Skip to content
2000
Volume 31, Issue 41
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Periodontitis (PD) is a chronic inflammatory disease of the periodontium characterized by the formation of gingival pockets and gingival recession. The local inflammatory environment can lead to the destruction of the extracellular matrix and subsequent bone loss. The pathophysiology of PD involves interactions between genetic predisposition, lifestyle, environmental factors, the oral microbiota condition, systemic health disorders, innate and adaptive immune responses, and various host defenses. The review highlighted the importance of the oral cavity condition in systemic health. Thus, a correlation between harmful oral microbiota and cardiovascular disease (CVD)/diabetes/ arthritis, , progressions through inflammation and bacterial translocation was highlighted. Antecedents increase an individual's risk of developing PD, trigger initiate microbe-host immunologic responses, and mediators sustain inflammatory interactions. Generally, this review explores the antecedents, triggers, and mediators along the pathophysiological continuum of PD. An analysis of modern approaches to treating periodontitis, including antibiotics for systemic and local use, was carried out. The potential role of natural ingredients such as herbal extracts, phytoconstituents, propolis, and probiotics in preventing and treating PD was highlighted.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673265862231020051338
2023-11-02
2024-11-20
Loading full text...

Full text loading...

References

  1. GaoL. XuT. HuangG. JiangS. GuY. ChenF. Oral microbiomes: More and more importance in oral cavity and whole body.Protein Cell20189548850010.1007/s13238‑018‑0548‑129736705
    [Google Scholar]
  2. NazirM. Al-AnsariA. Al-KhalifaK. AlharekyM. GaffarB. AlmasK. Global prevalence of periodontal disease and lack of its surveillance.ScientificWorldJournal202020201810.1155/2020/214616032549797
    [Google Scholar]
  3. NazirM.A. Prevalence of periodontal disease, its association with systemic diseases and prevention.Int. J. Health Sci.2017112728028539867
    [Google Scholar]
  4. SedghiL.M. BacinoM. KapilaY.L. Periodontal disease: The good, the bad, and the unknown.Front. Cell. Infect. Microbiol.20211176694410.3389/fcimb.2021.76694434950607
    [Google Scholar]
  5. ChappleI.L.C. MealeyB.L. Van DykeT.E. BartoldP.M. DommischH. EickholzP. GeisingerM.L. GencoR.J. GlogauerM. GoldsteinM. GriffinT.J. HolmstrupP. JohnsonG.K. KapilaY. LangN.P. MeyleJ. MurakamiS. PlemonsJ. RomitoG.A. ShapiraL. TatakisD.N. TeughelsW. TrombelliL. WalterC. WimmerG. XenoudiP. YoshieH. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions.J. Periodontol.201889S1S74S8410.1002/JPER.17‑071929926944
    [Google Scholar]
  6. MainasG. IdeM. RizzoM. Magan-FernandezA. MesaF. NibaliL. Managing the systemic impact of periodontitis.Medicina202258562110.3390/medicina5805062135630038
    [Google Scholar]
  7. ZhangZ. YuY. ZhuG. ZengL. XuS. ChengH. OuyangZ. ChenJ. PathakJ.L. WuL. YuL. The emerging role of plant-derived exosomes-like nanoparticles in immune regulation and periodontitis treatment.Front. Immunol.20221389674510.3389/fimmu.2022.89674535757759
    [Google Scholar]
  8. RayR.R. Periodontitis: An oral disease with severe consequences.Appl. Biochem. Biotechnol.20231951173210.1007/s12010‑022‑04127‑936098930
    [Google Scholar]
  9. LuthraS. OrlandiM. Treatment of periodontitis and C-reactive protein: A systematic review and meta-analysis of randomized clinical trials.J. Clin. Periodontol.202250
    [Google Scholar]
  10. KwonT. LamsterI.B. LevinL. Current concepts in the management of periodontitis.Int. Dent. J.202171646247610.1111/idj.1263034839889
    [Google Scholar]
  11. CatonJ.G. ArmitageG. BerglundhT. ChappleI.L.C. JepsenS. KornmanK.S. MealeyB.L. PapapanouP.N. SanzM. TonettiM.S. A new classification scheme for periodontal and peri-implant diseases and conditions – Introduction and key changes from the 1999 classification.J. Clin. Periodontol.201845S20S1S810.1111/jcpe.1293529926489
    [Google Scholar]
  12. HuangQ. DongX. Prevalence of periodontal disease in middle-aged and elderly patients and its influencing factors.Am. J. Transl. Res.20221485677568436105065
    [Google Scholar]
  13. MosaddadS.A. HussainA. TebyaniyanH. Green alternatives as antimicrobial agents in mitigating periodontal diseases: A narrative review.Microorganisms2023115126910.3390/microorganisms1105126937317243
    [Google Scholar]
  14. YanakievS. BottenbergP. ConradsG. EickholzP. HeasmanP. HuysmansM. LópezR. MadianosP. MüllerF. NeedlemanI. NyvadB. PreshawP. PrettyI. RenvertS. SchwendickeF. TrombelliL. van der PuttenG-J. VanobbergenJ. WestN. ParisS. Dental caries and periodontal diseases in the ageing population: Call to action to protect and enhance oral health and well-being as an essential component of healthy ageing - Consensus report of group 4 of the joint EFP/ORCA workshop on the boundaries be.J. Clin. Periodontol.2017441S135S14410.3390/molecules25184184
    [Google Scholar]
  15. YanakievS. Effects of cinnamon (Cinnamomum spp.) in dentistry: A review.Molecules20202518418410.3390/molecules25184184
    [Google Scholar]
  16. McCreight ProgressiveD. The progression of periodontal (GUM) disease.Available from:https://www.steamboatdentistry.com/progression-gum-disease/
  17. GrazianiF. MusicL. BožićD. TsakosG. Is periodontitis and its treatment capable of changing the quality of life of a patient?Br. Dent. J.2019227762162510.1038/s41415‑019‑0735‑331605074
    [Google Scholar]
  18. HajishengallisG. SahingurS.E. Novel inflammatory pathways in periodontitis.Adv. Dent. Res.2014261232910.1177/002203451452624024736701
    [Google Scholar]
  19. Gasmi BenahmedA. GasmiA. TippairoteT. MujawdiyaP.K. AvdeevO. ShanaidaY. BjørklundG. Metabolic conditions and peri-implantitis.Antibiotics20221216510.3390/antibiotics1201006536671266
    [Google Scholar]
  20. ClarkD. LevinL. In the dental implant era, why do we still bother saving teeth?J. Endod.20194512S57S6510.1016/j.joen.2019.05.01431623910
    [Google Scholar]
  21. Gasmi BenahmedA. GasmiA. MenzelA. HrynovetsI. ChirumboloS. ShanaidaM. LysiukR. ShanaidaY. DadarM. BjørklundG. A review on natural teeth whitening.J. Oral Biosci./ JAOB, Jpn. Assoc. Oral Biol.2022641495810.1016/j.job.2021.12.00234915121
    [Google Scholar]
  22. SunY. ShuR. LiC.L. ZhangM.Z. Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells.J. Periodontol.201081101488149610.1902/jop.2010.10000420528699
    [Google Scholar]
  23. PapapanouP.N. SanzM. BuduneliN. DietrichT. FeresM. FineD.H. FlemmigT.F. GarciaR. GiannobileW.V. GrazianiF. GreenwellH. HerreraD. KaoR.T. KebschullM. KinaneD.F. KirkwoodK.L. KocherT. KornmanK.S. KumarP.S. LoosB.G. MachteiE. MengH. MombelliA. NeedlemanI. OffenbacherS. SeymourG.J. TelesR. TonettiM.S. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions.J. Periodontol.201889S1S173S18210.1002/JPER.17‑072129926951
    [Google Scholar]
  24. Al-FouzanK.S. A new classification of endodontic-periodontal lesions.Int. J. Dent.2014201491917310.1155/2014/919173
    [Google Scholar]
  25. HerreraD. Retamal-ValdesB. AlonsoB. FeresM. Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo-periodontal lesions.J. Clin. Periodontol.201845S20S78S9410.1111/jcpe.1294129926493
    [Google Scholar]
  26. MichalowiczB.S. AeppliD. ViragJ.G. KlumpD.G. HinrichsE. SegalN.L. BouchardT.J.Jr PihlstromB.L. Periodontal findings in adult twins.J. Periodontol.199162529329910.1902/jop.1991.62.5.2932072240
    [Google Scholar]
  27. CiancioS.G. HazenS.P. CunatJ.J. Periodontal observations in twins.J. Periodontal Res.196941424510.1111/j.1600‑0765.1969.tb01944.x4250759
    [Google Scholar]
  28. TodescanS.M.C. SchrothR.J. DeanH. WicklowB. Michel-CrosatoE. SellersE. High prevalence of periodontitis in children and adolescents with type 2 diabetes.J. Periodontol.202394217418310.1002/JPER.21‑022635933589
    [Google Scholar]
  29. ChappleI.L. GencoR. Diabetes and periodontal diseases: Consensus report of the joint EFP/AAP workshop on periodontitis and systemic diseases.J. Periodontol.2013844S106S11223631572
    [Google Scholar]
  30. PetersenP.E. OgawaH. The global burden of periodontal disease: Towards integration with chronic disease prevention and control.Periodontol. 20002012601153910.1111/j.1600‑0757.2011.00425.x22909104
    [Google Scholar]
  31. ElburkiM.S. The etiology and pathogenesis of periodontal disease.BAOJ Dentist.20184042
    [Google Scholar]
  32. KinaneD.F. Regulators of tissue destruction and homeostasis as diagnostic aids in periodontology.Periodontol200024121522510.1034/j.1600‑0757.2000.2240110.x11276868
    [Google Scholar]
  33. KinaneD.F. ShibaH. HartT.C. The genetic basis of periodontitis.Periodontol. 200020053919111710.1111/j.1600‑0757.2005.00118.x16135066
    [Google Scholar]
  34. SaxbyM. Prevalence of juvenile periodontitis in a British school population.Community Dent. Oral Epidemiol.198412318518710.1111/j.1600‑0528.1984.tb01435.x6589110
    [Google Scholar]
  35. SaxénL. Heredity of juvenile periodontitis.J. Clin. Periodontol.19807427628810.1111/j.1600‑051X.1980.tb01970.x6936406
    [Google Scholar]
  36. ShapiraL. SchlesingerM. BimsteinE. Possible autosomal-dominant inheritance of prepubertal periodontitis in an extended kindred.J. Clin. Periodontol.199724638839310.1111/j.1600‑051X.1997.tb00202.x9205917
    [Google Scholar]
  37. PraveenaJ. BatturH. FareedN. KhanagarS. BhatM. Inheritance patterns of localized aggressive periodontitis: A systematic review.J. Indian Assoc. Public Health Dentist.201715429530110.4103/jiaphd.jiaphd_73_17
    [Google Scholar]
  38. ArchanaP.M. KumarT.S.S. PanishankarK.H. SalmanA.A. SaraswathiP.K. KumarasamyP. Association between interleukin-1 gene polymorphism and severity of chronic periodontitis in a South Indian population group.J. Indian Soc. Periodontol.201216217417810.4103/0972‑124X.9925823055581
    [Google Scholar]
  39. SchenkeinH.A. Inheritance as a determinant of susceptibility for periodontitis.J. Dent. Educ.1998621084085110.1002/j.0022‑0337.1998.62.10.tb03251.x9847887
    [Google Scholar]
  40. HartT.C. HartP.S. MichalecM.D. ZhangY. FiratliE. Van DykeT.E. StabholzA. ZlotogorskiA. ShapiraL. SoskolneW.A. Haim-Munk syndrome and Papillon-Lefevre syndrome are allelic mutations in cathepsin C.J. Med. Genet.2000372889410.1136/jmg.37.2.8810662807
    [Google Scholar]
  41. HartT.C. StabholzA. MeyleJ. ShapiraL. Van DykeT.E. CutlerC.W. SoskolneW.A. Genetic studies of syndromes with severe periodontitis and palmoplantar hyperkeratosis.J. Periodontal Res.1997321818910.1111/j.1600‑0765.1997.tb01386.x9085215
    [Google Scholar]
  42. HartsfieldJ.K.Jr KousseffB.G. Phenotypic overlap of Ehlers-Danlos syndrome types IV and VIII.Am. J. Med. Genet.199037446547010.1002/ajmg.13203704082260589
    [Google Scholar]
  43. NagleD.L. KarimM.A. WoolfE.A. HolmgrenL. BorkP. MisumiD.J. McGrailS.H. DussaultB.J.Jr PerouC.M. BoissyR.E. DuykG.M. SpritzR.A. MooreK.J. Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome.Nat. Genet.199614330731110.1038/ng1196‑3078896560
    [Google Scholar]
  44. DivarisK. MondaK.L. NorthK.E. OlshanA.F. ReynoldsL.M. HsuehW.C. LangeE.M. MossK. BarrosS.P. WeyantR.J. LiuY. NewmanA.B. BeckJ.D. OffenbacherS. Exploring the genetic basis of chronic periodontitis: A genome-wide association study.Hum. Mol. Genet.201322112312232410.1093/hmg/ddt06523459936
    [Google Scholar]
  45. RhodinK. DivarisK. NorthK.E. BarrosS.P. MossK. BeckJ.D. OffenbacherS. Chronic periodontitis genome-wide association studies: Gene-centric and gene set enrichment analyses.J. Dent. Res.201493988289010.1177/002203451454450625056994
    [Google Scholar]
  46. GroeninkJ. Walgreen-WeteringsE. NazmiK. BolscherJ.G.M. VeermanE.C.I. Van WinkelhoffA.J. Nieuw AmerongenA.V. Salivary lactoferrin and low- M r mucin MG2 in Actinobacillus actinomycetemcomitans -associated periodontitis.J. Clin. Periodontol.199926526927510.1034/j.1600‑051X.1999.260501.x10355615
    [Google Scholar]
  47. MoutR. WillemzeR. LandegentJ.E. Repeat polymorphisms in the interleukin-4 gene (IL4).Nucleic Acids Res.19911913376310.1093/nar/19.13.37631804125
    [Google Scholar]
  48. YoshieH. KobayashiT. TaiH. GaliciaJ.C. The role of genetic polymorphisms in periodontitis.Periodontol. 2000200743110213210.1111/j.1600‑0757.2006.00164.x17214838
    [Google Scholar]
  49. KornmanK.S. CraneA. WangH.Y. GiovlneF.S. NewmanM.G. PirkF.W. WilsonT.G.Jr HigginbottomF.L. DuffG.W. The interleukin-1 genotype as a severity factor in adult periodontal disease.J. Clin. Periodontol.1997241727710.1111/j.1600‑051X.1997.tb01187.x9049801
    [Google Scholar]
  50. WagnerJ. KaminskiW.E. AslanidisC. ModerD. HillerK.A. ChristgauM. SchmitzG. SchmalzG. Prevalence of OPG and IL-1 gene polymorphisms in chronic periodontitis.J. Clin. Periodontol.2007341082382710.1111/j.1600‑051X.2007.01132.x17711477
    [Google Scholar]
  51. KomatsuY. TaiH. GaliciaJ.C. ShimadaY. EndoM. AkazawaK. YamazakiK. YoshieH. Interleukin-6 (IL-6) − 373 A9T11 allele is associated with reduced susceptibility to chronic periodontitis in Japanese subjects and decreased serum IL-6 level.Tissue Antigens200565111011410.1111/j.1399‑0039.2005.00347.x15663749
    [Google Scholar]
  52. ChaiL. SongY.Q. ZeeK.Y. LeungW.K. SNPs of Fc-gamma receptor genes and chronic periodontitis.J. Dent. Res.201089770571010.1177/002203451036544420439936
    [Google Scholar]
  53. NaitoM. MiyakiK. NaitoT. ZhangL. HoshiK. HaraA. MasakiK. TohyamaS. MuramatsuM. HamajimaN. NakayamaT. Association between vitamin D receptor gene haplotypes and chronic periodontitis among Japanese men.Int. J. Med. Sci.20074421622210.7150/ijms.4.21617848979
    [Google Scholar]
  54. LiW. ZhuY. SinghP. AjmeraD.H. SongJ. JiP. Association of common variants in MMPs with periodontitis risk.Dis. Markers2016201612010.1155/2016/154597427194818
    [Google Scholar]
  55. SorsaT. TjäderhaneL. SaloT. Matrix metalloproteinases (MMPs) in oral diseases.Oral Dis.200410631131810.1111/j.1601‑0825.2004.01038.x15533204
    [Google Scholar]
  56. NibaliL. Bayliss-ChapmanJ. AlmofarehS.A. ZhouY. DivarisK. VieiraA.R. What is the heritability of periodontitis? A systematic review.J. Dent. Res.201998663264110.1177/002203451984251031107142
    [Google Scholar]
  57. WhiteP.C. HirschfeldJ. MilwardM.R. CooperP.R. WrightH.J. MatthewsJ.B. ChappleI.L.C. Cigarette smoke modifies neutrophil chemotaxis, neutrophil extracellular trap formation and inflammatory response-related gene expression.J. Periodontal Res.201853452553510.1111/jre.1254229574730
    [Google Scholar]
  58. MintyM. CanceilT. SerinoM. BurcelinR. TercéF. Blasco-BaqueV. Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases.Rev. Endocr. Metab. Disord.201920444945910.1007/s11154‑019‑09526‑831741266
    [Google Scholar]
  59. NewmanH. WilsonM. Dental plaque revisited: oral biofilms in health and diseases.Cardiff, United KingdomBioline1999
    [Google Scholar]
  60. WeiY. ShiM. ZhenM. WangC. HuW. NieY. WuX. Comparison of subgingival and buccal mucosa microbiome in chronic and aggressive periodontitis: A pilot study.Front. Cell. Infect. Microbiol.20199535310.3389/fcimb.2019.0005330915280
    [Google Scholar]
  61. SaidathK. MohantyR. AsopaS.J. JosephM.D. SinghB. RajguruJ.P. SharmaU. Red complex: Polymicrobial conglomerate in oral flora: A review.J. Family Med. Prim. Care20198113480348610.4103/jfmpc.jfmpc_759_1931803640
    [Google Scholar]
  62. SocranskyS.S. HaffajeeA.D. Periodontal microbial ecology.Periodontol. 2000200538113518710.1111/j.1600‑0757.2005.00107.x15853940
    [Google Scholar]
  63. LamontR.J. KooH. HajishengallisG. The oral microbiota: dynamic communities and host interactions.Nat. Rev. Microbiol.2018161274575910.1038/s41579‑018‑0089‑x30301974
    [Google Scholar]
  64. PatiniR. StaderiniE. LajoloC. LopetusoL. MohammedH. RimondiniL. RocchettiV. FranceschiF. CordaroM. GallenziP. Relationship between oral microbiota and periodontal disease: A systematic review.Eur. Rev. Med. Pharmacol. Sci.201822185775578830280756
    [Google Scholar]
  65. ChenC. HemmeC. BelenoJ. ShiZ.J. NingD. QinY. TuQ. JorgensenM. HeZ. WuL. ZhouJ. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy.ISME J.20181251210122410.1038/s41396‑017‑0037‑129339824
    [Google Scholar]
  66. CarranzaF.A. NewmanM. TakeiH. KlokkevoldP.R. Carranza’s clynical periodontology.Saunders.Elsevier, Amsterdam, Massachusetts2006
    [Google Scholar]
  67. HoltS.C. EbersoleJ.L. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the ‘red complex’, a prototype polybacterial pathogenic consortium in periodontitis.Periodontol. 200020053817212210.1111/j.1600‑0757.2005.00113.x15853938
    [Google Scholar]
  68. HutterG. SchlagenhaufU. ValenzaG. HornM. BurgemeisterS. ClausH. VogelU. Molecular analysis of bacteria in periodontitis: evaluation of clone libraries, novel phylotypes and putative pathogens.Microbiology20031491677510.1099/mic.0.25791‑012576581
    [Google Scholar]
  69. BjarnsholtT. The role of bacterial biofilms in chronic infections.Acta Pathol. Microbiol. Scand. Suppl.2013121s13615810.1111/apm.1209923635385
    [Google Scholar]
  70. FrédéricL. MichelB. SelenaT. Oral microbes, biofilms and their role in periodontal and peri-implant diseases.Materials20181110180210.3390/ma1110180230248991
    [Google Scholar]
  71. BartoldP.M. Van DykeT.E. An appraisal of the role of specific bacteria in the initial pathogenesis of periodontitis.J. Clin. Periodontol.201946161110.1111/jcpe.1304630556922
    [Google Scholar]
  72. SantonocitoS. GiudiceA. PolizziA. TroianoG. MerloE.M. SclafaniR. GrossoG. IsolaG. A cross-talk between diet and the oral microbiome: Balance of nutrition on inflammation and immune system’s response during periodontitis.Nutrients20221412242610.3390/nu1412242635745156
    [Google Scholar]
  73. AlJehaniY.A. Risk factors of periodontal disease: Review of the literature.Int. J. Dent.201420141910.1155/2014/18251324963294
    [Google Scholar]
  74. FosdickL.S. PiezK.A. Chemical studies in periodontal disease. X. Paper chromatographic investigation of the putrefaction associated with periodontitis.J. Dent. Res.19533218710010.1177/0022034553032001230113052758
    [Google Scholar]
  75. LawD.B. BergM. FosdickL.S. Chemical studies on periodontal disease-I.J. Dent. Res.194322537337910.1177/00220345430220050401
    [Google Scholar]
  76. LeeJ.-H. Chemical studies in periodontal disease.J. Periodont. Implant Sci.1972215.1
    [Google Scholar]
  77. TorresA. MicheaM.A. VégváriÁ. ArceM. MoralesA. LanyonE. AlcotaM. FuentesC. VernalR. BudiniM. ZubarevR.A. GonzálezF.E. Proteomic profile of human gingival crevicular fluid reveals specific biological and molecular processes during clinical progression of periodontitis.J. Periodontal Res.20235851061108110.1111/jre.1316937522282
    [Google Scholar]
  78. Mazurek-MocholM. SerwinK. BonsmannT. KozakM. PiotrowskaK. CzerewatyM. SafranowK. PawlikA. Expression of interleukin 17A and 17B in gingival tissue in patients with periodontitis.J. Clin. Med.20231214461410.3390/jcm1214461437510729
    [Google Scholar]
  79. ShevchukM. ShkrebnyukR. DyrykV. MrochkoO. Study of immune-inflammatory response changes in oral fluid in patients with diseases of periodontal tissues in combination with general somatic pathology.Wiad. Lek.20237671554156110.36740/WLek20230710737622497
    [Google Scholar]
  80. ShankarS. ManjunathS. AlqahtaniS.M. GanjiK.K. NagateR.R. GhokaleS.T. NagarajappaA.K. JavaliM.A. TikareS. KhaderM.A. Variations of serum CRP levels in periodontal health and diseases: A clinico-biochemical study.diagnostics20231315248310.3390/diagnostics1315248337568846
    [Google Scholar]
  81. MariottiA. Efficacy of chemical root surface modifiers in the treatment of periodontal disease. A systematic review.Ann. Periodontol.20038120522610.1902/annals.2003.8.1.20514971255
    [Google Scholar]
  82. YangB. PangX. LiZ. ChenZ. WangY. Immunomodulation in the treatment of periodontitis: Progress and perspectives.Front. Immunol.20211278137810.3389/fimmu.2021.78137834868054
    [Google Scholar]
  83. GasmiA. ShanaidaM. OleshchukO. SemenovaY. MujawdiyaP.K. IvankivY. PokryshkoO. NoorS. PiscopoS. AdamivS. BjørklundG. Natural ingredients to improve immunity.Pharmaceuticals (Basel)202316452810.3390/ph1604052837111285
    [Google Scholar]
  84. AvdeevO. DrevnitskaR. BoykivA. VydoinykO. Condition of fagocytosis of experimental animals with periodontitis due to modified reactivity.Wiadomosci Lekarsk.201972401404
    [Google Scholar]
  85. HelmerhorstE.J. OppenheimF.G. Saliva: a dynamic proteome.J. Dent. Res.200786868069310.1177/15440591070860080217652194
    [Google Scholar]
  86. KinneyJ.S. MorelliT. BraunT. RamseierC.A. HerrA.E. SugaiJ.V. ShelburneC.E. RayburnL.A. SinghA.K. GiannobileW.V. Saliva/pathogen biomarker signatures and periodontal disease progression.J. Dent. Res.201190675275810.1177/002203451139990821406610
    [Google Scholar]
  87. HenskensY.M.C. VeermanE.C.I. MantelM.S. van der VeldenU. Nieuw AmerongenA.V. Cystatins S and C in human whole saliva and in glandular salivas in periodontal health and disease.J. Dent. Res.199473101606161410.1177/002203459407301005017929975
    [Google Scholar]
  88. ChoiY.S. BaekK. ChoiY. Estrogen reinforces barrier formation and protects against tumor necrosis factor alpha-induced barrier dysfunction in oral epithelial cells.J. Periodontal Implant Sci.201848528429410.5051/jpis.2018.48.5.28430405936
    [Google Scholar]
  89. BelibasakisG.N. KastJ.I. ThurnheerT. AkdisC.A. BostanciN. The expression of gingival epithelial junctions in response to subgingival biofilms.Virulence20156770470910.1080/21505594.2015.108173126305580
    [Google Scholar]
  90. IvanovA.I. ParkosC.A. NusratA. Cytoskeletal regulation of epithelial barrier function during inflammation.Am. J. Pathol.2010177251252410.2353/ajpath.2010.10016820581053
    [Google Scholar]
  91. José RicardoK. Yumi Umeda SuzukiT. Fumico Umeda KinaE. KinaJ. KinaM. Non-inflammatory destructive periodontal disease.Open Dent. J.2016101505710.2174/187421060161001005027053968
    [Google Scholar]
  92. NibaliL. The periodontal diseases: microbial diseases or diseases of the host response?The Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology.Wiley2016
    [Google Scholar]
  93. AgnihotriR. PandurangP. KamathS.U. GoyalR. BallalS. ShanbhogueA.Y. KamathU. BhatG.S. BhatK.M. Association of cigarette smoking with superoxide dismutase enzyme levels in subjects with chronic periodontitis.J. Periodontol.200980465766210.1902/jop.2009.08054519335086
    [Google Scholar]
  94. BosshardtD.D. LangN.P. The junctional epithelium: from health to disease.J. Dent. Res.200584192010.1177/15440591050840010215615869
    [Google Scholar]
  95. PöllänenM.T. SalonenJ.I. UittoV.J. Structure and function of the tooth-epithelial interface in health and disease.Periodontol. 20002003311123110.1034/j.1600‑0757.2003.03102.x12656993
    [Google Scholar]
  96. SchroederH.E. ListgartenM.A. The gingival tissues: the architecture of periodontal protection.Periodontol. 200019971319112010.1111/j.1600‑0757.1997.tb00097.x9567925
    [Google Scholar]
  97. SongB. ZhangY.L. ChenL.J. ZhouT. HuangW.K. ZhouX. ShaoL.Q. The role of Toll-like receptors in periodontitis.Oral Dis.201723216818010.1111/odi.1246826923115
    [Google Scholar]
  98. ChenY.C. LiuC.M. JengJ.H. KuC.C. Association of pocket epithelial cell proliferation in periodontitis with TLR9 expression and inflammatory response.J. Formos. Med. Assoc.2014113854955610.1016/j.jfma.2012.07.04325037760
    [Google Scholar]
  99. SwaminathanV. PrakasamS. PuriV. SrinivasanM. Role of salivary epithelial toll-like receptors 2 and 4 in modulating innate immune responses in chronic periodontitis.J. Periodontal Res.201348675776510.1111/jre.1206623679005
    [Google Scholar]
  100. DeckersJ. HammadH. HosteE. Langerhans Cells: Sensing the environment in health and disease.Front. Immunol.20189939310.3389/fimmu.2018.0009329449841
    [Google Scholar]
  101. UpadhyayR. JaitleyS. ShekharR. AgrawalP. UpadhyayJ. Langerhans cells and their role in oral mucosal diseases.N. Am. J. Med. Sci.20135950551410.4103/1947‑2714.11892324251267
    [Google Scholar]
  102. HovavA-H. Dendritic cells of the oral mucosa.Mucosal Immunol.201471273710.1038/mi.2013.4223757304
    [Google Scholar]
  103. MoutsopoulosN.M. KonkelJ.E. Tissue-specific immunity at the oral mucosal barrier.Trends Immunol.201839427628710.1016/j.it.2017.08.00528923364
    [Google Scholar]
  104. VitkovL. SinghJ. SchauerC. MinnichB. KrunićJ. OberthalerH. GamsjaegerS. HerrmannM. KnopfJ. HannigM. Breaking the gingival barrier in periodontitis.Int. J. Mol. Sci.2023245454410.3390/ijms2405454436901974
    [Google Scholar]
  105. BatesA. FischerC. AbhyankarV. JohnsonG. GuthmillerJ. Progulske-FoxA. BrogdenK. Matrix metalloproteinase response of dendritic cell, gingival epithelial keratinocyte, and t-cell transwell co-cultures treated with porphyromonas gingivalis hemagglutinin-B.Int. J. Mol. Sci.20181912392310.3390/ijms1912392330544510
    [Google Scholar]
  106. MaciejczykM. PietrzykowskaA. ZalewskaA. KnaśM. DaniszewskaI. The significance of matrix metalloproteinases in oral diseases.Adv. Clin. Exp. Med.201625238339010.17219/acem/3042827627574
    [Google Scholar]
  107. KeiserK. JohnsonC. TiptonD. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts.J. Endod.200026528829110.1097/00004770‑200005000‑0001011199738
    [Google Scholar]
  108. de VriesT.J. SchoenmakerT. WattanaroonwongN. van den HoonaardM. NieuwenhuijseA. BeertsenW. EvertsV. Gingival fibroblasts are better at inhibiting osteoclast formation than periodontal ligament fibroblasts.J. Cell. Biochem.200698237038210.1002/jcb.2079516440316
    [Google Scholar]
  109. SokosD. EvertsV. de VriesT.J. Role of periodontal ligament fibroblasts in osteoclastogenesis: A review.J. Periodontal Res.201550215215910.1111/jre.1219724862732
    [Google Scholar]
  110. KookS.H. JangY.S. LeeJ.C. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells.J. Cell. Biochem.2011112102891290110.1002/jcb.2320521618593
    [Google Scholar]
  111. BloemenV. SchoenmakerT. de VriesT.J. EvertsV. Direct cell-cell contact between periodontal ligament fibroblasts and osteoclast precursors synergistically increases the expression of genes related to osteoclastogenesis.J. Cell. Physiol.2010222356557319927302
    [Google Scholar]
  112. OkinagaT. KasaiH. TsujisawaT. NishiharaT. Role of caspases in cleavage of lamin A/C and PARP during apoptosis in macrophages infected with a periodontopathic bacterium.J. Med. Microbiol.200756101399140410.1099/jmm.0.47193‑017893180
    [Google Scholar]
  113. FujitaT. YoshimotoT. KajiyaM. OuharaK. MatsudaS. TakemuraT. AkutagawaK. TakedaK. MizunoN. KuriharaH. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease.Jpn. Dent. Sci. Rev.2018542667510.1016/j.jdsr.2017.11.00329755617
    [Google Scholar]
  114. MartinV. RibeiroI.A.C. AlvesM.M. GonçalvesL. AlmeidaA.J. GrenhoL. FernandesM.H. SantosC.F. GomesP.S. BettencourtA.F. Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment.Int. J. Pharm.201957211882110.1016/j.ijpharm.2019.11882131711981
    [Google Scholar]
  115. OlsenI. Progulske-FoxA. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue.J. Oral Microbiol.2015712878810.3402/jom.v7.2878826329158
    [Google Scholar]
  116. TribbleG.D. LamontR.J. Bacterial invasion of epithelial cells and spreading in periodontal tissue.Periodontol. 20002010521688310.1111/j.1600‑0757.2009.00323.x20017796
    [Google Scholar]
  117. CossartP. LecuitM. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: Bacterial factors, cellular ligands and signaling.EMBO J.199817143797380610.1093/emboj/17.14.37979669997
    [Google Scholar]
  118. KahnR.A. FuH. RoyC.R. Cellular hijacking: a common strategy for microbial infection.Trends Biochem. Sci.200227630831410.1016/S0968‑0004(02)02108‑412069791
    [Google Scholar]
  119. YamamotoT. UgawaY. KawamuraM. YamashiroK. KochiS. IdeguchiH. TakashibaS. Modulation of microenvironment for controlling the fate of periodontal ligament cells: the role of Rho/ROCK signaling and cytoskeletal dynamics.J. Cell Commun. Signal.201812136937810.1007/s12079‑017‑0425‑329086204
    [Google Scholar]
  120. de AraujoR.M.S. ObaY. KurodaS. TanakaE. MoriyamaK. RhoE regulates actin cytoskeleton organization in human periodontal ligament cells under mechanical stress.Arch. Oral Biol.201459218719210.1016/j.archoralbio.2013.11.01024370190
    [Google Scholar]
  121. YilmazO. WatanabeK. LamontR.J. Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis.Cell. Microbiol.20024530531410.1046/j.1462‑5822.2002.00192.x12027958
    [Google Scholar]
  122. GruenheidS. FinlayB.B. Microbial pathogenesis and cytoskeletal function.Nature2003422693377578110.1038/nature0160312700772
    [Google Scholar]
  123. EngelmanJ.A. LuoJ. CantleyL.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism.Nat. Rev. Genet.20067860661910.1038/nrg187916847462
    [Google Scholar]
  124. NakayamaM. InoueT. NaitoM. NakayamaK. OharaN. Attenuation of the phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis gingipains RgpA, RgpB, and Kgp.J. Biol. Chem.201529085190520210.1074/jbc.M114.59161025564612
    [Google Scholar]
  125. SongG. OuyangG. BaoS. The activation of Akt/PKB signaling pathway and cell survival.J. Cell. Mol. Med.200591597110.1111/j.1582‑4934.2005.tb00337.x15784165
    [Google Scholar]
  126. SotoC. BugueñoI. HoareA. GonzalezS. VenegasD. SalinasD. Melgar-RodríguezS. VernalR. GamonalJ. QuestA.F.G. Pérez-DonosoJ.M. BravoD. The Porphyromonas gingivalis O antigen is required for inhibition of apoptosis in gingival epithelial cells following bacterial infection.J. Periodontal Res.201651451852810.1111/jre.1233126530544
    [Google Scholar]
  127. SupajaturaV. UshioH. NakaoA. AkiraS. OkumuraK. RaC. OgawaH. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity.J. Clin. Invest.2002109101351135910.1172/JCI021470412021251
    [Google Scholar]
  128. ColomboA.V. da SilvaC.M. HaffajeeA. ColomboA.P.V. Identification of intracellular oral species within human crevicular epithelial cells from subjects with chronic periodontitis by fluorescence in situ hybridization.J. Periodontal Res.200742323624310.1111/j.1600‑0765.2006.00938.x17451543
    [Google Scholar]
  129. DarveauR.P. CunninghamM.D. BaileyT. SeachordC. RatcliffeK. BainbridgeB. DietschM. PageR.C. AruffoA. Ability of bacteria associated with chronic inflammatory disease to stimulate E-selectin expression and promote neutrophil adhesion.Infect. Immun.19956341311131710.1128/iai.63.4.1311‑1317.19957534275
    [Google Scholar]
  130. InabaH. NomuraR. KatoY. TakeuchiH. AmanoA. AsaiF. NakanoK. LamontR.J. Matsumoto-NakanoM. Adhesion and invasion of gingival epithelial cells by Porphyromonas gulae.PLoS One2019143e021330910.1371/journal.pone.021330930870452
    [Google Scholar]
  131. PanC. LiuJ. WangH. SongJ. TanL. ZhaoH. Porphyromonas gingivalis can invade periodontal ligament stem cells.BMC Microbiol.20171713810.1186/s12866‑017‑0950‑528212613
    [Google Scholar]
  132. PopovaC. Dosseva-PanovaV. PanovV. Microbiology of periodontal diseases: A review.Biotechnol. Biotechnol. Equip.20132733754375910.5504/BBEQ.2013.0027
    [Google Scholar]
  133. PatilP. PatilB. Saliva: A diagnostic biomarker of periodontal diseases.J. Indian Soc. Periodontol.201115431031710.4103/0972‑124X.9256022368352
    [Google Scholar]
  134. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  135. SerhanC.N. ChiangN. Van DykeT.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators.Nat. Rev. Immunol.20088534936110.1038/nri229418437155
    [Google Scholar]
  136. KornmanK.S. Mapping the pathogenesis of periodontitis: a new look.J. Periodontol.2008798S1560156810.1902/jop.2008.08021318673011
    [Google Scholar]
  137. SheikhiM. BouhafsR.K.L. HammarströmK-J. JarstrandC. Lipid peroxidation caused by oxygen radicals from Fusobacterium-stimulated neutrophils as a possible model for the emergence of periodontitis.Oral Dis.200171414610.1034/j.1601‑0825.2001.0070109.x11354921
    [Google Scholar]
  138. ChappleI.L.C. MatthewsJ.B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction.Periodontol. 2000200743116023210.1111/j.1600‑0757.2006.00178.x17214840
    [Google Scholar]
  139. KimS.C. KimO.S. KimO.J. KimY.J. ChungH.J. Antioxidant profile of whole saliva after scaling and root planing in periodontal disease.J. Periodontal Implant Sci.201040416417110.5051/jpis.2010.40.4.16420827325
    [Google Scholar]
  140. KiyoshimaT. EnokiN. KobayashiI. SakaiT. NagataK. WadaH. FujiwaraH. OokumaY. SakaiH. Oxidative stress caused by a low concentration of hydrogen peroxide induces senescence-like changes in mouse gingival fibroblasts.Int. J. Mol. Med.20123051007101210.3892/ijmm.2012.110222922974
    [Google Scholar]
  141. CanakçiC.F. CiçekY. CanakçiV. Reactive oxygen species and human inflammatory periodontal diseases.Biochemistry200570661962810.1007/s10541‑005‑0161‑916038603
    [Google Scholar]
  142. TakaneM. SuganoN. IwasakiH. IwanoY. ShimizuN. ItoK. New biomarker evidence of oxidative DNA damage in whole saliva from clinically healthy and periodontally diseased individuals.J. Periodontol.200273555155410.1902/jop.2002.73.5.55112027259
    [Google Scholar]
  143. BaltacioğluE. AkalinF.A. AlverA. BalabanF. ÜnsalM. KarabulutE. Total antioxidant capacity and superoxide dismutase activity levels in serum and gingival crevicular fluid in post-menopausal women with chronic periodontitis.J. Clin. Periodontol.200633638539210.1111/j.1600‑051X.2006.00923.x16677326
    [Google Scholar]
  144. BostanciV. TokerH. SenelS. OzdemirH. AydinH. Effect of chronic periodontitis on serum and gingival crevicular fluid oxidant and antioxidant status in patients with familial Mediterranean fever before and after periodontal treatment.J. Periodontol.201485570671210.1902/jop.2013.13023023826647
    [Google Scholar]
  145. Abou SulaimanA.E. ShehadehR.M.H. Assessment of total antioxidant capacity and the use of vitamin C in the treatment of non-smokers with chronic periodontitis.J. Periodontol.201081111547155410.1902/jop.2010.10017320569170
    [Google Scholar]
  146. HutorN.S. PidruchnaS.R. MelnykN.A. AvdeevO.V. BoykivA.B. KovtunN.Y. SkochyloO.V. TverdokhlibN.O. Goncharuk-KhomynM.Y. The role of prooxidant-antioxidant system in the development of alveolitis after teeth extraction.J. Int. Dental Med. Res.2020132561565
    [Google Scholar]
  147. SilvaN. AbuslemeL. BravoD. DutzanN. Garcia-SesnichJ. VernalR. HernándezM. GamonalJ. Host response mechanisms in periodontal diseases.J. Appl. Oral Sci.201523332935510.1590/1678‑77572014025926221929
    [Google Scholar]
  148. NasatzkyE. RubinsteinY. GoultschinJ. SchwartzZ. The role of Matrix Metaloproteinases in the progression of periodontitis, and the use of specific inhibitors to these enzymes in the treatment of the periodontal disease.Refu'at ha-peh veha-shinayim20032023845
    [Google Scholar]
  149. VokurkaJ. KlapušováL. PantuckovaP. KukletovaM. KuklaL. HollaL.I. The association of MMP-9 and IL-18 gene promoter polymorphisms with gingivitis in adolescents.Arch. Oral Biol.2009542172178
    [Google Scholar]
  150. RyanM.E. RamamurthyS. GolubL.M. Matrix metalloproteinases and their inhibition in periodontal treatment.Curr. Opin. Periodontol.1996385968624573
    [Google Scholar]
  151. Chaussain-MillerC. FiorettiF. GoldbergM. MenashiS. The role of matrix metalloproteinases (MMPs) in human caries.J. Dent. Res.2006851223210.1177/15440591060850010416373676
    [Google Scholar]
  152. Yucel-LindbergT. BågeT. Inflammatory mediators in the pathogenesis of periodontitis.Expert Rev. Mol. Med.201315e710.1017/erm.2013.823915822
    [Google Scholar]
  153. GruberR. Molecular and cellular basis of bone resorption.Wien. Med. Wochenschr.20151653-4485310.1007/s10354‑014‑0310‑025223736
    [Google Scholar]
  154. AlvesC.H. FarrellE. VisM. ColinE.M. LubbertsE. Animal models of bone loss in inflammatory arthritis: From cytokines in the bench to novel treatments for bone loss in the bedside—a comprehensive review.Clin. Rev. Allergy Immunol.2016511274710.1007/s12016‑015‑8522‑726634933
    [Google Scholar]
  155. BoyceB.F. XiuY. LiJ. XingL. YaoZ. NF-κB-mediated regulation of osteoclastogenesis.Endocrinol. Metab.2015301354410.3803/EnM.2015.30.1.3525827455
    [Google Scholar]
  156. TaubmanM.A. ValverdeP. HanX. KawaiT. Immune response: The key to bone resorption in periodontal disease.J. Periodontol.20057611S2033204110.1902/jop.2005.76.11‑S.2033
    [Google Scholar]
  157. HofbauerL.C. KhoslaS. DunstanC.R. LaceyD.L. BoyleW.J. RiggsB.L. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption.J. Bone Miner. Res.200015121210.1359/jbmr.2000.15.1.210646108
    [Google Scholar]
  158. JinQ. CirelliJ.A. ParkC.H. SugaiJ.V. TabaM.Jr KostenuikP.J. GiannobileW.V. RANKL inhibition through osteoprotegerin blocks bone loss in experimental periodontitis.J. Periodontol.20077871300130810.1902/jop.2007.07007317608585
    [Google Scholar]
  159. KawaiT. MatsuyamaT. HosokawaY. MakihiraS. SekiM. KarimbuxN.Y. GoncalvesR.B. ValverdeP. DibartS. LiY.P. MirandaL.A. ErnstC.W.O. IzumiY. TaubmanM.A. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease.Am. J. Pathol.2006169398799810.2353/ajpath.2006.06018016936272
    [Google Scholar]
  160. NagasawaT. KijiM. YashiroR. HormdeeD. LuH. KunzeM. SudaT. KoshyG. KobayashiH. OdaS. NittaH. IshikawaI. Roles of receptor activator of nuclear factor-?B ligand (RANKL) and osteoprotegerin in periodontal health and disease.Periodontol.2007431658410.1111/j.1600‑0757.2006.00185.x17214836
    [Google Scholar]
  161. HegdeR. AwanK.H. Effects of periodontal disease on systemic health.Dis. Mon.201965618519210.1016/j.disamonth.2018.09.01130384973
    [Google Scholar]
  162. LiY. GuoH. WangX. LuY. YangC. YangP. Coinfection with Fusobacterium nucleatum can enhance the attachment and invasion of Porphyromonas gingivalis or Aggregatibacter actinomycetemcomitans to human gingival epithelial cells.Arch. Oral Biol.20156091387139310.1016/j.archoralbio.2015.06.01726143497
    [Google Scholar]
  163. LoosB.G. CraandijkJ. HoekF.J. DillenP.M.E.W. Van Der VeldenU. Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontitis patients.J. Periodontol.200071101528153410.1902/jop.2000.71.10.152811063384
    [Google Scholar]
  164. PooleS. SinghraoS.K. KesavaluL. CurtisM.A. CreanS. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue.J. Alzheimers Dis.201336466567710.3233/JAD‑12191823666172
    [Google Scholar]
  165. WinningL. PattersonC.C. CullenK.M. KeeF. LindenG.J. Chronic periodontitis and reduced respiratory function.J. Clin. Periodontol.201946326627510.1111/jcpe.1307630712268
    [Google Scholar]
  166. D’AiutoF. GkraniasN. BhowruthD. KhanT. OrlandiM. SuvanJ. MasiS. TsakosG. HurelS. HingoraniA.D. DonosN. DeanfieldJ.E. LomaxA. HorvathA. ZambonR. TayS. TatarakisN. SprattD. KingstonI. ParkarM. DarbarU. PatelK. Giedrys-LeeperE. HarringtonZ. BaynesK. HughesF. GableD. PatelP. HariaA. LessaniM. Moskal-FitzpatrickD. Curra’M.C. HiraniB. NiziolekK. MellorT. Systemic effects of periodontitis treatment in patients with type 2 diabetes: A 12 month, single-centre, investigator-masked, randomised trial.Lancet Diabetes Endocrinol.201861295496510.1016/S2213‑8587(18)30038‑X30472992
    [Google Scholar]
  167. SuhJ.S. KimS. BoströmK.I. WangC.Y. KimR.H. ParkN.H. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial–mesenchymal transition in mice.Int. J. Oral Sci.20191132110.1038/s41368‑019‑0054‑131257363
    [Google Scholar]
  168. BeckJ.D. PapapanouP.N. PhilipsK.H. OffenbacherS. Periodontal medicine: 100 years of progress.J. Dent. Res.201998101053106210.1177/002203451984611331429666
    [Google Scholar]
  169. YunH.R. KohH.B. ParkJ.T. HanS.H. KangS.W. YooT.H. AhnS.S. Presence of periodontal disease and the incidence of inflammatory arthritides in the general population: Data from the UK Biobank.Rheumatology20232023
    [Google Scholar]
  170. MoradiF. ShamsoddinE. Is periodontitis associated with the risk of immune-mediated systemic conditions?Evid. Based Dent.2023242838410.1038/s41432‑023‑00903‑637291451
    [Google Scholar]
  171. CroninA. Periodontal disease is a risk marker for coronary heart disease?Evid. Based Dent.20091012210.1038/sj.ebd.640063419322227
    [Google Scholar]
  172. LiccardoD. CannavoA. SpagnuoloG. FerraraN. CittadiniA. RengoC. RengoG. Periodontal disease: A risk factor for diabetes and cardiovascular disease.Int. J. Mol. Sci.2019206141410.3390/ijms2006141430897827
    [Google Scholar]
  173. DoH.L. FordP.J. LeishmanS.J. Cardiovascular disease and the role of oral bacteria.J. Oral Microbiol.20102
    [Google Scholar]
  174. SanzM. Marco del CastilloA. JepsenS. Gonzalez-JuanateyJ.R. D’AiutoF. BouchardP. ChappleI. DietrichT. GotsmanI. GrazianiF. HerreraD. LoosB. MadianosP. MichelJ.B. PerelP. PieskeB. ShapiraL. ShechterM. TonettiM. VlachopoulosC. WimmerG. Periodontitis and cardiovascular diseases: Consensus report.J. Clin. Periodontol.202047326828810.1111/jcpe.1318932011025
    [Google Scholar]
  175. HijaziK. LoweT. MehargC. BerryS.H. FoleyJ. HoldG.L. Mucosal microbiome in patients with recurrent aphthous stomatitis.J. Dent. Res.2015943_suppl87S94S10.1177/002203451456545825540188
    [Google Scholar]
  176. SeymourR.A. PreshawP.M. ThomasonJ.M. EllisJ.S. SteeleJ.G. Cardiovascular diseases and periodontology.J. Clin. Periodontol.200330427929210.1034/j.1600‑051X.2003.00291.x12694425
    [Google Scholar]
  177. BjørklundG. ShanaidaM. LysiukR. ButnariuM. PeanaM. SaracI. StrusO. SmetaninaK. ChirumboloS. Natural compounds and products from an anti-aging perspective.Molecules20222720708410.3390/molecules2720708436296673
    [Google Scholar]
  178. Pitones-RubioV. Chávez-CortezE.G. Hurtado-CamarenaA. González-RascónA. Serafín-HigueraN. Is periodontal disease a risk factor for severe COVID-19 illness?Med. Hypotheses202014410996910.1016/j.mehy.2020.10996932592918
    [Google Scholar]
  179. QiM. SunW. WangK. LiW. LinJ. GongJ. WangL. Periodontitis and COVID-19: Immunological characteristics, related pathways, and association.Int. J. Mol. Sci.2023243301210.3390/ijms2403301236769328
    [Google Scholar]
  180. DeckerA. AskarH. TattanM. TaichmanR. WangH.L. The assessment of stress, depression, and inflammation as a collective risk factor for periodontal diseases: A systematic review.Clin. Oral Investig.202024111210.1007/s00784‑019‑03089‑331677052
    [Google Scholar]
  181. ShcherbaV. KyrylivM. BekusI. KrynytskaI. MarushchakM. KordaM. A comparative study of connective tissue metabolism indices in experimental comorbidity-free periodontitis and periodontitis combined with thyroid dysfunction.J. Med. Life202013221922410.25122/jml‑2019‑011332742517
    [Google Scholar]
  182. SimpsonT.C. ClarksonJ.E. WorthingtonH.V. MacDonaldL. WeldonJ.C. NeedlemanI. Iheozor-EjioforZ. WildS.H. QureshiA. WalkerA. PatelV.A. BoyersD. TwiggJ. Treatment of periodontitis for glycaemic control in people with diabetes mellitus.Cochrane Database Syst. Rev.202244CD00471435420698
    [Google Scholar]
  183. ChungW.C. KaoC.C. HuangC.F. LeeC.Y. LuH.K. WuM.S. Effects of periodontal treatment in patients with periodontitis and kidney failure: A pilot study.Int. J. Environ. Res. Public Health2022193153310.3390/ijerph1903153335162556
    [Google Scholar]
  184. SlotsJ. Periodontitis: Facts, fallacies and the future.Periodontol. 2000201775172310.1111/prd.1222128758294
    [Google Scholar]
  185. AimettiM. Nonsurgical periodontal treatment.Int. J. Esthet. Dent.20149225126724765632
    [Google Scholar]
  186. HaasA.N. FurlanetoF. GaioE.J. GomesS.C. PaliotoD.B. CastilhoR.M. SanzM. MessoraM.R. New tendencies in non-surgical periodontal therapy.Braz. Oral Res.202135Suppl. 2e09510.1590/1807‑3107bor‑2021.vol35.009534586209
    [Google Scholar]
  187. TeughelsW. FeresM. OudV. MartínC. MatesanzP. HerreraD. Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta-analysis.J. Clin. Periodontol.202047S2225728110.1111/jcpe.1326431994207
    [Google Scholar]
  188. ZhaoH. HuJ. ZhaoL. Adjunctive subgingival application of chlorhexidine gel in nonsurgical periodontal treatment for chronic periodontitis: A systematic review and meta-analysis.BMC Oral Health20202013410.1186/s12903‑020‑1021‑032005169
    [Google Scholar]
  189. HammamiC. NasriW. Antibiotics in the treatment of periodontitis: A systematic review of the literature.Int. J. Dent.20212021684607410.1155/2021/6846074
    [Google Scholar]
  190. KapoorA. MalhotraR. GroverV. GroverD. Systemic antibiotic therapy in periodontics.Dent. Res. J. (Isfahan)20129550551510.4103/1735‑3327.10486623559912
    [Google Scholar]
  191. WalkerC.B. GordonJ.M. MagnussenI. ClarkW.B. A role for antibiotics in the treatment of refractory periodontitis.J. Periodontol.1993648S77278110.1902/jop.1993.64.8s.772
    [Google Scholar]
  192. RamsT. FeikD. SlotsJ. Ciprofloxacin/metronidazole treatment of recurrent adult periodontitis.J. Dent. Res.199271319
    [Google Scholar]
  193. PrakasamA. ElavarasuS.S. NatarajanR. Antibiotics in the management of aggressive periodontitis.J. Pharm. Bioallied Sci.20124625210.4103/0975‑7406.10022623066264
    [Google Scholar]
  194. WinkelhoffA.J.V. RamsT.E. SlotsJ. Systemic antibiotic therapy in periodontics.Periodontol. 20001996101457810.1111/j.1600‑0757.1996.tb00068.x9567937
    [Google Scholar]
  195. HerreraD. van WinkelhoffA.J. MatesanzP. LauwensK. TeughelsW. Europe’s contribution to the evaluation of the use of systemic antimicrobials in the treatment of periodontitis.Periodontol. 20002023prd.1249210.1111/prd.1249237314038
    [Google Scholar]
  196. MendesS.N.C. EstevesC.M. MendesJ.A.V. FeresM. FigueiredoN. de MirandaT.S. ShibliJ.A. FigueiredoL.C. Systemic antibiotics and chlorhexidine associated with pTherapy: Microbiological effect on intraoral surfaces and saliva.Antibiotics202312584710.3390/antibiotics1205084737237750
    [Google Scholar]
  197. MicuI.C. MunteanA. RomanA. StratulȘ.I. PallE. CiureaA. SoancăA. NegucioiuM. Barbu TudoranL. DeleanA.G. A local desiccant antimicrobial agent as an alternative to adjunctive antibiotics in the treatment of periodontitis: A narrative review.Antibiotics202312345610.3390/antibiotics1203045636978324
    [Google Scholar]
  198. SafiaghdamH. OveissiV. BahramsoltaniR. FarzaeiM.H. RahimiR. Medicinal plants for gingivitis: A review of clinical trials.Iran. J. Basic Med. Sci.2018211097899130524670
    [Google Scholar]
  199. ChenE. WangT. TuY. SunZ. DingY. GuZ. XiaoS. ROS-scavenging biomaterials for periodontitis.J. Mater. Chem. B Mater. Biol. Med.202311348249910.1039/D2TB02319A36468674
    [Google Scholar]
  200. UstianowskiŁ. UstianowskaK. GurazdaK. RusińskiM. OstrowskiP. PawlikA. The role of vitamin C and vitamin D in the pathogenesis and therapy of periodontitis—narrative review.Int. J. Mol. Sci.2023247677410.3390/ijms2407677437047746
    [Google Scholar]
  201. BensoB. RosalenP.L. AlencarS.M. MurataR.M. Malva sylvestris inhibits inflammatory response in oral human cells. An in vitro infection model.PLoS One20151010e014033110.1371/journal.pone.014033126479870
    [Google Scholar]
  202. Guimaraes-StabiliM.R. de AquinoS.G. de Almeida CurylofoF. TassoC.O. RochaF.R.G. de MedeirosM.C. de PizzolJ.P.Jr CerriP.S. RomitoG.A. RossaC.Jr Systemic administration of curcumin or piperine enhances the periodontal repair: A preliminary study in rats.Clin. Oral Investig.20192383297330610.1007/s00784‑018‑2755‑930498979
    [Google Scholar]
  203. OhtaniM. NishimuraT. The preventive and therapeutic application of garlic and other plant ingredients in the treatment of periodontal diseases.Exp. Ther. Med.20201921507151032010331
    [Google Scholar]
  204. TaheriJ.B. AzimiS. RafieianN. Akhavan ZanjaniH. Herbs in dentistry.Int. Dent. J.201161628729610.1111/j.1875‑595X.2011.00064.x22117784
    [Google Scholar]
  205. AgarwalA. ChaudharyB. Clinical and microbiological effects of 1% Matricaria chamomilla mouth rinse on chronic periodontitis: A double-blind randomized placebo controlled trial.J. Indian Soc. Periodontol.202024435436110.4103/jisp.jisp_441_1932831509
    [Google Scholar]
  206. MahyariS. MahyariB. EmamiS.A. Malaekeh-NikoueiB. JahanbakhshS.P. SahebkarA. MohammadpourA.H. Evaluation of the efficacy of a polyherbal mouthwash containing Zingiber officinale, Rosmarinus officinalis and Calendula officinalis extracts in patients with gingivitis: A randomized double-blind placebo-controlled trial.Complement. Ther. Clin. Pract.201622939810.1016/j.ctcp.2015.12.00126850813
    [Google Scholar]
  207. GościniakA. Paczkowska-WalendowskaM. SkotnickaA. RuchałaM.A. Cielecka-PiontekJ. Can plant materials be valuable in the treatment of periodontal diseases? practical review.Pharmaceutics20211312218510.3390/pharmaceutics1312218534959467
    [Google Scholar]
  208. Bueno-SilvaB. KiausinusK.R. GonçalvesF.J.S. MoreiraM.V.C. OliveiraE.G. Brugnera JuniorA. FeresM. FigueiredoL.C. Antimicrobial activity of Desplac® oral gel in the subgingival multispecies biofilm formation.Front. Microbiol.202314112205110.3389/fmicb.2023.112205137260680
    [Google Scholar]
  209. KostićM. KitićD. PetrovićM.B. Jevtović-StoimenovT. JovićM. PetrovićA. ŽivanovićS. Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats.J. Ethnopharmacol.2017199525910.1016/j.jep.2017.01.02028093319
    [Google Scholar]
  210. Teixeira EssenfelderL. GomesA.A. MiqueluttiD. da SilvaG.F. MagalhãesM.L.B. Effect of xylitol on salivary β -glucosidase in humans.Eur. J. Oral Sci.2019127547247510.1111/eos.1264931361368
    [Google Scholar]
  211. Gasmi BenahmedA. GasmiA. ArshadM. ShanaidaM. LysiukR. PeanaM. Pshyk-TitkoI. AdamivS. ShanaidaY. BjørklundG. Health benefits of xylitol.Appl. Microbiol. Biotechnol.2020104177225723710.1007/s00253‑020‑10708‑732638045
    [Google Scholar]
  212. SağlamM. KöseoğluS. Hati̇poğluM. EsenH.H. KöksalE. Effect of sumac extract on serum oxidative status, RANKL/OPG system and alveolar bone loss in experimental periodontitis in rats.J. Appl. Oral Sci.2015231334110.1590/1678‑77572014028825760266
    [Google Scholar]
  213. TamburZ. Miljković-SelimovićB. OpačićD. VukovićB. MaleševićA. IvančajićL. AleksićE. Inhibitory effects of propolis and essential oils on oral bacteria.J. Infect. Dev. Ctries.20211571027103110.3855/jidc.1431234343129
    [Google Scholar]
  214. AkkaouiS. JohanssonA. YagoubiM. HaubekD. El HamidiA. RidaS. ClaessonR. EnnibiO. Chemical composition, antimicrobial activity, in vitro cytotoxicity and leukotoxin neutralization of essential oil from origanum vulgare against aggregatibacter actinomycetemcomitans.Pathogens.202093
    [Google Scholar]
  215. ZhangY. WangY. YagoubiM. HaubekD. El HamidiA. RidaS. ClaessonR. EnnibiO. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis.Microb. Pathog.2017113396402
    [Google Scholar]
  216. GasmiA. MujawdiyaP.K. NoorS. LysiukR. DarmohrayR. PiscopoS. LenchykL. AntonyakH. DehtiarovaK. ShanaidaM. PolishchukA. ShanaidaV. PeanaM. BjørklundG. Polyphenols in metabolic diseases.Molecules20222719628010.3390/molecules2719628036234817
    [Google Scholar]
  217. BasuA. MasekE. EbersoleJ. Dietary polyphenols and periodontitis—A mini-review of literature.Molecules2018237178610.3390/molecules2307178630036945
    [Google Scholar]
  218. QuispeC. Cruz-MartinsN. MancaM.L. ManconiM. SytarO. HudzN. ShanaidaM. KumarM. TaheriY. MartorellM. Sharifi-RadJ. PintusG. ChoW.C. Nano-derived therapeutic formulations with curcumin in inflammation-related diseases.Oxid. Med. Cell. Longev.2021202111510.1155/2021/314922334584616
    [Google Scholar]
  219. JayusmanP.A. NasruddinN.S. Mahamad ApandiN.I. IbrahimN. BudinS.B. Therapeutic potential of polyphenol and nanoparticles mediated delivery in periodontal inflammation: A review of current trends and future perspectives.Front. Pharmacol.20221384770210.3389/fphar.2022.84770235903322
    [Google Scholar]
  220. Lombardo BedranT.B. MorinM.P. Palomari SpolidorioD. GrenierD. Black tea extract and its theaflavin derivatives inhibit the growth of periodontopathogens and modulate interleukin-8 and β-defensin secretion in oral epithelial cells.PLoS One20151011e014315810.1371/journal.pone.014315826581041
    [Google Scholar]
  221. WuY.H. KurajiR. TayaY. ItoH. NumabeY. Effects of theaflavins on tissue inflammation and bone resorption on experimental periodontitis in rats.J. Periodontal Res.20185361009101910.1111/jre.1260030159985
    [Google Scholar]
  222. GasmiA. MujawdiyaP.K. LysiukR. ShanaidaM. PeanaM. Gasmi BenahmedA. BeleyN. KovalskaN. BjørklundG. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS-CoV-2.Pharmaceuticals2022159104910.3390/ph1509104936145270
    [Google Scholar]
  223. YuJ. JingZ. ShenD. YangM. LiuK. XiangK. ZhouC. GongX. DengY. LiY. YangS. Quercetin promotes autophagy to alleviate cigarette smoke-related periodontitis.J. Periodontal Res.20235851082109510.1111/jre.1317037533377
    [Google Scholar]
  224. Di CristoF. ValentinoA. De LucaI. PelusoG. BonadiesI. CalarcoA. Di SalleA. PLA nanofibers for microenvironmental-responsive quercetin release in local periodontal treatment.Molecules2022277220510.3390/molecules2707220535408602
    [Google Scholar]
  225. WeiY. FuJ. WuW. MaP. RenL. YiZ. WuJ. Quercetin prevents oxidative stress-induced injury of periodontal ligament cells and alveolar bone loss in periodontitis.Drug Des. Devel. Ther.2021153509352210.2147/DDDT.S31524934408403
    [Google Scholar]
  226. MooneyE.C. HoldenS.E. XiaX.J. LiY. JiangM. BansonC.N. ZhuB. SahingurS.E. Quercetin preserves oral cavity health by mitigating inflammation and microbial dysbiosis.Front. Immunol.20211277427310.3389/fimmu.2021.77427334899728
    [Google Scholar]
  227. DemkovychA. BondarenkoY. HasiukP. OlhaD. ZubchenkoS. KalashnikovD. Cytokinogenesis disorders in mechanisms of the experimental perodontitis development and their correction by flavonol.Wiadomosci Lekarskie2022754751
    [Google Scholar]
  228. Guzman-FloresJ.M. Arevalo-CaroC.M. Martinez-EsquiviasF. Isiordia-EspinozaM.A. Franco-de la TorreL. Molecular mechanism of curcumin on periodontitis: A pharmacological network study.J. Oral Biosci.2023
    [Google Scholar]
  229. IovaG.M. CalniceanuH. PopaA. SzuhanekC.A. MarcuO. CiavoiG. ScrobotaI. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in hyperglycemic wistar rats.Molecules2021265133210.3390/molecules2605133233801378
    [Google Scholar]
  230. ZhaoB. ZhangW. XiongY. ZhangY. ZhangD. XuX. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism.J. Mol. Histol.202051216117110.1007/s10735‑020‑09866‑932222858
    [Google Scholar]
  231. NikniazS. VaziriF. MansouriR. Impact of resveratrol supplementation on clinical parameters and inflammatory markers in patients with chronic periodontitis: A randomized clinical trail.BMC Oral Health202323117710.1186/s12903‑023‑02877‑436973728
    [Google Scholar]
  232. JiangH. NiJ. HuL. XiangZ. ZengJ. ShiJ. ChenQ. LiW. Resveratrol may reduce the degree of periodontitis by regulating ERK pathway in gingival-derived MSCs.Int. J. Mol. Sci.202324141129410.3390/ijms24141129437511053
    [Google Scholar]
  233. Lisbona-GonzálezM.J. Muñoz-SotoE. Reyes-BotellaC. Olmedo-GayaM.V. Diaz-CastroJ. Moreno-FernandezJ. Study of the antimicrobial effect of an ethanolic extract of propolis in periodontal disease.Appl. Sci. (Basel)20211116746310.3390/app11167463
    [Google Scholar]
  234. WieczorekP.P. HudzN. YezerskaO. Horčinová-SedláčkováV. ShanaidaM. KorytniukO. Jasicka-MisiakI. Chemical variability and pharmacological potential of propolis as a source for the development of new pharmaceutical products.Molecules2022275160010.3390/molecules2705160035268700
    [Google Scholar]
  235. ZulhendriF. FelittiR. FearnleyJ. RavaliaM. The use of propolis in dentistry, oral health, and medicine: A review.J. Oral Biosci.202163
    [Google Scholar]
  236. AlmuhayawiM.S. Propolis as a novel antibacterial agent.Saudi J. Biol. Sci.202027113079308610.1016/j.sjbs.2020.09.01633100868
    [Google Scholar]
  237. MartinelloM. MutinelliF. Antioxidant activity in bee products: A review.Antioxidants20211017110.3390/antiox1001007133430511
    [Google Scholar]
  238. AndradeD.P. CarvalhoI.C.S. GadoiB.H. RosaL.C.L. BarretoL.M.R.C. PallosD. Subgingival irrigation with a solution of 20% propolis extract as an adjunct to non-surgical periodontal treatment: A preliminary study.J. Int. Acad. Periodontol.201719414515131473730
    [Google Scholar]
  239. Fraire-ReyesI.A. Gaitán-FonsecaC. Cepeda-ArgüellesÓ. Esparza-VillalpandoV. Aguilera-GalavízL. Bermúdez-JiménezC. Use and effectiveness of propolis on chronic periodontitis: A systematic review.Odovtos-Int. J. Dental Sci.20222413243
    [Google Scholar]
  240. Momen-BeitollahiJ. MansorianA. EsmailiM. AmanlouM. MohamadniaA. BahramiN. Antimicrobial effects of propolis extract on the most prevalent oral pathogens: An in vitro study.J. Indian Dent. Assoc.20092113339
    [Google Scholar]
  241. DewhirstF.E. ChenT. IzardJ. PasterB.J. TannerA.C.R. YuW.H. LakshmananA. WadeW.G. The human oral microbiome.J. Bacteriol.2010192195002501710.1128/JB.00542‑1020656903
    [Google Scholar]
  242. BretzW.A. ChiegoD.J.Jr MarcucciM.C. CunhaI. CustódioA. SchneiderL.G. Preliminary report on the effects of propolis on wound healing in the dental pulp.Z. Naturforsch. C J. Biosci.19985311-121045104810.1515/znc‑1998‑11‑12179933969
    [Google Scholar]
  243. López-ValverdeN. Pardal-PeláezB. López-ValverdeA. Flores-FraileJ. Herrero-HernándezS. Macedo-de-SousaB. Herrero-PayoJ. RamírezJ.M. Effectiveness of propolis in the treatment of periodontal disease: Updated systematic review with meta-analysis.Antioxidants202110226910.3390/antiox1002026933578659
    [Google Scholar]
  244. SivamaruthiB.S. KesikaP. ChaiyasutC. A review of the role of probiotic supplementation in dental caries.Probiotics Antimicrob. Proteins20201241300130910.1007/s12602‑020‑09652‑932307660
    [Google Scholar]
  245. HaukiojaA. Probiotics and oral health.Eur. J. Dent.20104334835510.1055/s‑0039‑169785120613927
    [Google Scholar]
  246. MayanagiG. KimuraM. NakayaS. HirataH. SakamotoM. BennoY. ShimauchiH. Probiotic effects of orally administered Lactobacillus salivarius WB21-containing tablets on periodontopathic bacteria: A double-blinded, placebo-controlled, randomized clinical trial.J. Clin. Periodontol.200936650651310.1111/j.1600‑051X.2009.01392.x19453574
    [Google Scholar]
  247. GibsonG.R. HutkinsR. SandersM.E. PrescottS.L. ReimerR.A. SalminenS.J. ScottK. StantonC. SwansonK.S. CaniP.D. VerbekeK. ReidG. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.7528611480
    [Google Scholar]
  248. VicarioM. SantosA. ViolantD. NartJ. GinerL. Clinical changes in periodontal subjects with the probiotic Lactobacillus reuteri Prodentis: A preliminary randomized clinical trial.Acta Odontol. Scand.2013713-481381910.3109/00016357.2012.73440423176716
    [Google Scholar]
  249. GatejS.M. MarinoV. BrightR. FitzsimmonsT.R. GullyN. ZilmP. GibsonR.J. EdwardsS. BartoldP.M. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis.J. Clin. Periodontol.201845220421210.1111/jcpe.1283829121411
    [Google Scholar]
  250. HardanL. BourgiR. Cuevas-SuárezC.E. Flores-RodríguezM. Omaña-CovarrubiasA. NicastroM. LazarescuF. ZarowM. MonteiroP. JakubowiczN. ProcP. Lukomska-SzymanskaM. The use of probiotics as adjuvant therapy of periodontal treatment: A Systematic review and meta-analysis of clinical trials.Pharmaceutics2022145101710.3390/pharmaceutics1405101735631603
    [Google Scholar]
  251. MessoraM.R. PereiraL.J. FoureauxR. OliveiraL.F.F. SordiC.G. AlvesA.J.N. NapimogaM.H. NagataM.J.H. ErvolinoE. FurlanetoF.A.C. Favourable effects of Bacillus subtilis and Bacillus licheniformis on experimental periodontitis in rats.Arch. Oral Biol.20166610811910.1016/j.archoralbio.2016.02.01426945169
    [Google Scholar]
  252. FoureauxR.C. MessoraM.R. de OliveiraL.F.F. NapimogaM.H. PereiraA.N.J. FerreiraM.S. PereiraL.J. Effects of probiotic therapy on metabolic and inflammatory parameters of rats with ligature-induced periodontitis associated with restraint stress.J. Periodontol.201485797598310.1902/jop.2013.13035624171503
    [Google Scholar]
  253. GarciaV.G. KnollL.R. LongoM. NovaesV.C.N. AssemN.Z. ErvolinoE. de ToledoB.E.C. TheodoroL.H. Effect of the probiotic Saccharomyces cerevisiae on ligature-induced periodontitis in rats.J. Periodontal Res.2016511263710.1111/jre.1227425918871
    [Google Scholar]
  254. ZupančičŠ. RijavecT. LapanjeA. PetelinM. KristlJ. KocbekP. Nanofibers with incorporated autochthonous bacteria as potential probiotics for local treatment of periodontal disease.Biomacromolecules201819114299430610.1021/acs.biomac.8b0118130289695
    [Google Scholar]
  255. KimJ. KimJ. KimY. OhS. SongM. ChoeJ.H. WhangK.Y. KimK.H. OhS. Influences of quorum-quenching probiotic bacteria on the gut microbial community and immune function in weaning pigs.Anim. Sci. J.201889241242210.1111/asj.1295429154473
    [Google Scholar]
  256. ZhangY. DingY. GuoQ. Probiotic species in the management of periodontal diseases: An overview.Front. Cell. Infect. Microbiol.20221280646310.3389/fcimb.2022.80646335402306
    [Google Scholar]
  257. KandwalA. ChatterjeeA. BhattacharyaH. Probiotics in periodontal health and disease.J. Indian Soc. Periodontol.2011151232810.4103/0972‑124X.8226021772717
    [Google Scholar]
  258. BaltaM.G. PapathanasiouE. BlixI.J. Van DykeT.E. Host modulation and treatment of periodontal disease.J. Dent. Res.2021100879880910.1177/002203452199515733655803
    [Google Scholar]
  259. ParkS.Y. KimY.H. KimE.K. RyuE.Y. LeeS.J. Heme oxygenase-1 signals are involved in preferential inhibition of pro-inflammatory cytokine release by surfactin in cells activated with Porphyromonas gingivalis lipopolysaccharide.Chem. Biol. Interact.2010188343744510.1016/j.cbi.2010.09.00720833156
    [Google Scholar]
  260. BarrosS.P. HefniE. NepomucenoR. OffenbacherS. NorthK. Targeting epigenetic mechanisms in periodontal diseases.Periodontol201878117418410.1111/prd.1223130198133
    [Google Scholar]
  261. JurdzińskiK.T. PotempaJ. GrabiecA.M. Epigenetic regulation of inflammation in periodontitis: Cellular mechanisms and therapeutic potential.Clin. Epigenetics202012118610.1186/s13148‑020‑00982‑733256844
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673265862231020051338
Loading
/content/journals/cmc/10.2174/0109298673265862231020051338
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test