Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Thymidine phosphorylase (TP), also referred to as “platelet-derived endothelial cell growth factor” is crucial to the pyrimidine salvage pathway. TP reversibly transforms thymidine into thymine and 2-deoxy-D-ribose-1-phosphate (dRib-1-P), which further degraded to 2-Deoxy-D-ribose (2DDR), which has both angiogenic and chemotactic activity. In several types of human cancer such as breast and colorectal malignancies, TP is abundantly expressed in response to biological disturbances like hypoxia, acidosis, chemotherapy, and radiation therapy. TP overexpression is highly associated with angiogenic factors such as vascular endothelial growth factor (VEGF), interleukins (ILs), matrix metalloproteases (MMPs), , which accelerate tumorigenesis, invasion, metastasis, immune response evasion, and resistant to apoptosis. Hence, TP is recognized as a key target for the development of new anticancer drugs. Heterocycles are the primary structural element of most chemotherapeutics. Even 75% of nitrogen-containing heterocyclic compounds are contributing to the pharmaceutical world. To create the bioactive molecule, medicinal chemists are concentrating on nitrogen-containing heterocyclic compounds such as pyrrole, pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, benzimidazole, The Oxadiazole motif stands out among all of them due to its enormous significance in medicinal chemistry. The main thrust area of this review is to explore the synthesis, SAR, and the significant role of 1,3,4-oxadiazole derivatives as a TP inhibitor for their chemotherapeutic effects.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230712113943
2023-09-08
2025-01-19
Loading full text...

Full text loading...

References

  1. GoubranH.A. KotbR.R. StakiwJ. EmaraM.E. BurnoufT. Regulation of tumor growth and metastasis: The role of tumor microenvironment.Cancer Growth Metastasis2014791810.4137/CGM.S11285 24926201
    [Google Scholar]
  2. NishikawaM. Reactive oxygen species in tumor metastasis.Cancer Lett.20082661535910.1016/j.canlet.2008.02.031 18362051
    [Google Scholar]
  3. LevineS. MaloneE. LekiachviliA. BrissP. Health care industry insights: Why the use of preventive services is still low.Prev. Chronic Dis.201916318062510.5888/pcd16.180625 30873937
    [Google Scholar]
  4. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  5. MatoreB.W. BanjareP. SinghJ. RoyP.P. In silico selectivity modeling of pyridine and pyrimidine based CYP11B1 and CYP11B2 inhibitors: A case study.J. Mol. Graph. Model.202211610823810.1016/j.jmgm.2022.108238 35691091
    [Google Scholar]
  6. Ahmad GanaiS. Novel approaches towards designing of isoform-selective inhibitors against class II histone deacetylases: The acute requirement for targetted anticancer therapy.Curr. Top. Med. Chem.201616222441245210.2174/1568026616666160212122609 26873193
    [Google Scholar]
  7. Oliveira PedrosaM. Duarte da CruzR. Oliveira VianaJ. de MouraR. IshikiH. Barbosa FilhoJ. DinizM. ScottiM. ScottiL. Bezerra MendoncaF. Hybrid compounds as direct multitarget ligands: A review.Curr. Top. Med. Chem.20171791044107910.2174/1568026616666160927160620 27697048
    [Google Scholar]
  8. MartinsP. JesusJ. SantosS. RaposoL. Roma-RodriguesC. BaptistaP. FernandesA. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box.Molecules2015209168521689110.3390/molecules200916852 26389876
    [Google Scholar]
  9. PearceS. The importance of heterocyclic compounds in anti-cancer drug design.Drug Discov. World20171826670
    [Google Scholar]
  10. BalaS. KambojS. KumarA. Heterocyclic 1, 3, 4-oxadiazole compounds with diverse biological activities: A comprehensive review.J. Pharm. Res.201031229932997
    [Google Scholar]
  11. KeriR.S. PatilS.A. Quinoline: A promising antitubercular target.Biomed. Pharmacother.20146881161117510.1016/j.biopha.2014.10.007 25458785
    [Google Scholar]
  12. Al-MullaA. A review: Biological importance of heterocyclic compounds.Der Pharma Chem.2017913141147
    [Google Scholar]
  13. MatoreB.W. RoyP.P. SinghJ. Discovery of novel VEGFR2-TK inhibitors by phthalimide pharmacophore based virtual screening, molecular docking, MD simulation and DFT.J. Biomol. Struct. Dyn.202312210.1080/07391102.2023.2178510 36775656
    [Google Scholar]
  14. MatoreB.W. BanjareP. SarthiA.S. RoyP.P. SinghJ. Phthalimides represent a promising scaffold for multi-targeted anticancer agents.ChemistrySelect202389e20220485110.1002/slct.202204851
    [Google Scholar]
  15. BajajS. AsatiV. SinghJ. RoyP.P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anti-cancer agents.Eur. J. Med. Chem.20159712414110.1016/j.ejmech.2015.04.051 25965776
    [Google Scholar]
  16. GlombT. SzymankiewiczK. ŚwiątekP. Anti-cancer activity of derivatives of 1,3,4-oxadiazole.Molecules20182312336110.3390/molecules23123361 30567416
    [Google Scholar]
  17. BenassiA. DoriaF. PirotaV. Groundbreaking anticancer activity of highly diversified oxadiazole scaffolds.Int. J. Mol. Sci.20202122869210.3390/ijms21228692 33217987
    [Google Scholar]
  18. ZhaoS. ZhangX. WeiP. SuX. ZhaoL. WuM. HaoC. LiuC. ZhaoD. ChengM. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents.Eur. J. Med. Chem.20171379610710.1016/j.ejmech.2017.05.043 28558334
    [Google Scholar]
  19. AnouarE.H. MoustaphaM.E. TahaM. GeesiM.H. FaragZ.R. RahimF. AlmandilN.B. FarooqR.K. NawazM. MosaddikA. Synthesis, molecular docking and β-glucuronidase inhibitory potential of indole base oxadiazole derivatives.Molecules201924596310.3390/molecules24050963 30857263
    [Google Scholar]
  20. MenteşeE. BektaşH. SokmenB.B. EmirikM. ÇakırD. KahveciB. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1 H-benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease.Bioorg. Med. Chem. Lett.201727133014301810.1016/j.bmcl.2017.05.019 28526368
    [Google Scholar]
  21. JanardhananJ. ChangM. MobasheryS. The oxadiazole antibacterials.Curr. Opin. Microbiol.201633131710.1016/j.mib.2016.05.009 27239942
    [Google Scholar]
  22. GlombT. WiatrakB. GębczakK. GębarowskiT. BodetkoD. CzyżnikowskaŻ. ŚwiątekP. New 1,3,4-oxadiazole derivatives of pyridothiazine-1,1-dioxide with anti-inflammatory activity.Int. J. Mol. Sci.20202123912210.3390/ijms21239122 33266208
    [Google Scholar]
  23. VermaG. ChashooG. AliA. KhanM.F. AkhtarW. AliI. AkhtarM. AlamM.M. ShaquiquzzamanM. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents.Bioorg. Chem.20187710612410.1016/j.bioorg.2018.01.007 29353728
    [Google Scholar]
  24. TantrayM.A. KhanI. HamidH. AlamM.S. DhulapA. KalamA. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity.Bioorg. Chem.20187739340110.1016/j.bioorg.2018.01.040 29421716
    [Google Scholar]
  25. YadagiriB. GurralaS. BantuR. NagarapuL. PolepalliS. SrujanaG. JainN. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents.Bioorg. Med. Chem. Lett.201525102220222410.1016/j.bmcl.2015.03.032 25827522
    [Google Scholar]
  26. SternE.P. HostL.V. WanjikuI. EscottK.J. GilmourP.S. OchielR. UnwinR. BurnsA. OngV.H. CadiouH. O’KeeffeA.G. DentonC.P. Zibotentan in systemic sclerosis-associated chronic kidney disease: A phase II randomised placebo-controlled trial.Arthritis Res. Ther.202224113010.1186/s13075‑022‑02818‑6 35650639
    [Google Scholar]
  27. SiwachA. VermaP.K. Therapeutic potential of oxadiazole or furadiazole containing compounds.BMC Chem.20201417010.1186/s13065‑020‑00721‑2 33372629
    [Google Scholar]
  28. MatoreB.W. BanjareP. GuriaT. RoyP.P. SinghJ. Oxadiazole derivatives: Histone deacetylase inhibitors in anticancer therapy and drug discovery.Eur. J. Med. Chem. Rep.20225March10005810.1016/j.ejmcr.2022.100058
    [Google Scholar]
  29. StecozaC.E. NitulescuG.M. DraghiciC. CaproiuM.T. OlaruO.T. BostanM. MihailaM. Synthesis and anticancer evaluation of new 1,3,4-oxadiazole derivatives.Pharmaceuticals202114543810.3390/ph14050438 34066442
    [Google Scholar]
  30. ElaminY.Y. RafeeS. OsmanN. O ByrneK.J. GatelyK. Thymidine phosphorylase in cancer; Enemy or friend?Cancer Microenviron.201691334310.1007/s12307‑015‑0173‑y 26298314
    [Google Scholar]
  31. BajajS. RoyP.P. SinghJ. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents.Comput. Biol. Chem.20187615116010.1016/j.compbiolchem.2018.05.013 30015176
    [Google Scholar]
  32. BajajS. KumarM.S. TinwalaH. YcM. Design, synthesis, modelling studies and biological evaluation of 1,3,4-oxadiazole derivatives as potent anticancer agents targeting thymidine phosphorylase enzyme.Bioorg. Chem.202111111110487310.1016/j.bioorg.2021.104873 33845381
    [Google Scholar]
  33. MiyazonoK. OkabeT. UrabeA. TakakuF. HeldinC.H. Purification and properties of an endothelial cell growth factor from human platelets.J. Biol. Chem.198726294098410310.1016/S0021‑9258(18)61316‑X 3549724
    [Google Scholar]
  34. FriedkinM. RobertsD. The enzymatic synthesis of nucleosides. I. thymidine phosphorylase in mammalian tissue.J. Biol. Chem.1954207124525610.1016/S0021‑9258(18)71264‑7 13152099
    [Google Scholar]
  35. WarfieldB.M. ReiganP. Multifunctional role of thymidine phosphorylase in cancer.Trends Cancer20228648249310.1016/j.trecan.2022.01.018 35193822
    [Google Scholar]
  36. TimofeevV. AbramchikY. ZhukhlistovaN. MuravievaT. FateevI. EsipovR. KuranovaI. 3′-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: The peculiarity of the binding on the basis of X-ray study.Acta Crystallogr. D Biol. Crystallogr.20147041155116510.1107/S1399004714001904 24699659
    [Google Scholar]
  37. LiW. YueH. Thymidine phosphorylase: A potential new target for treating cardiovascular disease.Trends Cardiovasc. Med.201828315717110.1016/j.tcm.2017.10.003 29108898
    [Google Scholar]
  38. BartonG.J. PontingC.P. SpraggonG. FinnisC. SleepD. Human platelet-derived endothelial cell growth factor is homologous to Escherichia coli thymidine phosphorylase.Protein Sci.19921568869010.1002/pro.5560010514 1304367
    [Google Scholar]
  39. FoxS.B. MoghaddamA. WestwoodM. TurleyH. BicknellR. GatterK.C. HarrisA.L. Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in normal tissues: An immunohistochemical study.J. Pathol.1995176218319010.1002/path.1711760212 7636628
    [Google Scholar]
  40. de BruinM. van CapelT. SmidK. van der BornK. FukushimaM. HoekmanK. PinedoH.M. PetersG.J. Role of platelet derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity and potential role of deoxyribose-1-phosphate.Nucleosides Nucleotides Nucleic Acids2004238-91485149010.1081/NCN‑200027702 15571282
    [Google Scholar]
  41. ZagórskaA. CzopekA. JarominA. Mielczarek-PutaM. StrugaM. StaryD. BajdaM. Design, synthesis, and in vitro antiproliferative activity of hydantoin and purine derivatives with the 4-acetylphenylpiperazinylalkyl moiety.Materials 20211415415610.3390/ma14154156 34361351
    [Google Scholar]
  42. AbbasM.M. EvansJ.J. SykesP.H. BennyP.S. Modulation of vascular endothelial growth factor and thymidine phosphorylase in normal human endometrial stromal cells.Fertil. Steril.200482S 31048105310.1016/j.fertnstert.2004.02.135 15474072
    [Google Scholar]
  43. SharkeyA.M. DayK. McPhersonA. MalikS. LicenceD. SmithS.K. Charnock-JonesD.S. Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia.J. Clin. Endocrinol. Metab.200085140240910.1210/jc.85.1.402 10634417
    [Google Scholar]
  44. ZizzoN. PassantinoG. D’alessioR.M. TinelliA. LoprestiG. PatrunoR. TricaricoD. MaqoudF. ScalaR. ZitoF.A. RanieriG. Thymidine phosphorylase expression and microvascular density correlation analysis in canine mammary tumor: Possible prognostic factor in breast cancer.Front. Vet. Sci.2019636810.3389/fvets.2019.00368 31709268
    [Google Scholar]
  45. ShawT. SmillieR.H. MacPheeD.G. The role of blood platelets in nucleoside metabolism: Assay, cellular location and significance of thymidine phosphorylase in human blood.Mutat. Res.19882001-29911610.1016/0027‑5107(88)90074‑7 3393166
    [Google Scholar]
  46. BijnsdorpI.V. AzijliK. JansenE.E. WamelinkM.M. JakobsC. StruysE.A. FukushimaM. KruytF.A.E. PetersG.J. Accumulation of thymidine-derived sugars in thymidine phosphorylase overexpressing cells.Biochem. Pharmacol.201080678679210.1016/j.bcp.2010.05.009 20488166
    [Google Scholar]
  47. LiekensS. BronckaersA. Pérez-PérezM.J. BalzariniJ. Targeting platelet-derived endothelial cell growth factor/thymidine phosphorylase for cancer therapy.Biochem. Pharmacol.200774111555156710.1016/j.bcp.2007.05.008 17572389
    [Google Scholar]
  48. SatoJ. SataM. NakamuraH. InoueS. WadaT. TakabatakeN. OtakeK. TomoikeH. KubotaI. Role of thymidine phosphorylase on invasiveness and metastasis in lung adenocarcinoma.Int. J. Cancer2003106686387010.1002/ijc.11315 12918063
    [Google Scholar]
  49. TararA. AlyamiE.M. PengC.A. Mesenchymal stem cells anchored with thymidine phosphorylase for doxifluridine-mediated cancer therapy.RSC Advances20211131394140310.1039/D0RA10263F 35424143
    [Google Scholar]
  50. TahaM. Adnan Ali ShahS. AfifiM. ImranS. SultanS. RahimF. Hadiani IsmailN. Mohammed KhanK. Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives.Bioorg. Chem.201878172310.1016/j.bioorg.2018.02.028 29525348
    [Google Scholar]
  51. NenckaR. Thymidine phosphorylase inhibitors.Anti-Angiogenesis Drug Discovery and Development.Bentham Science Publishers201111614710.2174/978160805162511101010116
    [Google Scholar]
  52. TakeuchiM. OtsukaT. MatsuiN. AsaiK. HiranoT. MoriyamaA. IsobeI. EksiogluY.Z. MatsukawaK. KatoT. TadaT. Aberrant production of gliostatin/platelet-derived endothelial cell growth factor in rheumatoid synovium.Arthritis Rheum.199437566267210.1002/art.1780370509 8185693
    [Google Scholar]
  53. LiW. YueH. Thymidine phosphorylase is increased in COVID-19 patients in an acuity-dependent manner.Front. Med.2021865377310.3389/fmed.2021.653773 33829029
    [Google Scholar]
  54. JacobJ. R, G.; P, L.; Illuri, R.; Bhosle, D.; Sangli, G.K.; Mundkinajeddu, D. Evaluation of anti-psoriatic potential of the fruit rind of Punica granatum L.Pharmacogn. J.201911346646810.5530/pj.2019.11.73
    [Google Scholar]
  55. CreamerD. SullivanD. BicknellR. BarkerJ. Angiogenesis in psoriasis.Angiogenesis20025423123610.1023/A:1024515517623 12906316
    [Google Scholar]
  56. PatelR. CoulterL.L. RimmerJ. ParkesM. ChinneryP.F. SwiftO. Mitochondrial neurogastrointestinal encephalopathy: A clinicopathological mimic of Crohn’s disease.BMC Gastroenterol.20191911110.1186/s12876‑018‑0925‑5 30646848
    [Google Scholar]
  57. UsukiK. SarasJ. WaltenbergerJ. MiyazonoK. PierceG. ThomasonA. HeldinC.H. Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity.Biochem. Biophys. Res. Commun.199218431311131610.1016/S0006‑291X(05)80025‑7 1590793
    [Google Scholar]
  58. ToyodaY. TabataS. KishiJ. KuramotoT. MitsuhashiA. SaijoA. KawanoH. GotoH. AonoY. HanibuchiM. HorikawaH. NakajimaT. FurukawaT. SoneS. AkiyamaS. NishiokaY. Thymidine phosphorylase regulates the expression of CXCL10 in rheumatoid arthritis fibroblast-like synoviocytes.Arthritis Rheumatol.201466356056810.1002/art.38263 24574215
    [Google Scholar]
  59. YadakR. Sillevis SmittP. van GisbergenM.W. van TilN.P. de CooI.F.M. Mitochondrial neurogastrointestinal encephalomyopathy caused by thymidine phosphorylase enzyme deficiency: From pathogenesis to emerging therapeutic options.Front. Cell. Neurosci.201711February3110.3389/fncel.2017.00031 28261062
    [Google Scholar]
  60. YadakR. BreurM. BugianiM. Gastrointestinal dysmotility in MNGIE: From thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal.Orphanet J. Rare Dis.20191413310.1186/s13023‑019‑1016‑6 30736844
    [Google Scholar]
  61. YangL. WangY. HaoW. ChangJ. PanY. LiJ. WangH. Modeling pesticides toxicity to Sheepshead minnow using QSAR.Ecotoxicol. Environ. Saf.2020193February11035210.1016/j.ecoenv.2020.110352 32120163
    [Google Scholar]
  62. PaulyJ.L. SchullerM.G. ZelcerA.A. KirssT.A. GoreS.S. GermainM.J. Identification and comparative analysis of thymidine phosphorylase in the plasma of healthy subjects and cancer patients.J. Natl. Cancer Inst.19775861587159010.1093/jnci/58.6.1587 864739
    [Google Scholar]
  63. LeemansE. MahasenanK.V. KumarasiriM. SpinkE. DingD. O’DanielP.I. BoudreauM.A. LastochkinE. TesteroS.A. YamaguchiT. LeeM. HesekD. FisherJ.F. ChangM. MobasheryS. Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials.Bioorg. Med. Chem. Lett.20162631011101510.1016/j.bmcl.2015.12.041 26733473
    [Google Scholar]
  64. MihalcioiuC. TedeschiA.L. EslamiZ. SalehR. OmerogluA. GulbeyazA. Ait-TihyatyM. Jean-ClaudeB. GaroufalisE. Pilot study investigating the prognostic significance of thymidine phosphorylase expression in patients with metastatic breast cancer: A single institution retrospective analysis.OncoTargets Ther.2015891191910.2147/OTT.S71089 25960662
    [Google Scholar]
  65. StenmanG. SahlinP. DumanskiJ.P. HagiwaraK. IshikawaF. MiyazonoK. CollinsV.P. HeldinC.H. Regional localization of the human platelet-derived endothelial cell growth factor (ECGF1) gene to chromosome 22q13.Cytogenet. Genome Res.1992591222310.1159/000133191 1733667
    [Google Scholar]
  66. WalterM.R. CookW.J. ColeL.B. ShortS.A. KoszalkaG.W. KrenitskyT.A. EalickS.E. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A resolution.J. Biol. Chem.199026523140161402210.1016/S0021‑9258(18)77450‑4 2199449
    [Google Scholar]
  67. PugmireM.J. CookW.J. JasanoffA. WalterM.R. EalickS.E. Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase.J. Mol. Biol.1998281228529910.1006/jmbi.1998.1941 9698549
    [Google Scholar]
  68. NormanR.A. BarryS.T. BateM. BreedJ. CollsJ.G. ErnillR.J. LukeR.W.A. MinshullC.A. McAlisterM.S.B. McCallE.J. McMikenH.H.J. PatersonD.S. TimmsD. TuckerJ.A. PauptitR.A. Crystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor.Structure2004121758410.1016/j.str.2003.11.018 14725767
    [Google Scholar]
  69. OmariK.E.L. BronckaersA. LiekensS. Pérez-PérezM.J. BalzariniJ. StammersD.K. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: Implications for drug design.Biochem. J.2006399219920410.1042/BJ20060513 16803458
    [Google Scholar]
  70. MitsikiE. PapageorgiouA.C. IyerS. ThiyagarajanN. PriorS.H. SleepD. FinnisC. AcharyaK.R. Structures of native human thymidine phosphorylase and in complex with 5-iodouracil.Biochem. Biophys. Res. Commun.2009386466667010.1016/j.bbrc.2009.06.104 19555658
    [Google Scholar]
  71. BronckaersA. GagoF. BalzariniJ. LiekensS. The dual role of thymidine phosphorylase in cancer development and chemotherapy.Med. Res. Rev.200929690395310.1002/med.20159 19434693
    [Google Scholar]
  72. BrownN.S. BicknellR. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis.Biochem. J.199833411810.1042/bj3340001 9693094
    [Google Scholar]
  73. LeveneP.A. MikeskaL.A. MoriT. Carbohydrate of thymonucleic acid.J. Biol. Chem.193085378578710.1016/S0021‑9258(18)76947‑0
    [Google Scholar]
  74. SakamotoH. ShirakawaT. IzukaS. IgarashiT. KinoshitaK. OhtaniK. TakamiT. Thymidine phosphorylase expression is predominantly observed in stroma of well-differentiated adenocarcinoma of endometrium and correlates with a frequency of vascular involvement.Gynecol. Oncol.1999723298305
    [Google Scholar]
  75. BijnsdorpI.V. CapriottiF. KruytF A E. LosekootN. FukushimaM. GriffioenA.W. ThijssenV.L. PetersG.J. Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors.Br. J. Cancer201110471185119210.1038/bjc.2011.74 21386840
    [Google Scholar]
  76. DikiciS. YarM. BullockA.J. ShepherdJ. RomanS. MacneilS. Developing wound dressings using 2-Deoxy-D -ribose to induce angiogenesis as a backdoor route for stimulating the production of vascular endothelial growth factor.Int. J. Mol. Sci.202122211143710.3390/ijms222111437
    [Google Scholar]
  77. ToiM. RahmanM.A. BandoH. ChowL.W.C. Thymidine phosphorylase (platelet-derived endothelial-cell growth factor) in cancer biology and treatment.Lancet Oncol.20056315816610.1016/S1470‑2045(05)01766‑3 15737832
    [Google Scholar]
  78. ChiangG.G. AbrahamR.T. Targeting the mTOR signaling network in cancer.Trends Mol. Med.2007131043344210.1016/j.molmed.2007.08.001 17905659
    [Google Scholar]
  79. KondaR. SatoH. SakaiK. SatoM. OrikasaS. KimuraN. Expression of platelet-derived endothelial cell growth factor and its potential role in up-regulation of angiogenesis in scarred kidneys secondary to urinary tract diseases.Am. J. Pathol.199915551587159710.1016/S0002‑9440(10)65475‑2 10550316
    [Google Scholar]
  80. GunninghamS.P. CurrieM.J. MorrinH.R. TanE.Y. TurleyH. DachsG.U. WatsonA.I. FramptonC. RobinsonB.A. FoxS.B. The angiogenic factor thymidine phosphorylase up-regulates the cell adhesion molecule P-selectin in human vascular endothelial cells and is associated with P-selectin expression in breast cancers.J. Pathol.2007212333534410.1002/path.2174 17487938
    [Google Scholar]
  81. SenguptaS. SellersL.A. MathesonH.B. FanT.P.D. Thymidine phosphorylase induces angiogenesis in vivo and in vitro: An evaluation of possible mechanisms.Br. J. Pharmacol.2003139221923110.1038/sj.bjp.0705216 12770927
    [Google Scholar]
  82. AndreettaC. PuppinC. MinisiniA. ValentF. PegoloE. DamanteG. Di LoretoC. PizzolittoS. PandolfiM. FasolaG. PigaA. PuglisiF. Thymidine phosphorylase expression and benefit from capecitabine in patients with advanced breast cancer.Ann. Oncol.200920226527110.1093/annonc/mdn592 18765464
    [Google Scholar]
  83. KoukourakisG. KoulouliasV. KoukourakisM. ZachariasG. ZabatisH. KouvarisJ. Efficacy of the oral fluorouracil pro-drug capecitabine in cancer treatment: A review.Molecules20081381897192210.3390/molecules13081897 18794792
    [Google Scholar]
  84. VoutsadakisI.A. biomarkers of trifluridine-tipiracil efficacy.J. Clin. Med.20211023556810.3390/jcm10235568 34884270
    [Google Scholar]
  85. LeeJ.J. ChuE. Adherence, dosing, and managing toxicities with trifluridine/tipiracil (TAS-102).Clin. Colorectal Cancer2017162859210.1016/j.clcc.2017.01.003 28242161
    [Google Scholar]
  86. Doussis-AnagnostopoulouI.A. RemadiS. TurleyH. GindreP. ComleyM. BorischB. GatterK.C. Platelet-derived endothelial cell growth factor/thymidine phosphorylase immunohistochemical expression in lymphoid tissue and lymphoid malignancies.Hum. Pathol.199728101146115110.1016/S0046‑8177(97)90252‑5 9343321
    [Google Scholar]
  87. SivridisE. GiatromanolakiA. PapadopoulosI. GatterK.C. HarrisA.L. KoukourakisM.I. Thymidine phosphorylase expression in normal, hyperplastic and neoplastic prostates: Correlation with tumour associated macrophages, infiltrating lymphocytes, and angiogenesis.Br. J. Cancer20028691465147110.1038/sj.bjc.6600281 11986782
    [Google Scholar]
  88. ZhangJ.M. MizoiT. ShiibaK. SasakiI. MatsunoS. Expression of thymidine phosphorylase by macrophages in colorectal cancer tissues.World J. Gastroenterol.200410454554910.3748/wjg.v10.i4.545 14966914
    [Google Scholar]
  89. AkiyamaS. FurukawaT. SumizawaT. TakebayashiY. NakajimaY. HaraguchiM. The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression.Cancer Sci.2004951185185710.1111/j.1349‑7006.2004.tb02193.x. 15546501
    [Google Scholar]
  90. NakajimaY. MadhyasthaR. MaruyamaM. 2-Deoxy-D-ribose, a downstream mediator of thymidine phosphorylase, regulates tumor angiogenesis and progression.Anticancer. Agents Med. Chem.20099223924510.2174/187152009787313846 19199868
    [Google Scholar]
  91. TabataS. IkedaR. YamamotoM. ShimaokaS. MukaidaN. TakedaY. YamadaK. SogaT. FurukawaT. AkiyamaS. Thymidine phosphorylase activates NFκB and stimulates the expression of angiogenic and metastatic factors in human cancer cells.Oncotarget2014521104731048510.18632/oncotarget.2242 25350954
    [Google Scholar]
  92. Van CutsemE. HochsterH. ShitaraK. MayerR. OhtsuA. FalconeA. YoshinoT. DoiT. IlsonD.H. ArkenauH.T. GeorgeB. BenhadjiK.A. MakrisL. TaberneroJ. Pooled safety analysis from phase III studies of trifluridine/tipiracil in patients with metastatic gastric or gastroesophageal junction cancer and metastatic colorectal cancer.ESMO Open20227610063310.1016/j.esmoop.2022.100633 36455504
    [Google Scholar]
  93. MansoorW. ArkenauH.T. AlsinaM. ShitaraK. Thuss-PatienceP. CuffeS. DvorkinM. ParkD. AndoT. Van Den EyndeM. BerettaG.D. ZaniboniA. DoiT. TaberneroJ. IlsonD.H. MakrisL. BenhadjiK.A. Van CutsemE. Trifluridine/tipiracil in patients with metastatic gastroesophageal junction cancer: A subgroup analysis from the phase 3 TAGS study.Gastric Cancer202124497097710.1007/s10120‑021‑01156‑x 33713215
    [Google Scholar]
  94. TaiebJ. PriceT. VidotL. ChevallierB. WyrwiczL. BachetJ.B. Safety and efficacy of trifluridine/tipiracil in previously treated metastatic colorectal cancer: Final results from the phase IIIb single-arm PRECONNECT study by duration of therapy.BMC Cancer20232319410.1186/s12885‑022‑10489‑4 36707808
    [Google Scholar]
  95. RaedlerB.L.A. Lonsurf (trifluridine plus tipiracil): A new oral treatment approved for patients with metastatic colorectal cancer.Am. Health Drug Benefits.20169Spec Feature97100 27668054
    [Google Scholar]
  96. YanoS. KazunoH. SatoT. SuzukiN. EmuraT. WierzbaK. YamashitaJ. TadaY. YamadaY. FukushimaM. AsaoT. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 2: Optimization of inhibitors of human thymidine phosphorylase and their selectivity with uridine phosphorylase.Bioorg. Med. Chem.200412133443345010.1016/j.bmc.2004.04.046 15186830
    [Google Scholar]
  97. BruinM. De; Capel, T.; Van; Born, K.; Van Der; Kruyt, F. A.; Fukushima, M.; Hoekman, K.; Pinedo, H. M. Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity.Br. J. Cancer20038895796410.1038/sj.bjc.6600808
    [Google Scholar]
  98. McNallyV.A. GbajA. DouglasK.T. StratfordI.J. JaffarM. FreemanS. BryceR.A. Identification of a novel class of inhibitor of human and Escherichia coli thymidine phosphorylase by in silico screening.Bioorg. Med. Chem. Lett.200313213705370910.1016/j.bmcl.2003.08.010 14552762
    [Google Scholar]
  99. BeraH. ChigurupatiS. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer.Eur. J. Med. Chem.2016124992100310.1016/j.ejmech.2016.10.032 27783978
    [Google Scholar]
  100. CasanovaE. HernaA. 5′-O-Tritylinosine and analogues as allosteric inhibitors of human thymidine phosphorylase.J. Med. Chem.200649185562557010.1021/jm0605379 16942029
    [Google Scholar]
  101. JavaidS. ShaikhM. FatimaN. ChoudharyM.I. Natural compounds as angiogenic enzyme thymidine phosphorylase inhibitors: In vitro biochemical inhibition, mechanistic, and in silico modeling studies.PLoS One20191411e022505610.1371/journal.pone.0225056 31743355
    [Google Scholar]
  102. JavaidS. SaadS.M. PerveenS. KhanK.M. ChoudharyM.I. 2-Arylquinazolin-4(3H)-ones: A novel class of thymidine phosphorylase inhibitors.Bioorg. Chem.20156314215110.1016/j.bioorg.2015.10.006 26547232
    [Google Scholar]
  103. ShahzadS.A. YarM. KhanZ.A. ShahzadiL. NaqviS.A.R. MahmoodA. UllahS. ShaikhA.J. SheraziT.A. BaleA.T. KukułowiczJ. BajdaM. Identification of 1,2,4-triazoles as new thymidine phosphorylase inhibitors: Future anti-tumor drugs.Bioorg. Chem.2019858520922010.1016/j.bioorg.2019.01.005
    [Google Scholar]
  104. ShahzadS.A. SarfrazA. YarM. KhanZ.A. NaqviS.A.R. NazS. KhanN.A. FarooqU. BatoolR. AliM. Synthesis, evaluation of thymidine phosphorylase and angiogenic inhibitory potential of ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future anticancer drugs.Bioorg. Chem.2020100February10387610.1016/j.bioorg.2020.103876 32388426
    [Google Scholar]
  105. BeraH. SayanW.C. GuptaD. Synthesis, in vitro evaluation of thymidine phosphorylase inhibitory activity, and in silico study of 1,3,5-triazin-2,4-dione and its fused analogues.Med. Chem. Res.2013226010602110.1007/s00044‑013‑0589‑1
    [Google Scholar]
  106. BensaberS.M. NouriH.A.A. SalahB.E. ZetriniA.A. AlsabriS.G. ErhumaM. HermannA. JaedaM.I. GbajA.M. Chemical synthesis, molecular modelling, and evaluation of anticancer activity of some pyrazol-3-one Schiff base derivatives.Med. Chem. Res.2015235120513410.1007/s00044‑014‑1064‑3
    [Google Scholar]
  107. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: An overview.RSC Advances2020202072442474431110.1039/D0RA09198G
    [Google Scholar]
  108. AtmaramU.A. RoopanS.M. RoopanM. Biological activity of oxadiazole and thiadiazole derivatives.Appl. Microbiol. Biotechnol.20221069-103489350510.1007/s00253‑022‑11969‑0 35562490
    [Google Scholar]
  109. KumarD. PatelG. ChaversA.K. ChangK.H. ShahK. Synthesis of novel 1,2,4-oxadiazoles and analogues as potential anticancer agents.Eur. J. Med. Chem.20114673085309210.1016/j.ejmech.2011.03.031 21481985
    [Google Scholar]
  110. BanikB.K. SahooB.M. KumarB.V.V.R. PandaK.C. JenaJ. MahapatraM.K. BorahP. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives.Molecules2021264116310.3390/molecules26041163 33671751
    [Google Scholar]
  111. BoströmJ. HognerA. LlinàsA. WellnerE. PlowrightA.T. Oxadiazoles in medicinal chemistry.J. Med. Chem.20125551817183010.1021/jm2013248 22185670
    [Google Scholar]
  112. KapoorG. BhutaniR. PathakD.P. ChauhanG. GroverP. NagarajanK. SiddiquiS.A. Current advancement in the oxadiazole-based scaffolds as anticancer agents current advancement in the oxadiazole-based scaffolds as anticancer agents.Polycycl. Aromat. Compd.20210013310.1080/10406638.2021.1886123
    [Google Scholar]
  113. KhanI. IbrarA. AbbasN. Review article oxadiazoles as privileged motifs for promising anticancer leads: Recent advances and future prospects.Arch. Pharm.2013347112010.1002/ardp.201300231 24265208
    [Google Scholar]
  114. SajidM.A. KhanZ.A. ShahzadS.A. NaqviS.A.R. UsmanM. IqbalA. Recent advances in thymidine phosphorylase inhibitors: Syntheses and prospective medicinal applications.Turk. J. Chem.20174112810.3906/kim‑1602‑79
    [Google Scholar]
  115. TangJ. KarhinenL. XuT. SzwajdaA. YadavB. WennerbergK. AittokallioT. Target inhibition networks: Predicting selective combinations of druggable targets to block cancer survival pathways.PLOS Comput. Biol.201399e100322610.1371/journal.pcbi.1003226 24068907
    [Google Scholar]
  116. NayakS. GaonkarS.L. MusadE.A. DawsarA.M.A.L. DawsarA.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships.J. Saudi Chem. Soc.202125810128410.1016/j.jscs.2021.101284
    [Google Scholar]
  117. TiwariD. NarangR. LalS. A review on microwave assisted synthesis, mechanism of action and structure activity relationship of 1,3,4-oxadiazole derivatives as anticancer agent.World J. Adv. Res. Rev.202191869610.30574/wjarr.2021.9.1.0472
    [Google Scholar]
  118. PriegoE. HernándezA. CamarasaM. BalzariniJ. LiekensS. thymidine phosphorylase inhibitors: Recent developments and potential therapeutic applications.Mini Rev Med Chem.200551211132310.2174/13895570577493330116375757
    [Google Scholar]
  119. LuH. KleinR.S. SchwartzE.L. Antiangiogenic and antitumor activity of 6-(2-aminoethyl)amino-5-chlorouracil, a novel small-molecule inhibitor of thymidine phosphorylase, in combination with the vascular endothelial growth factor-trap.Clin. Cancer Res.200915165136514410.1158/1078‑0432.CCR‑08‑3203 19671868
    [Google Scholar]
  120. AlmandilN.B. TahaM. FarooqR.K. AlhibshiA. IbrahimM. AnouarE.H. GollapalliM. RahimF. NawazM. AdnanS. Synthesis of thymidine phosphorylase inhibitor based on quinoxaline derivatives and their molecular docking study.Molecules2019246100210.3390/molecules24061002 30871147
    [Google Scholar]
  121. ShahzadS.A. YarM. BajdaM. JadoonB. KhanZ.A. NaqviS.A.R. ShaikhA.J. HayatK. MahmmodA. MahmoodN. FilipekS. Synthesis and biological evaluation of novel oxadiazole derivatives: A new class of thymidine phosphorylase inhibitors as potential anti-tumor agents.Bioorg. Med. Chem.20142231008101510.1016/j.bmc.2013.12.043 24411198
    [Google Scholar]
  122. IftikharF. YaqoobF. TabassumN. JanM.S. SadiqA. TahirS. BatoolT. NiazB. AnsariF.L. ChoudharyM.I. RashidU. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines.Bioorg. Chem.201880April9911110.1016/j.bioorg.2018.05.026 29894893
    [Google Scholar]
  123. KhanK.M. RaniM. AmbreenN. AliM. HussainS. PerveenS. ChoudharyM.I. 2,5-Disubstituted-1,3,4-oxadiazoles: Thymidine phosphorylase inhibitors.Med. Chem. Res.201322126022602810.1007/s00044‑013‑0588‑2
    [Google Scholar]
  124. LakshmithendralK. SaravananK. ElancheranR. ArchanaK. ManikandanN. ArjunH.A. RamanathanM. LokanathN.K. KabilanS. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents.Eur. J. Med. Chem.201916811010.1016/j.ejmech.2019.02.033 30798049
    [Google Scholar]
  125. ShahzadS.A. YarM. BajdaM. ShahzadiL. KhanZ.A. NaqviS.A.R. MutahirS. MahmoodN. KhanK.M. Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives.Bioorg. Chem.201560374110.1016/j.bioorg.2015.04.003 25920005
    [Google Scholar]
  126. JavidM.T. RahimF. TahaM. NawazM. WadoodA. AliM. MosaddikA. ShahS.A.A. FarooqR.K. Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase.Bioorg. Chem.201879February32333310.1016/j.bioorg.2018.05.011 29803079
    [Google Scholar]
  127. TahaM. RashidU. ImranS. AliM. Rational design of bis-indolylmethane-oxadiazole hybrids as inhibitors of thymidine phosphorylase.Bioorg. Med. Chem.201826123654366310.1016/j.bmc.2018.05.046 29853339
    [Google Scholar]
  128. UllahH. KhanF. TahaM. RahimF. SarfrazM. AzizA. UllahS. KhanM.U. UllahM. New thiazole-bearing oxadiazole derivatives: Synthesis, thymidine phosphorylase inhibitory potential, and molecular docking study.Russ. J. Org. Chem.202157121993200110.1134/S1070428021120150
    [Google Scholar]
  129. UllahH. RahimF. TahaM. UddinI. WadoodA. ShahS.A.A. FarooqR.K. NawazM. WahabZ. KhanK.M. Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives.Bioorg. Chem.201878586710.1016/j.bioorg.2018.02.020 29533215
    [Google Scholar]
  130. ZamanK. RahimF. TahaM. WadoodA. ShahS.A.A. AhmedQ.U. ZakariaZ.A. Synthesis of new isoquinoline-base-oxadiazole derivatives as potent inhibitors of thymidine phosphorylase and molecular docking study.Sci. Rep.2019911601510.1038/s41598‑019‑52100‑0 31690793
    [Google Scholar]
  131. El-mernissiR. ElK. AanouzI. GhalebA. KhaldanA. 2D-QSAR studies of isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase.RHAZES: Green Appl. Chem.20208
    [Google Scholar]
  132. Jian-boT. YiF. Tian-haoW. DingL.U.O. Investigation of quantitative structure activity relationship of isatin-based oxadiazole derivatives as thymidine phosphorylase inhibitors.Chin. J. Anal. Chem.2021494e21046e2105410.1016/S1872‑2040(21)60095‑6
    [Google Scholar]
  133. LangD.K. KaurR. AroraR. SainiB. AroraS. Nitrogen-containing heterocycles as anticancer agents: An overview.Anticancer. Agents Med. Chem.202020182150216810.2174/1871520620666200705214917 32628593
    [Google Scholar]
  134. PaladhiA. DaripaS. MondalI. HiraS.K. Targeting thymidine phosphorylase alleviates resistance to dendritic cell immunotherapy in colorectal cancer and promotes antitumor immunity.Front. Immunol.20221398807110.3389/fimmu.2022.988071 36090972
    [Google Scholar]
  135. TemminkO.H. de BruinM. LaanA.C. TurksmaA.W. CriccaS. MastersonA.J. NoordhuisP. PetersG.J. The role of thymidine phosphorylase and uridine phosphorylase in (fluoro)pyrimidine metabolism in peripheral blood mononuclear cells.Int. J. Biochem. Cell Biol.200638101759176510.1016/j.biocel.2006.04.007 16798057
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230712113943
Loading
/content/journals/cmc/10.2174/0929867331666230712113943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test