwalH PrajapatiBG KhuntD ShirishaC PatelJK PathakYV. Pharmacokinetic and tissue distribution study of solid lipid nanoparticles. Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug DeliveryChamSpringer202224526010.1007/978‑3‑030‑83395‑4_13
    [Google Scholar]
  18. KongX LiuY HuangX HuangS GaoF RongP ZhangS ZhangK ZengW. Cancer therapy based on smart drug delivery with advanced nanoparticles.Anticancer Agents Med. Chem201919672073010.2174/1871520619666190212124944
    [Google Scholar]
  19. LiuH. ZhuX. WeiY. SongC. WangY. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems.Biomed. Pharmacother.202315711406510.1016/j.biopha.2022.11406536481408
    [Google Scholar]
  20. HeH. YaoJ. ZhangY. ChenY. WangK. LeeR.J. YuB. ZhangX. Solid lipid nanoparticles as a drug delivery system to across the blood-brain barrier.Biochem. Biophys. Res. Commun.2019519238539010.1016/j.bbrc.2019.09.01731519326
    [Google Scholar]
  21. KolateA. BaradiaD. PatilS. VhoraI. KoreG. MisraA. PEG - A versatile conjugating ligand for drugs and drug delivery systems.J. Control. Release2014192678110.1016/j.jconrel.2014.06.04624997275
    [Google Scholar]
  22. TorrecillaJ. Rodríguez-GascónA. SolinísM.Á. del Pozo-RodríguezA. Lipid nanoparticles as carriers for RNAi against viral infections: Current status and future perspectives.BioMed Res. Int.2014201411710.1155/2014/16179425184135
    [Google Scholar]
  23. BhattacharyaS. PrajapatiB.G. Recent excavations on cationic solid lipid nano particles.J. Chem. Pharm. Res.2015710559563
    [Google Scholar]
  24. LiuC. ZhangL. ZhuW. GuoR. SunH. ChenX. DengN. Barriers and strategies of cationic liposomes for cancer gene therapy.Mol. Ther. Methods Clin. Dev.20201875176410.1016/j.omtm.2020.07.01532913882
    [Google Scholar]
  25. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd163215688077
    [Google Scholar]
  26. MadkhaliO.A. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems.Molecules2022275154310.3390/molecules2705154335268643
    [Google Scholar]
  27. KimJ.S. Liposomal drug delivery system.J. Pharm. Investig.201646438739210.1007/s40005‑016‑0260‑1
    [Google Scholar]
  28. SzokaFC. Liposomal drug delivery: Current status and future prospects. Membrane FusionBoca Raton, FloridaCRC Press1991
    [Google Scholar]
  29. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.06726706565
    [Google Scholar]
  30. WitzigmannD. KulkarniJ.A. LeungJ. ChenS. CullisP.R. van der MeelR. Lipid nanoparticle technology for therapeutic gene regulation in the liver.Adv. Drug Deliv. Rev.202015934436310.1016/j.addr.2020.06.02632622021
    [Google Scholar]
  31. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines - a new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.24329326426
    [Google Scholar]
  32. VentolaC.L. The antibiotic resistance crisis: Part 1: Causes and threats.P&T201540427728325859123
    [Google Scholar]
  33. MartinezJ.L. Environmental pollution by antibiotics and by antibiotic resistance determinants.Environ. Pollut.2009157112893290210.1016/j.envpol.2009.05.05119560847
    [Google Scholar]
  34. BlairJ.M.A. WebberM.A. BaylayA.J. OgboluD.O. PiddockL.J.V. Molecular mechanisms of antibiotic resistance.Nat. Rev. Microbiol.2015131425110.1038/nrmicro338025435309
    [Google Scholar]
  35. O’NeillJ. Tackling drug-resistant infections globally: Final report and recommendations.2016Available From: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  36. PirnayJ.P. BlasdelB.G. BretaudeauL. BucklingA. ChanishviliN. ClarkJ.R. Corte-RealS. DebarbieuxL. DublanchetA. De VosD. GabardJ. GarciaM. GoderdzishviliM. GórskiA. HardcastleJ. HuysI. KutterE. LavigneR. MerabishviliM. OlchawaE. ParikkaK.J. PateyO. PouilotF. ReschG. RohdeC. ScheresJ. SkurnikM. VaneechoutteM. Van ParysL. VerbekenG. ZiziM. Van den EedeG. Quality and safety requirements for sustainable phage therapy products.Pharm. Res.20153272173217910.1007/s11095‑014‑1617‑725585954
    [Google Scholar]
  37. BlairJ.M.A. SmithH.E. RicciV. LawlerA.J. ThompsonL.J. PiddockL.J.V. Expression of homologous RND efflux pump genes is dependent upon AcrB expression: Implications for efflux and virulence inhibitor design.J. Antimicrob. Chemother.201570242443110.1093/jac/dku38025288678
    [Google Scholar]
  38. PlotkinS.A. Vaccines: Past, present and future.Nat. Med.200511S4S5S1110.1038/nm120915812490
    [Google Scholar]
  39. DoudnaJ.A. CharpentierE. The new frontier of genome engineering with CRISPR-Cas9.Science20143466213125809610.1126/science.125809625430774
    [Google Scholar]
  40. NelA XiaT MadlerL LiN. Toxic potential of materials at the nanolevel.Science200631157616227
    [Google Scholar]
  41. AndersonN.W. BuchanB.W. LedeboerN.A. Comparison of the BD MAX enteric bacterial panel to routine culture methods for detection of Campylobacter, enterohemorrhagic Escherichia coli (O157), Salmonella, and Shigella isolates in preserved stool specimens.J. Clin. Microbiol.20145241222122410.1128/JCM.03099‑1324430460
    [Google Scholar]
  42. ShankarP.R. Book review: Tackling drug-resistant infections globally.Arch. Pharm. Pract.20167311011110.4103/2045‑080X.186181
    [Google Scholar]
  43. DaviesJ. DaviesD. Origins and evolution of antibiotic resistance.Microbiol. Mol. Biol. Rev.201074341743310.1128/MMBR.00016‑1020805405
    [Google Scholar]
  44. World Health OrganizationGlobal action plan on antimicrobial resistance.GenevaWorld Health Organization2017
    [Google Scholar]
  45. SpellbergB. The future of antibiotics.Crit. Care201418322810.1186/cc1394825043962
    [Google Scholar]
  46. SirishaV.N. Liposomes-the potential drug carriers.J. Pharm. (Cairo)2012252638
    [Google Scholar]
  47. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym303137722577513
    [Google Scholar]
  48. PridgenE.M. AlexisF. FarokhzadO.C. Polymeric nanoparticle drug delivery technologies for oral delivery applications.Expert Opin. Drug Deliv.20151291459147310.1517/17425247.2015.101817525813361
    [Google Scholar]
  49. LasicDD Liposomes in gene delivery.LondonCRC Press201910.1201/9780138748807
    [Google Scholar]
  50. GhorabM.A. GardouhA.H. GadS.H. Effect of viscosity, surfactant type and concentration on physicochemical properties of solid lipid nanoparticles.Int. J. Pharm. Pharm. Sci.201573145153
    [Google Scholar]
  51. ZhangC. ZhaoW. BianC. HouX. DengB. McCombD.W. ChenX. DongY. Antibiotic-derived lipid nanoparticles to treat intracellular Staphylococcus aureus.ACS Appl. Bio Mater.2019231270127710.1021/acsabm.8b0082131750420
    [Google Scholar]
  52. ShankarR. JoshiM. PathakK. Lipid nanoparticles: A novel approach for brain targeting.Pharm. Nanotechnol.201862819310.2174/221173850666618061110041629886842
    [Google Scholar]
  53. S VazeO. Pharmaceutical nanocarriers (liposomes and micelles) in cancer therapy.J. Nanomed. Nanotechnol.2016731210.4172/2157‑7439.1000e138
    [Google Scholar]
  54. HuC.M.J. ZhangL. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer.Biochem. Pharmacol.20128381104111110.1016/j.bcp.2012.01.00822285912
    [Google Scholar]
  55. OlafsenT WuAM. Antibody vectors for imaging.Semin. Nucl. Med.201040331678110.1053/j.semnuclmed.2009.12.005
    [Google Scholar]
  56. RassouliA. Al-QushawiA. Lipid-based nanoparticles as novel drug delivery systems for antimicrobial agents.Iran. J. Vet. Sci. Technol.201810216
    [Google Scholar]
  57. LinL. GongH. LiR. HuangJ. CaiM. LanT. HuangW. GuoY. ZhouZ. AnY. ChenZ. LiangL. WangY. ShuaiX. ZhuK. Nanodrug with ROS and pH dual sensitivity ameliorates liver fibrosis via multicellular regulation.Adv. Sci. (Weinh.)202077190313810.1002/advs.20190313832274310
    [Google Scholar]
  58. LinJ.T. LiuZ.K. ZhuQ.L. RongX.H. LiangC.L. WangJ. MaD. SunJ. WangG.H. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles.Colloids Surf. B Biointerfaces2017155415010.1016/j.colsurfb.2017.04.00228407530
    [Google Scholar]
  59. TianH. LuZ. LiD. HuJ. Preparation and characterization of citral-loaded solid lipid nanoparticles.Food Chem.2018248788510.1016/j.foodchem.2017.11.09129329873
    [Google Scholar]
  60. ZeinM.A. AsgharB.H. AlmohyawiA.M. AlqahtaniN.F. AlharbiA. AlkabliJ. ElshaarawyR.F. IsmailL.A. Multifunctional nanocomposites integrated green synthesized amphiphilic chitosan/thyme extract/nanosilver for antimicrobial and anti-biofilm applications.React. Funct. Polym.2023105791
    [Google Scholar]
  61. DaraeeH. EtemadiA. KouhiM. AlimirzaluS. AkbarzadehA. Application of liposomes in medicine and drug delivery.Artif. Cells Nanomed. Biotechnol.201644138139110.3109/21691401.2014.95363325222036
    [Google Scholar]
  62. LiT.F. LiK. WangC. LiuX. WenY. XuY.H. ZhangQ. ZhaoQ.Y. ShaoM. LiY.Z. HanM. KomatsuN. ZhaoL. ChenX. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment.J. Control. Release201726812814610.1016/j.jconrel.2017.10.02429051064
    [Google Scholar]
  63. MorawskiA.M. WinterP.M. CrowderK.C. CaruthersS.D. FuhrhopR.W. ScottM.J. RobertsonJ.D. AbendscheinD.R. LanzaG.M. WicklineS.A. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI.Magn. Reson. Med.200451348048610.1002/mrm.2001015004788
    [Google Scholar]
  64. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  65. AkincA. ZumbuehlA. GoldbergM. LeshchinerE.S. BusiniV. HossainN. BacalladoS.A. NguyenD.N. FullerJ. AlvarezR. BorodovskyA. BorlandT. ConstienR. de FougerollesA. DorkinJ.R. Narayanannair JayaprakashK. JayaramanM. JohnM. KotelianskyV. ManoharanM. NechevL. QinJ. RacieT. RaitchevaD. RajeevK.G. SahD.W.Y. SoutschekJ. ToudjarskaI. VornlocherH.P. ZimmermannT.S. LangerR. AndersonD.G. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics.Nat. Biotechnol.200826556156910.1038/nbt140218438401
    [Google Scholar]
  66. LooC.Y. RohanizadehR. YoungP.M. TrainiD. CavaliereR. WhitchurchC.B. LeeW.H. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities.J. Agric. Food Chem.201664122513252210.1021/acs.jafc.5b0455926595817
    [Google Scholar]
  67. Rothen-RutishauserB.M. SchürchS. HaenniB. KappN. GehrP. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques.Environ. Sci. Technol.200640144353435910.1021/es052263516903270
    [Google Scholar]
  68. WhiteheadK.A. SahayG. LiG.Z. LoveK.T. AlabiC.A. MaM. ZurenkoC. QuerbesW. LangerR.S. AndersonD.G. Synergistic silencing: Combinations of lipid- like materials for efficacious siRNA delivery.Mol. Ther.20111991688169410.1038/mt.2011.14121750531
    [Google Scholar]
  69. PostiglioneI. ChiavielloA. PalumboG. Enhancing photodynamyc therapy efficacy by combination therapy: Dated, current and oncoming strategies.Cancers2011322597262910.3390/cancers302259724212824
    [Google Scholar]
  70. LavaeeF. MotamedifarM. RafieeG. The effect of photodynamic therapy by gold nanoparticles on Streptococcus mutans and biofilm formation: An in vitro study.Lasers Med. Sci.20213731717172510.1007/s10103‑021‑03422‑x34694502
    [Google Scholar]
  71. FogedC. Subunit vaccines of the future: The need for safe, customized and optimized particulate delivery systems.Ther. Deliv.2011281057107710.4155/tde.11.6822826868
    [Google Scholar]
  72. LiX. WuB. ChenH. NanK. JinY. SunL. WangB. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections.J. Mater. Chem. B Mater. Biol. Med.20186264274429210.1039/C8TB01245H32254504
    [Google Scholar]
  73. ZhouQ. SiZ. WangK. LiK. HongW. ZhangY. LiP. Enzyme-triggered smart antimicrobial drug release systems against bacterial infections.J. Control. Release202235250752610.1016/j.jconrel.2022.10.03836341932
    [Google Scholar]
  74. KligmanS. RenZ. ChungC.H. PerilloM.A. ChangY.C. KooH. ZhengZ. LiC. The impact of dental implant surface modifications on osseointegration and biofilm formation.J. Clin. Med.2021108164110.3390/jcm1008164133921531
    [Google Scholar]
  75. ChungS.L. YeeM.S.L. HiiL.W. LimW.M. HoM.Y. KhiewP.S. LeongC.O. Advances in nanomaterials used in co-delivery of siRNA and small molecule drugs for cancer treatment.Nanomaterials20211110246710.3390/nano1110246734684908
    [Google Scholar]
  76. FarhangiM. KobarfardF. MahboubiA. VatanaraA. MortazaviS.A. Preparation of an optimized ciprofloxacin-loaded chitosan nanomicelle with enhanced antibacterial activity.Drug Dev. Ind. Pharm.20184481273128410.1080/03639045.2018.144284729452500
    [Google Scholar]
  77. LeeN. KimH. ChoiS.H. ParkM. KimD. KimH.C. ChoiY. LinS. KimB.H. JungH.S. KimH. ParkK.S. MoonW.K. HyeonT. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets.Proc. Natl. Acad. Sci. USA201110872662266710.1073/pnas.101640910821282616
    [Google Scholar]
  78. PreissM.R. BothunG.D. Stimuli-responsive liposome- nanoparticle assemblies.Expert Opin. Drug Deliv.2011881025104010.1517/17425247.2011.58486821663539
    [Google Scholar]
  79. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S12195628243086
    [Google Scholar]
  80. XieS. LiS. ZhangZ. ChenM. RanP. LiX. Bacterial ghosts for targeting delivery and subsequent responsive release of ciprofloxacin to destruct intracellular bacteria.Chem. Eng. J.202039912570010.1016/j.cej.2020.125700
    [Google Scholar]
  81. RanaD. SalaveS. PatelR. KhuntD. MisraM. PrajapatiB. PatelG. PatelJ. Solid lipid nanoparticles in tuberculosis.Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases.ChamSpringer International Publishing20239912110.1007/978‑3‑031‑14100‑3_6
    [Google Scholar]
  82. SethiS. Preliminary in vitro hemocompatibility assessment of biopolymeric hydrogels for versatile biomedical applications.Polym. Bull.20232023124
    [Google Scholar]
  83. LiW. ZhengN. ZhouQ. AlqahtaniM.S. ElkamchouchiD.H. ZhaoH. LinS. A state-of-the-art analysis of pharmacological delivery and artificial intelligence techniques for inner ear disease treatment.Environ. Res.2023236Pt 111645710.1016/j.envres.2023.11645737459944
    [Google Scholar]
  84. ZhaoY. HeP. YaoJ. LiM. WangB. HanL. HuangZ. GuoC. BaiJ. XueF. CongY. CaiW. ChuP.K. ChuC. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy.Biomaterials202330112223710.1016/j.biomaterials.2023.12223737467596
    [Google Scholar]
  85. ShathiT.S. RahmanM.A. RahmanM.A. NasiruddinM. Alim Al-BariM.A. PandeS. KomedaT. Ul-HamidA. AhmadH. KarimM.R. Synthesis and functionalization of zinc phosphate@polyglycidyl methacrylate composites for antimicrobial drug immobilization and controlled release: An in vitro study.New J. Chem.20234730145341455010.1039/D3NJ01822A
    [Google Scholar]
  86. KhalidS. SalmanS. IqbalK. RehmanF. UllahI. SatoskarA.R. KhanG.M. DarM.J. Surfactant free synthesis of cationic nano-vesicles: A safe triple drug loaded vehicle for the topical treatment of cutaneous leishmaniasis.Nanomedicine20224010249010.1016/j.nano.2021.10249034748957
    [Google Scholar]
  87. NatsaridisE. GkartziouF. MourtasS. StuartM.C.A. KolonitsiouF. KlepetsanisP. SpiliopoulouI. AntimisiarisS.G. Moxifloxacin liposomes: Effect of liposome preparation method on physicochemical properties and antimicrobial activity against Staphylococcus epidermidis.Pharmaceutics202214237010.3390/pharmaceutics1402037035214102
    [Google Scholar]
  88. ShiY. FengX. LinL. WangJ. ChiJ. WuB. ZhouG. YuF. XuQ. LiuD. QuanG. LuC. PanX. CaiJ. WuC. Virus-inspired surface-nanoengineered antimicrobial liposome: A potential system to simultaneously achieve high activity and selectivity.Bioact. Mater.20216103207321710.1016/j.bioactmat.2021.02.03833723524
    [Google Scholar]
  89. PerveenK. MasoodF. HameedA. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles.Int. J. Biol. Macromol.202014425926610.1016/j.ijbiomac.2019.12.04931821825
    [Google Scholar]
  90. JayeoyeT.J. NwaborO.F. RujiralaiT. Synthesis of highly stable and dispersed silver nanoparticles/poly(vinyl alcohol-co-ethylene glycol)/poly(3-aminophenyl boronic acid) nanocomposite: Characterization and antibacterial, hemolytic and cytotoxicity studies.J. Ind. Eng. Chem.20208928830010.1016/j.jiec.2020.05.025
    [Google Scholar]
  91. PandeyR. KhullerG.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis.Tuberculosis200585422723410.1016/j.tube.2004.11.00315922668
    [Google Scholar]
  92. JainD. BanerjeeR. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery.J. Biomed. Mater. Res. B Appl. Biomater.200886B110511210.1002/jbm.b.3099418098198
    [Google Scholar]
  93. CavalliR. GascoM.R. ChetoniP. BurgalassiS. SaettoneM.F. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin.Int. J. Pharm.20022381-224124510.1016/S0378‑5173(02)00080‑711996827
    [Google Scholar]
  94. SoutoE.B. WissingS.A. BarbosaC.M. MüllerR.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery.Int. J. Pharm.20042781717710.1016/j.ijpharm.2004.02.03215158950
    [Google Scholar]
  95. SoutoE.B. MüllerR.H. SLN and NLC for topical delivery of ketoconazole.J. Microencapsul.200522550151010.1080/0265204050016243616361193
    [Google Scholar]
  96. BhalekarM.R. PokharkarV. MadgulkarA. PatilN. PatilN. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery.AAPS PharmSciTech200910128929610.1208/s12249‑009‑9199‑019294517
    [Google Scholar]
  97. SannaV. GaviniE. CossuM. RassuG. GiunchediP. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: In vitro characterization, ex vivo and in vivo studies.J. Pharm. Pharmacol.20105981057106410.1211/jpp.59.8.000217725847
    [Google Scholar]
  98. SerpeL. CanaparoR. FogliettaF. ZaraG.P. Innovative formulations for the controlled and site-specific delivery of antiinflammatory drugs.Curr. Pharm. Des.201319417219723610.2174/13816128194113121912451723489201
    [Google Scholar]
  99. YangM.Y. ZhaoR.R. FangY.F. JiangJ.L. YuanX.T. ShaoJ.W. Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy.Int. J. Pharm.201957011866310.1016/j.ijpharm.2019.11866331493497
    [Google Scholar]
  100. SawantR.R. TorchilinV.P. Challenges in development of targeted liposomal therapeutics.AAPS J.201214230331510.1208/s12248‑012‑9330‑022415612
    [Google Scholar]
  101. SoutoE.B. MüllerR.H. Cosmetic features and applications of lipid nanoparticles (SLN®, NLC ®).Int. J. Cosmet. Sci.200830315716510.1111/j.1468‑2494.2008.00433.x18452432
    [Google Scholar]
  102. RuoziB BellettiD ForniF SharmaA MuresanuD MosslerH. Poly (D,L-lactide-co-glycolide) nanoparticles loaded with cerebrolysin display neuroprotective activity in a rat model of concussive head injury.CNS Neurol Disord Drug Targets2014138147582
    [Google Scholar]
  103. IslamY. KhalidA. PluchinoS. SivakumaranM. TeixidòM. LeachA. FatokunA.A. DowningJ. CoxonC. EhtezaziT. Development of brain targeting peptide based MMP-9 inhibiting nanoparticles for the treatment of brain diseases with elevated MMP-9 activity.J. Pharm. Sci.2020109103134314410.1016/j.xphs.2020.06.02132621836
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673314366240712105637
Loading
/content/journals/cmc/10.2174/0109298673314366240712105637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test