Skip to content
2000
Volume 32, Issue 8
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Numerous techniques exist for the production of liposomes; however, these methods need to be revised due to their incapacity to achieve precise management of the dimensions and uniformity of liposomes and their inefficient utilization of reagents and resources. One particular challenge lies in replicating accurate form and size control seen in biological cells, as accomplishing this level of precision through macroscale approaches proves exceptionally arduous. The advent of microfluidic technology tackles this problem by lowering liposome synthesis to a centimeter-level chip, drastically cutting related costs, and enhancing liposome manufacturing efficiency and mobility. Although various microfluidic technologies for micro or nanoparticle preparation have been established, manufacturing microfluidic devices poses challenges due to their high cost and time-consuming nature. However, a promising and cost-effective solution lies in additive production, commonly guided by 3D printing. This innovative technique has demonstrated significant potential and has been successfully applied to create microfluidic chips. Here, we will explore using 3D printing to produce microfluidic devices specifically designed for liposome production. Moreover, the biomedical applications of the liposomes produced by 3D printing-fabricated chips will be fully discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673285199231210170549
2024-01-29
2025-06-15
Loading full text...

Full text loading...

References

  1. LiH. SunJ. ZhuH. WuH. ZhangH. GuZ. LuoK. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021132e167010.1002/wnan.167032949116
    [Google Scholar]
  2. SenR.K. PrabhakarP. BishtN. PatelM. MishraS. YadavA.K. VenuD.V. GuptaG.K. SolankiP.R. RamakrishnanS. MondalD.P. SrivastavaA.K. DwivediN. DhandC. 2D materials-based aptamer biosensors: Present status and way forward.Curr. Med. Chem.202229375815584910.2174/092986732866621121311572334961455
    [Google Scholar]
  3. AkterZ. KhanF.Z. KhanM.A. Gold nanoparticles in triple-negative breast cancer therapeutics.Curr. Med. Chem.202330331633410.2174/092986732866621090214125734477507
    [Google Scholar]
  4. JiangY. WangF. WangK. ZhongY. WeiX. WangQ. ZhangH. Engineered exosomes: A promising drug delivery strategy for brain diseases.Curr. Med. Chem.202229173111312410.2174/092986732866621090214201534477508
    [Google Scholar]
  5. FatimaM. IqubalM.K. IqubalA. KaurH. GilaniS.J. RahmanM.H. AhmadiA. RizwanullahM. Current insight into the therapeutic potential of phytocompounds and their nanoparticle-based systems for effective management of lung cancer.Anticancer Agents Med Chem.2022224668686
    [Google Scholar]
  6. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  7. AbtahiN.A. NaghibS.M. GhalekohnehS.J. MohammadpourZ. NazariH. MosaviS.M. GheibihayatS.M. HaghiralsadatF. RezaJ.Z. DoulabiB.Z. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: In vitro and in vivo studies.Chem. Eng. J.202242913209010.1016/j.cej.2021.132090
    [Google Scholar]
  8. AbtahiN.A. NaghibS.M. HaghiralsadatF. Akbari EdgahiM. Development of highly efficient niosomal systems for co-delivery of drugs and genes to treat breast cancer in vitro and in vivo. Cancer Nanotechnol.20221312810.1186/s12645‑022‑00135‑w
    [Google Scholar]
  9. AbtahiN.A. NaghibS.M. HaghiralsadatF. Akbari EdgahiM. AskariE. A comparative study on biopharmaceutical function of curcumin and miR-34a by multistimuli-responsive nanoniosome carrier: In vitro and in vivo. Front. Mol. Biosci.20229104327710.3389/fmolb.2022.104327736325275
    [Google Scholar]
  10. AbtahiN.A. NaghibS.M. HaghiralsadatF. RezaJ.Z. HakimianF. YazdianF. TofighiD. Smart stimuli-responsive biofunctionalized niosomal nanocarriers for programmed release of bioactive compounds into cancer cells in vitro and in vivo. Nanotechnol. Rev202110118951911
    [Google Scholar]
  11. AbtahiN.A. SalehiS. NaghibS.M. HaghiralsadatF. EdgahiM.A. GhorbanzadehS. ZhangW. Multi-sensitive functionalized niosomal nanocarriers for controllable gene delivery in vitro and in vivo. Cancer Nanotechnol.20231412210.1186/s12645‑023‑00175‑w
    [Google Scholar]
  12. AfereydoonS. HaghiralsadatF. HamzianN. ShamsA. HematiM. NaghibS.M. ShabaniM. Zandieh-doulabiB. TofighiD. Multifunctional PEGylated niosomal nanoparticle-loaded herbal drugs as a novel nano-radiosensitizer and stimuli-sensitive nanocarrier for synergistic cancer therapy.Front. Bioeng. Biotechnol.20221091736810.3389/fbioe.2022.91736836046674
    [Google Scholar]
  13. AkhlaghiM. TaebpourM. LotfabadiN.N. NaghibS.M. JaliliN. FarahmandL. HaghiralsadatB.F. RahmanianM. TofighiD. Synthesis and characterization of smart stimuli-responsive herbal drug-encapsulated nanoniosome particles for efficient treatment of breast cancer.Nanotechnol. Rev.202211113641385
    [Google Scholar]
  14. AlaviM. KarimiN. SafaeiM. Application of various types of liposomes in drug delivery systems.Adv. Pharm. Bull.2017713910.15171/apb.2017.00228507932
    [Google Scholar]
  15. YangL. AlexandridisP. Physicochemical aspects of drug delivery and release from polymer-based colloids.Curr. Opin. Colloid Interface Sci.200051-213214310.1016/S1359‑0294(00)00046‑7
    [Google Scholar]
  16. NaahidiS. JafariM. EdalatF. RaymondK. KhademhosseiniA. ChenP. Biocompatibility of engineered nanoparticles for drug delivery.J. Control. Release2013166218219410.1016/j.jconrel.2012.12.01323262199
    [Google Scholar]
  17. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  18. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑914678737
    [Google Scholar]
  19. GabizonA. GorenD. CohenR. BarenholzY. Development of liposomal anthracyclines: From basics to clinical applications1This paper is based on a lecture presented at the 8th International Symposium on recent Advances in Drug Delivery Systems (Salt Lake City, UT, USA, 1997).1.J. Control. Release1998531-327527910.1016/S0168‑3659(97)00261‑79741935
    [Google Scholar]
  20. AllenT.M. Liposomes. Opportunities in drug delivery.Drugs199754S481410.2165/00003495‑199700544‑000049361956
    [Google Scholar]
  21. de JongO.G. KooijmansS.A.A. MurphyD.E. JiangL. EversM.J.W. SluijterJ.P.G. VaderP. SchiffelersR.M. Drug delivery with extracellular vesicles: From imagination to innovation.Acc. Chem. Res.20195271761177010.1021/acs.accounts.9b0010931181910
    [Google Scholar]
  22. BinerO. SchickT. GanguinA.A. Von BallmoosC. Towards a synthetic mitochondrion.Chimia201872529129610.2533/chimia.2018.29129789065
    [Google Scholar]
  23. PickH. AlvesA.C. VogelH. Single-vesicle assays using liposomes and cell-derived vesicles: from modeling complex membrane processes to synthetic biology and biomedical applications.Chem. Rev.2018118188598865410.1021/acs.chemrev.7b0077730153012
    [Google Scholar]
  24. ChewB.C. LiewF.F. TanH.W. ChungI. Chemical advances in therapeutic application of exosomes and liposomes.Curr. Med. Chem.202229254445447310.2174/092986732966622022109404435189798
    [Google Scholar]
  25. ZhangY. FowlkesB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision.Curr. Med. Chem.20222981331134110.2174/092986732866621080409262434348609
    [Google Scholar]
  26. KimE.M. JeongH.J. Liposomes: Biomedical applications.Chonnam Med. J.2021571273510.4068/cmj.2021.57.1.2733537216
    [Google Scholar]
  27. BayatF. Hosseinpour-MoghadamR. MehryabF. FatahiY. ShakeriN. DinarvandR. Ten HagenT.L.M. HaeriA. Potential application of liposomal nanodevices for non-cancer diseases: An update on design, characterization and biopharmaceutical evaluation.Adv. Colloid Interface Sci.202027710212110.1016/j.cis.2020.10212132092487
    [Google Scholar]
  28. DasS.S. HussainA. VermaP.R.P. ImamS.S. AltamimiM.A. AlshehriS. SinghS.K. Recent advances in liposomal drug delivery system of quercetin for cancer targeting: A mechanistic approach.Curr. Drug Deliv.2020171084586010.2174/156720181766620041511265732294036
    [Google Scholar]
  29. FilipczakN. PanJ. YalamartyS.S.K. TorchilinV.P. Recent advancements in liposome technology.Adv. Drug Deliv. Rev.202015642210.1016/j.addr.2020.06.02232593642
    [Google Scholar]
  30. LiH. FengY. LuoQ. LiZ. LiX. GanH. GuZ. GongQ. LuoK. Stimuli-activatable nanomedicine meets cancer theranostics.Theranostics202313155386541710.7150/thno.8785437908735
    [Google Scholar]
  31. LiS. WuX. FanG. DuK. DengL. Exploring cantharidin and its analogues as anticancer agents: A review.Curr. Med. Chem.202330182006201910.2174/092986733066622110315153736330637
    [Google Scholar]
  32. AtaeiS. Momtazi-BorojeniA.A. GanjaliS. BanachM. SahebkarA. The immunogenic potential of PCSK9 peptide vaccine in mice.Curr. Med. Chem.202330263024303110.2174/092986732966622093011442936200256
    [Google Scholar]
  33. UnnisaA. GreigN.H. KamalM.A. Nanotechnology: A promising targeted drug delivery system for brain tumours and alzheimer’s disease.Curr. Med. Chem.202330325527010.2174/092986732966622032812520635345990
    [Google Scholar]
  34. IndermunS. KumarP. GovenderM. ChoonaraY.E. Can nanomedicinal approaches provide an edge to the efficacy of tyrosine kinase inhibitors?Curr. Med. Chem.202330131482150110.2174/092986732966622061816230335726410
    [Google Scholar]
  35. ZakharovaL. GaynanovaG. VasilievaE. VasilevaL. PavlovR. KashapovR. PetrovK. SinyashinO. Recent nanoscale carriers for therapy of alzheimer’s disease: Current strategies and perspectives.Curr. Med. Chem.202330333743377410.2174/092986733066622111510351336380443
    [Google Scholar]
  36. ZhangG. SunJ. Lipid in chips: A brief review of liposomes formation by microfluidics.Int. J. Nanomedicine2021167391741610.2147/IJN.S33163934764647
    [Google Scholar]
  37. DengN.N. YelleswarapuM. ZhengL. HuckW.T.S. Microfluidic assembly of monodisperse vesosomes as artificial cell models.J. Am. Chem. Soc.2017139258759010.1021/jacs.6b1097727978623
    [Google Scholar]
  38. LangtonM.J. KeymeulenF. CiacciaM. WilliamsN.H. HunterC.A. Controlled membrane translocation provides a mechanism for signal transduction and amplification.Nat. Chem.20179542643010.1038/nchem.267828430205
    [Google Scholar]
  39. DengN.N. HuckW.T.S. Microfluidic formation of monodisperse coacervate organelles in liposomes.Angew. Chem. Int. Ed.201756339736974010.1002/anie.20170314528658517
    [Google Scholar]
  40. XuR. TomehM.A. YeS. ZhangP. LvS. YouR. WangN. ZhaoX. Novel microfluidic swirl mixers for scalable formulation of curcumin loaded liposomes for cancer therapy.Int. J. Pharm.202262212185710.1016/j.ijpharm.2022.12185735623489
    [Google Scholar]
  41. ValençaC.A.S. BarbosaA.A.T. DolabellaS.S. SeverinoP. MatosC. KrambeckK. SoutoE.B. JainS. Antimicrobial bacterial metabolites: Properties, applications and loading in liposomes for site-specific delivery.Curr. Pharm. Des.202329282191220310.2174/138161282966623091811101437723628
    [Google Scholar]
  42. AlkandariA.M. AlsayedY.M. El-hanbalyA.M. Radiopharmaceutical encapsulated liposomes as a novel radiotracer im - aging and drug delivery protocol.Curr. Radiopharm.202316213313910.2174/187447101666622120209462836464880
    [Google Scholar]
  43. PuX. WangX. WangF. LiS. YinG. Preparation and in vitro evaluation of thermosensitive liposomes targeting ovarian cancer.Curr. Drug Deliv.202219994094810.2174/156720181966622032111081235319368
    [Google Scholar]
  44. GholamiL. Momtazi-BorojeniA.A. Malaekeh-NikoueiB. NikfarB. AmanolahiF. MohammadiA. KazemiO.R. Selective cellular uptake and cytotoxicity of curcumin-encapsulated SPC and HSPC liposome nanoparticles on human bladder cancer cells.Curr. Pharm. Des.202329131046105810.2174/138161282966623033108484836999712
    [Google Scholar]
  45. HuangY. ZhangQ. FengP. LiW. LiX. LiY. ZhangD. Hyperthermia-sensitive liposomes containing brucea javanica oil for synergistic photothermal-/chemo-therapy in breast cancer treatment.Curr. Drug Deliv.202320219220010.2174/156720181966622041111563235410599
    [Google Scholar]
  46. ChangC. HanD. JiY. LiD. XuZ. LiJ. HuangS. ZhuX. JiaY. - WangM. Folate-chitosan coated quercetin liposomes for targeted cancer therapy.Curr. Pharm. Biotechnol.202325792493510.2174/011389201026447923100604501437861012
    [Google Scholar]
  47. VasarriM. PontiL. Degl’InnocentiD. BergonziM.C. Liposomal formulation improves the bioactivity of usnic acid in RAW 264.7 macrophage cells reducing its toxicity.Curr. Drug Deliv.20242119110310.2174/156720182066623011111241536631924
    [Google Scholar]
  48. Ayala-FuentesJ.C. Chavez-SantoscoyR.A. Nanotechnology as a key to enhance the benefits and improve the bioavailability of flavonoids in the food industry.Foods20211011270110.3390/foods1011270134828981
    [Google Scholar]
  49. AbbasiH. KouchakM. MirveisZ. HajipourF. KhodarahmiM. RahbarN. HandaliS. What we need to know about liposomes as drug nanocarriers: An updated review.Adv. Pharm. Bull.202313172336721822
    [Google Scholar]
  50. RezaieJ. FeghhiM. EtemadiT. A review on exosomes application in clinical trials: Perspective, questions, and challenges.Cell Commun. Signal.202220114510.1186/s12964‑022‑00959‑436123730
    [Google Scholar]
  51. SchloemerT. NarayananP. ZhouQ. BelliveauE. SeitzM. CongreveD.N. Nanoengineering triplet–triplet annihilation upconversion: From materials to real-world applications.ACS Nano20231743259328810.1021/acsnano.3c0054336800310
    [Google Scholar]
  52. MarkowskiA. Zaremba-CzogallaM. JarominA. OlczakE. ZygmuntA. EtezadiH. BoydB.J. GubernatorJ. Novel liposomal formulation of baicalein for the treatment of pancreatic ductal adenocarcinoma: Design, characterization, and evaluation.Pharmaceutics202315117910.3390/pharmaceutics1501017936678808
    [Google Scholar]
  53. NagayasuA. UchiyamaK. KiwadaH. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs.Adv. Drug Deliv. Rev.1999401-2758710.1016/S0169‑409X(99)00041‑110837781
    [Google Scholar]
  54. CabralH. MatsumotoY. MizunoK. ChenQ. MurakamiM. KimuraM. TeradaY. KanoM.R. MiyazonoK. UesakaM. NishiyamaN. KataokaK. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size.Nat. Nanotechnol.201161281582310.1038/nnano.2011.16622020122
    [Google Scholar]
  55. ShanH. LinQ. WangD. SunX. QuanB. ChenX. ChenZ. 3D printed integrated multi-layer microfluidic chips for ultra-high volumetric throughput nanoliposome preparation.Front. Bioeng. Biotechnol.2021977370510.3389/fbioe.2021.77370534708031
    [Google Scholar]
  56. ZhangY. WongC.Y.J. GholizadehH. AluigiA. TiboniM. CasettariL. YoungP. TrainiD. LiM. ChengS. OngH.X. Microfluidics assembly of inhalable liposomal ciprofloxacin characterised by an innovative in vitro pulmonary model.Int. J. Pharm.202363512266710.1016/j.ijpharm.2023.12266736738806
    [Google Scholar]
  57. JainV. PatelV.B. SinghB. VaradeD. Microfluidic device based molecular Self-Assembly structures.J. Mol. Liq.202236211976010.1016/j.molliq.2022.119760
    [Google Scholar]
  58. KastnerE. KaurR. LowryD. MoghaddamB. WilkinsonA. PerrieY. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization.Int. J. Pharm.20144771-236136810.1016/j.ijpharm.2014.10.03025455778
    [Google Scholar]
  59. JaradatE. WeaverE. MezianeA. LamprouD.A. Microfluidics technology for the design and formulation of nanomedicines.Nanomaterials20211112344010.3390/nano1112344034947789
    [Google Scholar]
  60. Osouli-BostanabadK. PuligaS. SerranoD.R. BucchiA. HalbertG. LalatsaA. Microfluidic manufacture of lipid-based nanomedicines.Pharmaceutics2022149194010.3390/pharmaceutics1409194036145688
    [Google Scholar]
  61. ShepherdS.J. IssadoreD. MitchellM.J. Microfluidic formulation of nanoparticles for biomedical applications.Biomaterials202127412082610.1016/j.biomaterials.2021.12082633965797
    [Google Scholar]
  62. HussainM.T. TiboniM. PerrieY. CasettariL. Microfluidic production of protein loaded chimeric stealth liposomes.Int. J. Pharm.202059011995510.1016/j.ijpharm.2020.11995533035609
    [Google Scholar]
  63. Rawas-QalajiM. CaglianiR. Al-HashimiN. Al-DabbaghR. Al-DabbaghA. HussainZ. Microfluidics in drug delivery: Review of methods and applications.Pharm. Dev. Technol.2022281617736592376
    [Google Scholar]
  64. MartinsJ.P. SantosH.A. Microfluidics as a Tool for the Synthesis of Advanced Drug Delivery Systems, Nano-and Microfabrication Techniques in Drug Delivery: Recent Developments and Future Prospects.Springer202332136410.1007/978‑3‑031‑26908‑0_13
    [Google Scholar]
  65. MarsanascoM. AlonsoS.V. Stability of bioactive compounds in liposomes after pasteurisation and storage of functional chocolate milk.Int. J. Food Sci. Technol.202257136136910.1111/ijfs.15420
    [Google Scholar]
  66. UbheA.S. Imaging of Liposomes by Negative Staining Transmission Electron Microscopy and Cryogenic Transmission Electron Microscopy, Liposomes: Methods and Protocols.Springer202324525110.1007/978‑1‑0716‑2954‑3_22
    [Google Scholar]
  67. AlaviM. MozafariM.R. HamblinM.R. HamidiM. HajimolaaliM. KatouzianI. Industrial-scale methods for the manufacture of liposomes and nanoliposomes: Pharmaceutical, cosmetic, and nutraceutical aspects.Micro Nano Bio Aspects2022122635
    [Google Scholar]
  68. JahnA. VreelandW.N. GaitanM. LocascioL.E. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.J. Am. Chem. Soc.200412692674267510.1021/ja031803014995164
    [Google Scholar]
  69. LiJ. BaxaniD.K. JamiesonW.D. XuW. RochaV.G. BarrowD.A. CastellO.K. Formation of polarized, functional artificial cells from compartmentalized droplet networks and nanomaterials, using one-step, dual-material 3D-printed microfluidics.Adv. Sci.202071190171910.1002/advs.20190171931921557
    [Google Scholar]
  70. SommonteF. DenoraN. LamprouD.A. Combining 3D printing and microfluidic techniques: A powerful synergy for nanomedicine.Pharmaceuticals20231616910.3390/ph1601006936678566
    [Google Scholar]
  71. JahnA. StavisS.M. HongJ.S. VreelandW.N. DeVoeD.L. GaitanM. Microfluidic mixing and the formation of nanoscale lipid vesicles.ACS Nano2010442077208710.1021/nn901676x20356060
    [Google Scholar]
  72. HoodR.R. VreelandW.N. DeVoeD.L. Microfluidic remote loading for rapid single-step liposomal drug preparation.Lab Chip201414173359336710.1039/C4LC00390J25003823
    [Google Scholar]
  73. ShiH. ZhaoY. LiuZ. Numerical investigation of the secondary flow effect of lateral structure of micromixing channel on laminar flow.Sens. Actuators B Chem.202032112850310.1016/j.snb.2020.128503
    [Google Scholar]
  74. DengN.N. YelleswarapuM. HuckW.T.S. Monodisperse uni-and multicompartment liposomes.J. Am. Chem. Soc.2016138247584759110.1021/jacs.6b0210727243596
    [Google Scholar]
  75. CarugoD. BottaroE. OwenJ. StrideE. NastruzziC. Liposome production by microfluidics: Potential and limiting factors.Sci. Rep.2016612587610.1038/srep2587627194474
    [Google Scholar]
  76. LiuE.Y. ChoiY. YiH. ChoiC.H. Triple emulsion-based rapid microfluidic production of core–shell hydrogel microspheres for programmable biomolecular conjugation.ACS Appl. Mater. Interfaces20211310115791158710.1021/acsami.0c2008133651584
    [Google Scholar]
  77. ParkJ.I. JagadeesanD. WilliamsR. OakdenW. ChungS. StaniszG.J. KumachevaE. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities.ACS Nano20104116579658610.1021/nn102248g20968309
    [Google Scholar]
  78. LiuD. CitoS. ZhangY. WangC.F. SikanenT.M. SantosH.A. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties.Adv. Mater.201527142298230410.1002/adma.20140540825684077
    [Google Scholar]
  79. SongR. PengC. XuX. WangJ. YuM. HouY. ZouR. YaoS. Controllable formation of monodisperse polymer microbubbles as ultrasound contrast agents.ACS Appl. Mater. Interfaces20181017143121432010.1021/acsami.7b1725829637761
    [Google Scholar]
  80. SathishS. IshizuN. ShenA.Q. Air plasma-enhanced covalent functionalization of poly (methyl methacrylate): High-throughput protein immobilization for miniaturized bioassays.ACS Appl. Mater. Interfaces20191149463504636010.1021/acsami.9b1463131722179
    [Google Scholar]
  81. RahmanS.M. CampbellJ.M. CoatesR.N. RenderK.M. ByrneC.E. MartinE.C. MelvinA.T. Evaluation of intercellular communication between breast cancer cells and adipose-derived stem cells via passive diffusion in a two-layer microfluidic device.Lab Chip202020112009201910.1039/D0LC00142B32379852
    [Google Scholar]
  82. ChungS.E. ParkW. ShinS. LeeS.A. KwonS. Guided and fluidic self-assembly of microstructures using railed microfluidic channels.Nat. Mater.20087758158710.1038/nmat220818552850
    [Google Scholar]
  83. AinlaA. HamediM.M. GüderF. WhitesidesG.M. Electrical textile valves for paper microfluidics.Adv. Mater.20172938170289410.1002/adma.20170289428809064
    [Google Scholar]
  84. BalbinoT.A. SerafinJ.M. Malfatti-GasperiniA.A. de OliveiraC.L.P. CavalcantiL.P. de JesusM.B. de La TorreL.G. Microfluidic assembly of pDNA/Cationic liposome lipoplexes with high pDNA loading for gene delivery.Langmuir20163271799180710.1021/acs.langmuir.5b0417726814663
    [Google Scholar]
  85. XiangN. HanY. JiaY. ShiZ. YiH. NiZ. Flow stabilizer on a syringe tip for hand-powered microfluidic sample injection.Lab Chip201919221422210.1039/C8LC01051J30534798
    [Google Scholar]
  86. WangX. LiedertC. LiedertR. PapautskyI. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.Lab Chip201616101821183010.1039/C6LC00215C27050341
    [Google Scholar]
  87. XiangN. ZhangR. HanY. NiZ. A multilayer polymer-film inertial microfluidic device for high-throughput cell concentration.Anal. Chem.20199185461546810.1021/acs.analchem.9b0111630920789
    [Google Scholar]
  88. ZhangX. HuangD. TangW. JiangD. ChenK. YiH. XiangN. NiZ. A low cost and quasi-commercial polymer film chip for high-throughput inertial cell isolation.RSC Advances20166129734974210.1039/C5RA27092H
    [Google Scholar]
  89. BalakrishnanH.K. BadarF. DoevenE.H. NovakJ.I. MerendaA. DuméeL.F. LoyJ. GuijtR.M. 3D printing: An alternative microfabrication approach with unprecedented opportunities in design.Anal. Chem.202193135036610.1021/acs.analchem.0c0467233263392
    [Google Scholar]
  90. SuR. WenJ. SuQ. WiederoderM.S. KoesterS.J. UzarskiJ.R. McAlpineM.C. 3D printed self-supporting elastomeric structures for multifunctional microfluidics.Sci. Adv.2020641eabc984610.1126/sciadv.abc984633036980
    [Google Scholar]
  91. XiangN. ShiX. HanY. ShiZ. JiangF. NiZ. Inertial microfluidic syringe cell concentrator.Anal. Chem.201890159515952210.1021/acs.analchem.8b0220130001491
    [Google Scholar]
  92. ChenZ. HanJ.Y. ShumateL. FedakR. DeVoeD.L. High throughput nanoliposome formation using 3D printed microfluidic flow focusing chips.Adv. Mater. Technol.201946180051110.1002/admt.201800511
    [Google Scholar]
  93. KaraA. VassiliadouA. OngorenB. KeebleW. HingR. LalatsaA. SerranoD.R. Engineering 3D printed microfluidic chips for the fabrication of nanomedicines.Pharmaceutics20211312213410.3390/pharmaceutics1312213434959415
    [Google Scholar]
  94. BishopG.W. SatterwhiteJ.E. BhaktaS. KadimisettyK. GilletteK.M. ChenE. RuslingJ.F. 3D-printed fluidic devices for nanoparticle preparation and flow-injection amperometry using integrated prussian blue nanoparticle-modified electrodes.Anal. Chem.201587105437544310.1021/acs.analchem.5b0090325901660
    [Google Scholar]
  95. GabizonA. GorenD. CohenR. BarenholzY. Development of liposomal anthracyclines: From basics to clinical applications.J. Control. Release1998531-327527910.1016/S0168‑3659(97)00261‑79741935
    [Google Scholar]
  96. SuR. WangF. McAlpineM.C. 3D printed microfluidics: Advances in strategies, integration, and applications.Lab Chip20232351279129910.1039/D2LC01177H
    [Google Scholar]
  97. BártoloP.J. Stereolithography: Materials, Processes and ApplicationsSpringerUS2011
    [Google Scholar]
  98. BertschA. HeimgartnerS. CousseauP. RenaudP. Static micromixers based on large-scale industrial mixer geometry.Lab Chip200111566010.1039/b103848f15100890
    [Google Scholar]
  99. Paral, S.K.; Lin, D.Z.; Cheng, Y.L.; Lin, S.C.; Jeng, J.Y. A Review of critical issues in high-speed vat photopolymerization. Polymers, 2023, 15(12), 2716.
  100. MacdonaldN.P. ZhuF. HallC.J. ReboudJ. CrosierP.S. PattonE.E. WlodkowicD. CooperJ.M. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays.Lab Chip201616229129710.1039/C5LC01374G26646354
    [Google Scholar]
  101. SimičR. MandalJ. ZhangK. SpencerN.D. Oxygen inhibition of free-radical polymerization is the dominant mechanism behind the “mold effect” on hydrogels.Soft Matter202117266394640310.1039/D1SM00395J34132302
    [Google Scholar]
  102. MacdonaldN.P. CabotJ.M. SmejkalP. GuijtR.M. PaullB. BreadmoreM.C. Comparing microfluidic performance of three-dimensional (3D) printing platforms.Anal. Chem.20178973858386610.1021/acs.analchem.7b0013628281349
    [Google Scholar]
  103. WaheedS. CabotJ.M. MacdonaldN.P. LewisT. GuijtR.M. PaullB. BreadmoreM.C. 3D printed microfluidic devices: Enablers and barriers.Lab Chip201616111993201310.1039/C6LC00284F27146365
    [Google Scholar]
  104. GongH. BickhamB.P. WoolleyA.T. NordinG.P. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.Lab Chip201717172899290910.1039/C7LC00644F28726927
    [Google Scholar]
  105. SommonteF. WeaverE. MathewE. DenoraN. LamprouD.A. In-house innovative “diamond shaped” 3D printed microfluidic devices for lysozyme-loaded liposomes.Pharmaceutics20221411248410.3390/pharmaceutics1411248436432675
    [Google Scholar]
  106. YangY. ZhouY. LinX. YangQ. YangG. Printability of external and internal structures based on digital light processing 3D printing technique.Pharmaceutics202012320710.3390/pharmaceutics1203020732121141
    [Google Scholar]
  107. ZhaoZ. TianX. SongX. Engineering materials with light: Recent progress in digital light processing based 3D printing.J. Mater. Chem. C. Mater. Opt. Electron. Devices2020840138961391710.1039/D0TC03548C
    [Google Scholar]
  108. KrkobabićM. MedarevićD. CvijićS. GrujićB. IbrićS. Hydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: Impact on internal structure and drug dissolution rate.Int. J. Pharm.201957211879010.1016/j.ijpharm.2019.11879031678382
    [Google Scholar]
  109. MusgroveH.B. CattertonM.A. PompanoR.R. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.Anal. Chim. Acta2022120933984210.1016/j.aca.2022.33984235569850
    [Google Scholar]
  110. TiboniM. TiboniM. PierroA. Del PapaM. SparaventiS. CespiM. CasettariL. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.Int. J. Pharm.202159912046410.1016/j.ijpharm.2021.12046433713759
    [Google Scholar]
  111. NiculescuA.G. ChircovC. BîrcăA.C. GrumezescuA.M. Fabrication and applications of microfluidic devices: A review.Int. J. Mol. Sci.2021224201110.3390/ijms2204201133670545
    [Google Scholar]
  112. ElsanaH. OlusanyaT.O.B. Carr-wilkinsonJ. DarbyS. FaheemA. ElkordyA.A. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems.Sci. Rep.2019911512010.1038/s41598‑019‑51065‑431641141
    [Google Scholar]
  113. Al-AminM.D. BellatoF. MastrottoF. GarofaloM. MalfantiA. SalmasoS. CalicetiP. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: Formulation challenges.Int. J. Mol. Sci.2020215161110.3390/ijms2105161132111100
    [Google Scholar]
  114. XenikakisI. TsongasK. TzimtzimisE.K. ZacharisC.K. TheodoroulaN. KalogianniE.P. DemiriE. VizirianakisI.S. TzetzisD. FatourosD.G. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery.Int. J. Pharm.202159712030310.1016/j.ijpharm.2021.12030333540009
    [Google Scholar]
  115. WeaverE. MathewE. CaldwellJ. HookerA. UddinS. LamprouD.A. The manufacturing of 3D-printed microfluidic chips to analyse the effect upon particle size during the synthesis of lipid nanoparticles.J. Pharm. Pharmacol.202375224525210.1093/jpp/rgac08536453867
    [Google Scholar]
  116. BallacchinoG. WeaverE. MathewE. DoratiR. GentaI. ContiB. LamprouD.A. Manufacturing of 3d-printed microfluidic devices for the synthesis of drug-loaded liposomal formulations.Int. J. Mol. Sci.20212215806410.3390/ijms2215806434360832
    [Google Scholar]
  117. TiboniM. BenedettiS. SkourasA. CurziG. PerinelliD.R. PalmieriG.F. CasettariL. 3D-printed microfluidic chip for the preparation of glycyrrhetinic acid-loaded ethanolic liposomes.Int. J. Pharm.202058411943610.1016/j.ijpharm.2020.11943632445905
    [Google Scholar]
  118. BhattacharjeeN. UrriosA. KangS. FolchA. The upcoming 3D-printing revolution in microfluidics.Lab Chip201616101720174210.1039/C6LC00163G27101171
    [Google Scholar]
  119. MorganA.J.L. Hidalgo San JoseL. JamiesonW.D. WymantJ.M. SongB. StephensP. BarrowD.A. CastellO.K. Simple and versatile 3D printed microfluidics using fused filament fabrication.PLoS One2016114e015202310.1371/journal.pone.015202327050661
    [Google Scholar]
  120. HeikkinenI.T.S. KauppinenC. LiuZ. AsikainenS.M. SpoljaricS. SeppäläJ.V. SavinH. PearceJ.M. Chemical compatibility of fused filament fabrication-based 3-D printed components with solutions commonly used in semiconductor wet processing.Addit. Manuf.2018239910710.1016/j.addma.2018.07.015
    [Google Scholar]
  121. ElmowafyE.M. TiboniM. SolimanM.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles.J. Pharm. Investig.201949434738010.1007/s40005‑019‑00439‑x
    [Google Scholar]
  122. HesselV. LöweH. SchönfeldF. Micromixers—a review on passive and active mixing principles.Chem. Eng. Sci.2005608-92479250110.1016/j.ces.2004.11.033
    [Google Scholar]
  123. PiacentiniE. Encyclopedia of membranes.Springer-Verlag Berlin Heidelberg2014
    [Google Scholar]
  124. JungS. SongR. KimJ. KoJ.H. LeeJ. Controlling the release of amphiphilic liposomes from alginate hydrogel particles for antifouling paint.Langmuir20203661515152210.1021/acs.langmuir.9b0341531968942
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673285199231210170549
Loading
/content/journals/cmc/10.2174/0109298673285199231210170549
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 3D printing; artificial cellular; drug delivery; liposome; microfluidics; nanoparticle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test