Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673294251240229070740
2024-03-25
2024-11-19
Loading full text...

Full text loading...

References

  1. World health organizationNumber of COVID-19 cases reported to WHO.Available from: https://covid19.who.int/
  2. MoshkovitsI. ShepshelovichD. Emergency use authorizations of COVID-19-related medical products.JAMA Intern. Med.2022182222822910.1001/jamainternmed.2021.725734928303
    [Google Scholar]
  3. NuthoB. MahalapbutrP. HengphasatpornK. PattaranggoonN.C. SimanonN. ShigetaY. HannongbuaS. RungrotmongkolT. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms.Biochemistry202059181769177910.1021/acs.biochem.0c0016032293875
    [Google Scholar]
  4. MacíasJ. PinillaA. DominguezL.F.A. CormaA. MaciasC.E. SernaG.A. PizarrayaG.A. FuertesF.M. VerdugoM.R. TrigoM. RealL.M. PinedaJ.A. High rate of major drug-drug interactions of lopinavir-ritonavir for COVID-19 treatment.Sci. Rep.20201012095810.1038/s41598‑020‑78029‑333262433
    [Google Scholar]
  5. BolcatoG. BissaroM. PavanM. SturleseM. MoroS. Targeting the coronavirus SARS-CoV-2: Computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir.Sci. Rep.20201012092710.1038/s41598‑020‑77700‑z33262359
    [Google Scholar]
  6. AgostiniM.L. AndresE.L. SimsA.C. GrahamR.L. SheahanT.P. LuX. SmithE.C. CaseJ.B. FengJ.Y. JordanR. RayA.S. CihlarT. SiegelD. MackmanR.L. ClarkeM.O. BaricR.S. DenisonM.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease.MBio201892e00221-1810.1128/mBio.00221‑1829511076
    [Google Scholar]
  7. WangM. CaoR. ZhangL. YangX. LiuJ. XuM. ShiZ. HuZ. ZhongW. XiaoG. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑032020029
    [Google Scholar]
  8. LiuX. LiZ. LiuS. SunJ. ChenZ. JiangM. ZhangQ. WeiY. WangX. HuangY.Y. ShiY. XuY. XianH. BaiF. OuC. XiongB. LewA.M. CuiJ. FangR. HuangH. ZhaoJ. HongX. ZhangY. ZhouF. LuoH.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19.Acta Pharm. Sin. B20201071205121510.1016/j.apsb.2020.04.00832318327
    [Google Scholar]
  9. SinghR. VijayanV. Chloroquine: A potential drug in the COVID-19 scenario.INAE Letters20205239941010.1007/s41403‑020‑00114‑w
    [Google Scholar]
  10. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  11. PatelJ. BerezowskiI. AbdelmonemA. TaylorD. PourmandA. Azithromycin for mild-to-moderate COVID-19.Lancet Respir. Med.2021910e9910.1016/S2213‑2600(21)00379‑934509194
    [Google Scholar]
  12. AnnaneD. Corticosteroids for COVID-19.J. Intensive Care Med.202111142510.1016/j.jointm.2021.01.00236943816
    [Google Scholar]
  13. JinZ. ZhaoY. SunY. ZhangB. WangH. WuY. ZhuY. ZhuC. HuT. DuX. DuanY. YuJ. YangX. YangX. YangK. LiuX. GuddatL.W. XiaoG. ZhangL. YangH. RaoZ. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur.Nat. Struct. Mol. Biol.202027652953210.1038/s41594‑020‑0440‑632382072
    [Google Scholar]
  14. WangR. HuQ. WangH. ZhuG. WangM. ZhangQ. ZhaoY. LiC. ZhangY. GeG. ChenH. ChenL. Identification of vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro.Int. J. Biol. Macromol.202118318219210.1016/j.ijbiomac.2021.04.12933901557
    [Google Scholar]
  15. HuY. MaC. SzetoT. HurstB. TarbetB. WangJ. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses.ACS Infect. Dis.20217358659710.1021/acsinfecdis.0c0076133645977
    [Google Scholar]
  16. LaplantineE. Chable-BessiaC. OudinA. SwainJ. SoriaA. MeridaP. GourdelierM. MestiriS. BessegheI. BremaudE. NeyretA. LyonnaisS. FavardC. BenarochP. HubertM. SchwartzO. GuerinM. DanckaertA. Del NeryE. MuriauxD. WeilR. The FDA-approved drug Auranofin has a dual inhibitory effect on SARS-CoV-2 entry and NF-κB signaling.iScience2022251010506610.1016/j.isci.2022.10506636093378
    [Google Scholar]
  17. TeliD.M. ShahM.B. ChhabriaM.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and Spike RBD: Targets for COVID-19.Front. Mol. Biosci.2021759907910.3389/fmolb.2020.59907933542917
    [Google Scholar]
  18. ZhangZ. ShenQ. ChangH. Vaccines for COVID-19: A systematic review of immunogenicity, current development, and future prospects.Front. Immunol.20221384392810.3389/fimmu.2022.84392835572592
    [Google Scholar]
  19. ZhangJ. ZengH. GuJ. LiH. ZhengL. ZouQ. Progress and prospects on vaccine development against SARS-CoV-2.Vaccines20208215310.3390/vaccines802015332235387
    [Google Scholar]
  20. GordonD.E. JangG.M. BouhaddouM. XuJ. ObernierK. WhiteK.M. O’MearaM.J. RezeljV.V. GuoJ.Z. SwaneyD.L. TumminoT.A. HüttenhainR. KaakeR.M. RichardsA.L. TutuncuogluB. FoussardH. BatraJ. HaasK. ModakM. KimM. HaasP. PolaccoB.J. BrabergH. FabiusJ.M. EckhardtM. SoucherayM. BennettM.J. CakirM. McGregorM.J. LiQ. MeyerB. RoeschF. ValletT. Mac KainA. MiorinL. MorenoE. NaingZ.Z.C. ZhouY. PengS. ShiY. ZhangZ. ShenW. KirbyI.T. MelnykJ.E. ChorbaJ.S. LouK. DaiS.A. Barrio-HernandezI. MemonD. Hernandez-ArmentaC. LyuJ. MathyC.J.P. PericaT. PillaK.B. GanesanS.J. SaltzbergD.J. RakeshR. LiuX. RosenthalS.B. CalvielloL. VenkataramananS. Liboy-LugoJ. LinY. HuangX.P. LiuY. WankowiczS.A. BohnM. SafariM. UgurF.S. KohC. SavarN.S. TranQ.D. ShengjulerD. FletcherS.J. O’NealM.C. CaiY. ChangJ.C.J. BroadhurstD.J. KlippstenS. SharpP.P. WenzellN.A. Kuzuoglu-OzturkD. WangH.Y. TrenkerR. YoungJ.M. CaveroD.A. HiattJ. RothT.L. RathoreU. SubramanianA. NoackJ. HubertM. StroudR.M. FrankelA.D. RosenbergO.S. VerbaK.A. AgardD.A. OttM. EmermanM. JuraN. von ZastrowM. VerdinE. AshworthA. SchwartzO. d’EnfertC. MukherjeeS. JacobsonM. MalikH.S. FujimoriD.G. IdekerT. CraikC.S. FloorS.N. FraserJ.S. GrossJ.D. SaliA. RothB.L. RuggeroD. TauntonJ. KortemmeT. BeltraoP. VignuzziM. SastreG.A. ShokatK.M. ShoichetB.K. KroganN.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature2020583781645946810.1038/s41586‑020‑2286‑932353859
    [Google Scholar]
  21. AhmadS. MirzaU.M. Yean KeeL. NazirM. RahmanA.N. TrantJ.F. AbdullahI. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors.Chem. Biol. Drug Des.202198460461910.1111/cbdd.1391434148292
    [Google Scholar]
  22. ParkerM.R. FengD. ChamurisB. MargolskeeR.F. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells.Neurosci. Lett.2014571727710.1016/j.neulet.2014.04.04724814581
    [Google Scholar]
  23. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  24. CuiJ. LiF. ShiZ.L. Origin and evolution of pathogenic coronaviruses.Nat. Rev. Microbiol.201917318119210.1038/s41579‑018‑0118‑930531947
    [Google Scholar]
  25. HasöksüzM. KiliçS. SaraçF. Coronaviruses and SARS-COV-2.Turk. J. Med. Sci.202050SI-154955610.3906/sag‑2004‑12732293832
    [Google Scholar]
  26. CormanV.M. MuthD. NiemeyerD. DrostenC. Hosts and sources of endemic human coronaviruses.Adv. Virus Res.201810016318810.1016/bs.aivir.2018.01.00129551135
    [Google Scholar]
  27. SchirtzingerE.E. KimY. DavisA.S. Improving human coronavirus OC43 (HCoV-OC43) research comparability in studies using HCoV-OC43 as a surrogate for SARS-CoV-2.J. Virol. Methods202229911431710.1016/j.jviromet.2021.11431734634321
    [Google Scholar]
  28. StadlerK. MasignaniV. EickmannM. BeckerS. AbrignaniS. KlenkH.D. RappuoliR. SARS - beginning to understand a new virus.Nat. Rev. Microbiol.20031320921810.1038/nrmicro77515035025
    [Google Scholar]
  29. KeshehM.M. HosseiniP. SoltaniS. ZandiM. An overview on the seven pathogenic human coronaviruses.Rev. Med. Virol.2022322e228210.1002/rmv.228234339073
    [Google Scholar]
  30. WooP.C.Y. LauS.K.P. ChuC. ChanK. TsoiH. HuangY. WongB.H.L. PoonR.W.S. CaiJ.J. LukW. PoonL.L.M. WongS.S.Y. GuanY. PeirisJ.S.M. YuenK. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia.J. Virol.200579288489510.1128/JVI.79.2.884‑895.200515613317
    [Google Scholar]
  31. ZakiA.M. van BoheemenS. BestebroerT.M. OsterhausA.D.M.E. FouchierR.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med.2012367191814182010.1056/NEJMoa121172123075143
    [Google Scholar]
  32. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. Author Correction: A new coronavirus associated with human respiratory disease in China.Nature20205807803E7E710.1038/s41586‑020‑2202‑332296181
    [Google Scholar]
  33. GorbalenyaA.E. BakerS.C. BaricR.S. de GrootR.J. DrostenC. GulyaevaA.A. HaagmansB.L. LauberC. LeontovichA.M. NeumanB.W. PenzarD. PerlmanS. PoonL.L.M. SamborskiyD.V. SidorovI.A. SolaI. ZiebuhrJ. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2.Nat. Microbiol.20205453654410.1038/s41564‑020‑0695‑z32123347
    [Google Scholar]
  34. LiG. FanY. LaiY. HanT. LiZ. ZhouP. PanP. WangW. HuD. LiuX. ZhangQ. WuJ. Coronavirus infections and immune responses.J. Med. Virol.202092442443210.1002/jmv.2568531981224
    [Google Scholar]
  35. GrahamR.L. DonaldsonE.F. BaricR.S. A decade after SARS: Strategies for controlling emerging coronaviruses.Nat. Rev. Microbiol.2013111283684810.1038/nrmicro314324217413
    [Google Scholar]
  36. HammingI. TimensW. BulthuisM.L.C. LelyA.T. NavisG.J. van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol.2004203263163710.1002/path.157015141377
    [Google Scholar]
  37. RajV.S. MouH. SmitsS.L. DekkersD.H.W. MüllerM.A. DijkmanR. MuthD. DemmersJ.A.A. ZakiA. FouchierR.A.M. ThielV. DrostenC. RottierP.J.M. OsterhausA.D.M.E. BoschB.J. HaagmansB.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.Nature2013495744025125410.1038/nature1200523486063
    [Google Scholar]
  38. HuangJ. SongW. HuangH. SunQ. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and Spike protein: From mechanistic studies to clinical trials for COVID-19.J. Clin. Med.202094113110.3390/jcm904113132326602
    [Google Scholar]
  39. MirzaM.U. FroeyenM. Structural elucidation of SARS- CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase.J. Pharm. Anal.202010432032810.1016/j.jpha.2020.04.00832346490
    [Google Scholar]
  40. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑832007145
    [Google Scholar]
  41. ChenY. LiuQ. GuoD. Emerging coronaviruses: Genome structure, replication, and pathogenesis.J. Med. Virol.202092441842310.1002/jmv.2568131967327
    [Google Scholar]
  42. HussainS. PanJ. ChenY. YangY. XuJ. PengY. WuY. LiZ. ZhuY. TienP. GuoD. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus.J. Virol.20057995288529510.1128/JVI.79.9.5288‑5295.200515827143
    [Google Scholar]
  43. FehrA.R. PerlmanS. Coronaviruses: An overview of their replication and pathogenesis.Methods Mol. Biol.2015128212310.1007/978‑1‑4939‑2438‑7_125720466
    [Google Scholar]
  44. XiaB. KangX. Activation and maturation of SARS- CoV main protease.Protein Cell20112428229010.1007/s13238‑011‑1034‑121533772
    [Google Scholar]
  45. AlhayaliA. VuddandaP.R. VelagaS. Silodosin oral films: Development, physico-mechanical properties and in vitro dissolution studies in simulated saliva.J. Drug Deliv. Sci. Technol.20195310112210.1016/j.jddst.2019.06.019
    [Google Scholar]
  46. GoyalB. GoyalD. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy.ACS Comb. Sci.202022629730510.1021/acscombsci.0c0005832402186
    [Google Scholar]
  47. UllrichS. NitscheC. The SARS-CoV-2 main protease as drug target.Bioorg. Med. Chem. Lett.2020301712737710.1016/j.bmcl.2020.12737732738988
    [Google Scholar]
  48. FuL. YeF. FengY. YuF. WangQ. WuY. ZhaoC. SunH. HuangB. NiuP. SongH. ShiY. LiX. TanW. QiJ. GaoG.F. Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease.Nat. Commun.2020111441710.1038/s41467‑020‑18233‑x32887884
    [Google Scholar]
  49. SuH. YaoS. ZhaoW. LiM. LiuJ. ShangW. XieH. KeC. HuH. GaoM. YuK. LiuH. ShenJ. TangW. ZhangL. XiaoG. NiL. WangD. ZuoJ. JiangH. BaiF. WuY. YeY. XuY. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients.Acta Pharmacol. Sin.20204191167117710.1038/s41401‑020‑0483‑632737471
    [Google Scholar]
  50. AnandK. ZiebuhrJ. WadhwaniP. MestersJ.R. HilgenfeldR. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs.Science200330056261763176710.1126/science.108565812746549
    [Google Scholar]
  51. FanK. MaL. HanX. LiangH. WeiP. LiuY. LaiL. The substrate specificity of SARS coronavirus 3C-like proteinase.Biochem. Biophys. Res. Commun.2005329393494010.1016/j.bbrc.2005.02.06115752746
    [Google Scholar]
  52. RamajayamR. TanK.P. LiangP.H. Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery.Biochem. Soc. Trans.20113951371137510.1042/BST039137121936817
    [Google Scholar]
  53. BerryM. FieldingB. GamieldienJ. Potential broad spectrum inhibitors of the coronavirus 3CLpro: A virtual screening and structure-based drug design study.Viruses20157126642666010.3390/v712296326694449
    [Google Scholar]
  54. XiongM. SuH. ZhaoW. XieH. ShaoQ. XuY. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design.Med. Res. Rev.20214141965199810.1002/med.2178333460213
    [Google Scholar]
  55. CuiW. YangK. YangH. Recent progress in the drug development targeting SARS-CoV-2 main protease as treatment for COVID-19.Front. Mol. Biosci.2020761634110.3389/fmolb.2020.61634133344509
    [Google Scholar]
  56. WildesJ.E. MarcusM.D. Weight suppression as a predictor of weight gain and response to intensive behavioral treatment in patients with anorexia nervosa.Behav. Res. Ther.201250426627410.1016/j.brat.2012.02.00622398152
    [Google Scholar]
  57. FattoriD. Molecular recognition: The fragment approach in lead generation.Drug Discov. Today20049522923810.1016/S1359‑6446(03)03007‑114980541
    [Google Scholar]
  58. HajdukP.J. GreerJ. A decade of fragment-based drug design: Strategic advances and lessons learned.Nat. Rev. Drug Discov.20076321121910.1038/nrd222017290284
    [Google Scholar]
  59. LogingW. HarlandL. JonesW.B. High-throughput electronic biology: mining information for drug discovery.Nat. Rev. Drug Discov.20076322023010.1038/nrd226517330071
    [Google Scholar]
  60. OritaM. OhnoK. NiimiT. Two ‘Golden Ratio’ indices in fragment-based drug discovery.Drug Discov. Today2009145-632132810.1016/j.drudis.2008.10.00619028598
    [Google Scholar]
  61. ScottD.E. CoyneA.G. HudsonS.A. AbellC. Fragment-based approaches in drug discovery and chemical biology.Biochemistry201251254990500310.1021/bi300512622697260
    [Google Scholar]
  62. HallR.J. MortensonP.N. MurrayC.W. Efficient exploration of chemical space by fragment-based screening.Prog. Biophys. Mol. Biol.20141162-3829110.1016/j.pbiomolbio.2014.09.00725268064
    [Google Scholar]
  63. Joseph-McCarthyD. CampbellA.J. KernG. MoustakasD. Fragment-based lead discovery and design.J. Chem. Inf. Model.201454369370410.1021/ci400731w24490951
    [Google Scholar]
  64. CongreveM. CarrR. MurrayC. JhotiH. A ‘Rule of Three’ for fragment-based lead discovery?Drug Discov. Today200381987687710.1016/S1359‑6446(03)02831‑914554012
    [Google Scholar]
  65. ErlansonD.A. FesikS.W. HubbardR.E. JahnkeW. JhotiH. Twenty years on: the impact of fragments on drug discovery.Nat. Rev. Drug Discov.201615960561910.1038/nrd.2016.10927417849
    [Google Scholar]
  66. LeachA.R. HannM.M. BurrowsJ.N. GriffenE.J. Fragment screening: An introduction.Mol. Biosyst.20062942910.1039/b610069b17153140
    [Google Scholar]
  67. BaellJ.B. HollowayG.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.J. Med. Chem.20105372719274010.1021/jm901137j20131845
    [Google Scholar]
  68. MorleyA.D. PuglieseA. BirchallK. BowerJ. BrennanP. BrownN. ChapmanT. DrysdaleM. GilbertI.H. HoelderS. JordanA. LeyS.V. MerrittA. MillerD. SwarbrickM.E. WyattP.G. Fragment-based hit identification: Thinking in 3D.Drug Discov. Today20131823-241221122710.1016/j.drudis.2013.07.01123906694
    [Google Scholar]
  69. OverB. WetzelS. GrütterC. NakaiY. RennerS. RauhD. WaldmannH. Natural-product-derived fragments for fragment-based ligand discovery.Nat. Chem.201351212810.1038/nchem.150623247173
    [Google Scholar]
  70. VulpettiA. DalvitC. Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved (19) F NMR methodology.ChemMedChem20138122057206910.1002/cmdc.20130035124127294
    [Google Scholar]
  71. ShukerS.B. HajdukP.J. MeadowsR.P. FesikS.W. Discovering high-affinity ligands for proteins: SAR by NMR.Science199627452921531153410.1126/science.274.5292.15318929414
    [Google Scholar]
  72. JhotiH. CleasbyA. VerdonkM. WilliamsG. Fragment-based screening using X-ray crystallography and NMR spectroscopy.Curr. Opin. Chem. Biol.200711548549310.1016/j.cbpa.2007.07.01017851109
    [Google Scholar]
  73. LepreC.A. Practical aspects of NMR-based fragment screening.Methods in Enzymology.Elsevier2011493219239
    [Google Scholar]
  74. StockmanB.J. DalvitC. NMR screening techniques in drug discovery and drug design.Prog. Nucl. Magn. Reson. Spectrosc.2002413-418723110.1016/S0079‑6565(02)00049‑3
    [Google Scholar]
  75. HaselhorstT. LamerzA.C. ItzsteinM. v. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution.Methods Mol Biol2009534375386
    [Google Scholar]
  76. DalvitC. FogliattoG. StewartA. VeronesiM. StockmanB. WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability.J. Biomol. NMR200121434935910.1023/A:101330223154911824754
    [Google Scholar]
  77. DalvitC. FagernessP.E. HaddenD.T.A. SarverR.W. StockmanB.J. Fluorine-NMR experiments for high-throughput screening: Theoretical aspects, practical considerations, and range of applicability.J. Am. Chem. Soc.2003125257696770310.1021/ja034646d12812511
    [Google Scholar]
  78. CalaO. KrimmI. Ligand-orientation based fragment selection in STD NMR screening.J. Med. Chem.201558218739874210.1021/acs.jmedchem.5b0111426492576
    [Google Scholar]
  79. BergH. Wirtz MartinM.A. AltincekicN. AlshamlehI. Kaur BainsJ. BlecharJ. CeylanB. de JesusV. DhamotharanK. FuksC. GandeS.L. HargittayB. HohmannK.F. HutchisonM.T. Marianne KornS. KrishnathasR. KutzF. LinhardV. MatzelT. MeiserN. NiesterukA. PyperD.J. SchulteL. TrucksS. AzzaouiK. BlommersM.J.J. GadiyaY. KarkiR. ZalianiA. GribbonP. da Silva AlmeidaM. Dinis AnobomC. BulaA.L. BütikoferM. CarusoP.Í. FelliC.I. Da PoianA.T. de AmorimC.G. FourkiotisN.K. GalloA. GhoshD. NetoG.F. GorbatyukO. HaoB. KurauskasV. LecoqL. LiY. AntunesC.M.N. MompeánM. MartinsC.N.T. PedrosaN.M. PinheiroA.S. PontorieroL. PustovalovaY. RiekR. RobertsonA.J. SaadJ.A.M. TreviñoM.Á. TsikaA.C. AlmeidaF.C.L. BaxA. WildmanH.K. HochJ.C. JaudzemsK. LaurentsD.V. OrtsJ. PierattelliR. SpyrouliasG.A. FernerD.E. FernerJ. FürtigB. HengesbachM. LöhrF. QureshiN. RichterC. SaxenaK. SchlundtA. SreeramuluS. WackerA. WeigandJ.E. BartoschekW.J. WöhnertJ. SchwalbeH. Comprehensive fragment screening of the SARS-CoV-2 proteome explores novel chemical space for drug development.Angew. Chem. Int. Ed.20226146e20220585810.1002/anie.202205858
    [Google Scholar]
  80. GeschwindnerS. CarlssonJ.F. KnechtW. Application of optical biosensors in small-molecule screening activities.Sensors20121244311432310.3390/s12040431122666031
    [Google Scholar]
  81. NylanderC. LiedbergB. LindT. Gas detection by means of surface plasmon resonance.Sens. Actuators19823798810.1016/0250‑6874(82)80008‑5
    [Google Scholar]
  82. LiedbergB. NylanderC. LunströmI. Surface plasmon resonance for gas detection and biosensing.Sens. Actuators1983429930410.1016/0250‑6874(83)85036‑7
    [Google Scholar]
  83. NeumannT. JunkerH-D. SchmidtK. SekulR. SPR-based fragment screening: Advantages and applications.Curr. Top. Med. Chem.20077161630164210.2174/15680260778234107317979772
    [Google Scholar]
  84. DanielsonU.H. Integrating surface plasmon resonance biosensor-based interaction kinetic analyses into the lead discovery and optimization process.Future Med. Chem.2009181399141410.4155/fmc.09.10021426056
    [Google Scholar]
  85. GiannettiA.M. From experimental design to validated hits: A comprehensive walk-through of fragment lead identification using surface plasmon resonance.Methods in EnzymologyElsevier2011493169218
    [Google Scholar]
  86. LöfåsS. MalmqvistM. RönnbergI. StenbergE. LiedbergB. LundströmI. Bioanalysis with surface plasmon resonance.Sens. Actuators B Chem.199151-4798410.1016/0925‑4005(91)80224‑8
    [Google Scholar]
  87. DayY.S.N. BairdC.L. RichR.L. MyszkaD.G. Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods.Protein Sci.20021151017102510.1110/ps.433010211967359
    [Google Scholar]
  88. AlbertJ. BlombergN. BreezeA. BrownA. BurrowsJ. EdwardsP. FolmerR. GeschwindnerS. GriffenE. KennyP. NowakT. OlssonL.L. SanganeeH. ShapiroA. An integrated approach to fragment-based lead generation: Philosophy, strategy and case studies from Astra Zeneca’s drug discovery programmes.Curr. Top. Med. Chem.20077161600162910.2174/15680260778234109117979771
    [Google Scholar]
  89. NienaberV.L. RichardsonP.L. KlighoferV. BouskaJ.J. GirandaV.L. GreerJ. Discovering novel ligands for macromolecules using X-ray crystallographic screening.Nat. Biotechnol.200018101105110810.1038/8031911017052
    [Google Scholar]
  90. HartshornM.J. MurrayC.W. CleasbyA. FredericksonM. TickleI.J. JhotiH. Fragment-based lead discovery using X-ray crystallography.J. Med. Chem.200548240341310.1021/jm049577815658854
    [Google Scholar]
  91. DaviesT.G. WixtedW.E. CoyleJ.E. JonesG.C. HearnK. McMenaminR. NortonD. RichS.J. RichardsonC. SaxtyG. WillemsH.M.G. WoolfordA.J.A. CottomJ.E. KouJ.P. YonchukJ.G. FeldserH.G. SanchezY. FoleyJ.P. BologneseB.J. LoganG. PodolinP.L. YanH. CallahanJ.F. HeightmanT.D. KernsJ.K. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: Nuclear factor erythroid 2-related factor 2 (KEAP1: NRF2) protein–protein interaction with high cell potency identified by fragment-based discovery.J. Med. Chem.20165983991400610.1021/acs.jmedchem.6b0022827031670
    [Google Scholar]
  92. SkarzynskiT. ThorpeJ. Industrial perspective on X-ray data collection and analysis.Acta Crystallogr. D Biol. Crystallogr.200662110210710.1107/S090744490503428116369099
    [Google Scholar]
  93. LoM.C. AulabaughA. JinG. CowlingR. BardJ. MalamasM. EllestadG. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery.Anal. Biochem.2004332115315910.1016/j.ab.2004.04.03115301960
    [Google Scholar]
  94. VedadiM. NiesenF.H. HassaniA.A. FedorovO.Y. FinertyP.J.Jr WasneyG.A. YeungR. ArrowsmithC. BallL.J. BerglundH. HuiR. MarsdenB.D. NordlundP. SundstromM. WeigeltJ. EdwardsA.M. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination.Proc. Natl. Acad. Sci.200610343158351584010.1073/pnas.060522410317035505
    [Google Scholar]
  95. MashalidisE.H. ŚledźP. LangS. AbellC. A three-stage biophysical screening cascade for fragment-based drug discovery.Nat. Protoc.20138112309232410.1038/nprot.2013.13024157549
    [Google Scholar]
  96. WillemsenJ.M. WienkenC.J. BraunD. BaaskeP. DuhrS. Molecular interaction studies using microscale thermophoresis.Assay Drug Dev. Technol.20119434235310.1089/adt.2011.038021812660
    [Google Scholar]
  97. MeibyE. SimmoniteH. le StratL. DavisB. MatassovaN. MooreJ.D. MrosekM. MurrayJ. HubbardR.E. OhlsonS. Fragment screening by weak affinity chromatography: Comparison with established techniques for screening against HSP90.Anal. Chem.201385146756676610.1021/ac400715t23806099
    [Google Scholar]
  98. ShengC. ZhangW. Fragment informatics and computational fragment-based drug design: An overview and update.Med. Res. Rev.201333355459810.1002/med.2125522430881
    [Google Scholar]
  99. WielensJ. HeadeyS.J. RhodesD.I. MulderR.J. DolezalO. DeadmanJ.J. NewmanJ. ChalmersD.K. ParkerM.W. PeatT.S. ScanlonM.J. Parallel screening of low molecular weight fragment libraries: Do differences in methodology affect hit identification?SLAS Discov.201318214715910.1177/108705711246597923139382
    [Google Scholar]
  100. CongreveM. ChessariG. TisiD. WoodheadA.J. Recent developments in fragment-based drug discovery.J. Med. Chem.200851133661368010.1021/jm800037318457385
    [Google Scholar]
  101. HowardN. AbellC. BlakemoreW. ChessariG. CongreveM. HowardS. JhotiH. MurrayC.W. SeaversL.C.A. van MontfortR.L.M. Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors.J. Med. Chem.20064941346135510.1021/jm050850v16480269
    [Google Scholar]
  102. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  103. PotterA. OldfieldV. NunnsC. FromontC. RayS. NorthfieldC.J. BryantC.J. ScraceS.F. RobinsonD. MatossovaN. BakerL. DokurnoP. SurgenorA.E. DavisB. RichardsonC.M. MurrayJ.B. MooreJ.D. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution.Bioorg. Med. Chem. Lett.201020226483648810.1016/j.bmcl.2010.09.06320932746
    [Google Scholar]
  104. ErlansonD.A. Introduction to fragment-based drug discovery.Top. Curr. Chem.201231713221695633
    [Google Scholar]
  105. LewisW.G. GreenL.G. GrynszpanF. RadićZ. CarlierP.R. TaylorP. FinnM.G. SharplessK.B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks.Angew. Chem. Int. Ed.20024161053105710.1002/1521‑3773(20020315)41:6<1053::AID‑ANIE1053>3.0.CO;2‑412491310
    [Google Scholar]
  106. BourneY. KolbH.C. RadićZ. SharplessK.B. TaylorP. MarchotP. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation.Proc. Natl. Acad. Sci.200410161449145410.1073/pnas.030820610014757816
    [Google Scholar]
  107. EdinkE. RucktooaP. RetraK. AkdemirA. NaharT. ZuiderveldO. van ElkR. JanssenE. van NieropP. van KoezenM.J. SmitA.B. SixmaT.K. LeursR. de EschI.J.P. Fragment growing induces conformational changes in acetylcholine-binding protein: A structural and thermodynamic analysis.J. Am. Chem. Soc.2011133145363537110.1021/ja110571r21322593
    [Google Scholar]
  108. WangZ.Z. ShiX.X. HuangG.Y. HaoG.F. YangG.F. Fragment-based drug design facilitates selective kinase inhibitor discovery.Trends Pharmacol. Sci.202142755156510.1016/j.tips.2021.04.00133958239
    [Google Scholar]
  109. GuillonR. RahimovaR. Preeti EgronD. RouanetS. DumontetC. AghajariN. JordheimL.P. ChaloinL. PeyrottesS. Lead optimization and biological evaluation of fragment-based cN-II inhibitors.Eur. J. Med. Chem.2019168284410.1016/j.ejmech.2019.02.04030798051
    [Google Scholar]
  110. ShiX.X. LiJ.Y. ChenQ. ZhuX.L. HaoG.F. YangG.F. Development of a web-based laboratory class to reduce the challenges in teaching fragment-based drug design.J. Chem. Educ.202097242743610.1021/acs.jchemed.9b00198
    [Google Scholar]
  111. MannholdR. KubinyiH. FolkersG. Fragment-based drug discovery: lessons and outlook.John Wiley & Sons2015
    [Google Scholar]
  112. BollagG. TsaiJ. ZhangJ. ZhangC. IbrahimP. NolopK. HirthP. Vemurafenib: The first drug approved for BRAF-mutant cancer.Nat. Rev. Drug Discov.2012111187388610.1038/nrd384723060265
    [Google Scholar]
  113. DeeksE.D. Venetoclax: First global approval.Drugs201676997998710.1007/s40265‑016‑0596‑x27260335
    [Google Scholar]
  114. MarkhamA. Erdafitinib: First global approval.Drugs20197991017102110.1007/s40265‑019‑01142‑931161538
    [Google Scholar]
  115. LiX. SongY. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review.Eur. J. Med. Chem.202326011577210.1016/j.ejmech.2023.11577237659195
    [Google Scholar]
  116. AlamriM.A. QamarT.M. MirzaM.U. AlqahtaniS.M. FroeyenM. ChenL.L. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches.J. Pharm. Anal.202010654655910.1016/j.jpha.2020.08.01232874702
    [Google Scholar]
  117. IkramN. MirzaM.U. VanmeertM. FroeyenM. Salo-AhenO.M.H. TahirM. QaziA. AhmadS. Inhibition of oncogenic kinases: An in vitro validated computational approach identified potential multi-target anticancer compounds.Biomolecules20199412410.3390/biom904012430925835
    [Google Scholar]
  118. KhalidH. LandryK.B. IjazB. AshfaqU.A. AhmedM. KanwalA. FroeyenM. MirzaM.U. Discovery of novel hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase.Infect. Genet. Evol.20208410437110.1016/j.meegid.2020.10437132485331
    [Google Scholar]
  119. MirzaM. IkramN. Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40.Int. J. Mol. Sci.20161711174810.3390/ijms1711174827792169
    [Google Scholar]
  120. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. KakkonenL.M. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  121. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. An updated review of computer-aided drug design and its application to COVID-19.BioMed Res. Int.2021202111810.1155/2021/885305634258282
    [Google Scholar]
  122. ChoudhuryC. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease.J. Biomol. Struct. Dyn.202139103733374610.1080/07391102.2020.177142432452282
    [Google Scholar]
  123. HatadaR. OkuwakiK. MochizukiY. HandaY. FukuzawaK. KomeijiY. OkiyamaY. TanakaS. Fragment molecular orbital based interaction analyses on COVID-19 main protease-inhibitor N3 complex (PDB ID: 6LU7).J. Chem. Inf. Model.20206073593360210.1021/acs.jcim.0c0028332539372
    [Google Scholar]
  124. CoutardB. DecrolyE. LiC. SharffA. LescarJ. BricogneG. BarralK. Assessment of dengue virus helicase and methyltransferase as targets for fragment-based drug discovery.Antiviral Res.2014106617010.1016/j.antiviral.2014.03.01324704437
    [Google Scholar]
  125. HofferL. RenaudJ.P. HorvathD. Fragment-based drug design: Computational & experimental state of the art.Comb. Chem. High Throughput Screen.201114650052010.2174/13862071179576788421521152
    [Google Scholar]
  126. LovingK. AlbertsI. ShermanW. Computational approaches for fragment-based and de novo design.Curr. Top. Med. Chem.2010101143210.2174/15680261079023230519929832
    [Google Scholar]
  127. KanakavetiV. ShanmugamA. RamakrishnanC. AnooshaP. SakthivelR. RayalaS.K. GromihaM.M. Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery.Adv. Protein Chem. Struct. Biol.2020121254710.1016/bs.apcsb.2019.11.01332312424
    [Google Scholar]
  128. BungN. KrishnanS.R. BulusuG. RoyA. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence.Future Med. Chem.202113657558510.4155/fmc‑2020‑026233590764
    [Google Scholar]
  129. KhanR.J. JhaR.K. AmeraG.M. JainM. SinghE. PathakA. SinghR.P. MuthukumaranJ. SinghA.K. Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase.J. Biomol. Struct. Dyn.20213982679269210.1080/07391102.2020.175357732266873
    [Google Scholar]
  130. PantS. SinghM. RavichandiranV. MurtyU.S.N. SrivastavaH.K. Peptide-like and small-molecule inhibitors against Covid-19.J. Biomol. Struct. Dyn.20213982904291310.1080/07391102.2020.175751032306822
    [Google Scholar]
  131. AanouzI. BelhassanA. El-KhatabiK. LakhlifiT. El-ldrissiM. BouachrineM. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations.J. Biomol. Struct. Dyn.20213982971297910.1080/07391102.2020.175879032306860
    [Google Scholar]
  132. EnmozhiS.K. RajaK. SebastineI. JosephJ. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach.J. Biomol. Struct. Dyn.20213993092309832329419
    [Google Scholar]
  133. IslamR. ParvesM.R. PaulA.S. UddinN. RahmanM.S. MamunA.A. HossainM.N. AliM.A. HalimM.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2.J. Biomol. Struct. Dyn.20213993213322432340562
    [Google Scholar]
  134. KissR. SandorM. SzalaiF.A. A public web service for drug discovery.J. Cheminform.2012411122236646
    [Google Scholar]
  135. SchrödingerL. Schrödinger release 2018-4: Desmond molecular dynamics system.Maestro-Desmond Interoperability ToolsDE Shaw ResearchNew York, NY2018
    [Google Scholar]
  136. SinghN. PydiS.P. UpadhyayaJ. ChelikaniP. Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs).J. Biol. Chem.201128641360323604110.1074/jbc.M111.24698321852241
    [Google Scholar]
  137. Di PizioA. NivM.Y. Promiscuity and selectivity of bitter molecules and their receptors.Bioorg. Med. Chem.201523144082409110.1016/j.bmc.2015.04.02525934224
    [Google Scholar]
  138. PydiS.P. JaggupilliA. NelsonK.M. AbramsS.R. BhullarR.P. LoewenM.C. ChelikaniP. Abscisic acid acts as a blocker of the bitter taste G protein-coupled receptor T2R4.Biochemistry201554162622263110.1021/acs.biochem.5b0026525844797
    [Google Scholar]
  139. FlorianoW.B. HallS. VaidehiN. KimU. DraynaD. GoddardW.A.III Modeling the human PTC bitter-taste receptor interactions with bitter tastants.J. Mol. Model.200612693194110.1007/s00894‑006‑0102‑616607493
    [Google Scholar]
  140. BiarnésX. MarchioriA. GiorgettiA. LanzaraC. GaspariniP. CarloniP. BornS. BrockhoffA. BehrensM. MeyerhofW. Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor.PLoS One201058e1239410.1371/journal.pone.001239420811630
    [Google Scholar]
  141. MiguetL. ZhangZ. GrigorovM.G. Computational studies of ligand-receptor interactions in bitter taste receptors.J. Recept. Signal Transduct. Res.2006265-661163010.1080/1079989060092821017118801
    [Google Scholar]
  142. TanJ. AbrolR. TrzaskowskiB. GoddardW.A.III 3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP).J. Chem. Inf. Model.20125271875188510.1021/ci300133a22656649
    [Google Scholar]
  143. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.20151263243250
    [Google Scholar]
  144. AndolaP. PagagJ. LaxmanD. GuruprasadL. Fragment-based inhibitor design for SARS-CoV2 main protease.Struct. Chem.20223351467148710.1007/s11224‑022‑01995‑z35811782
    [Google Scholar]
  145. KumariR. KumarR. LynnA. LynnA. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m24850022
    [Google Scholar]
  146. BakanA. MeirelesL.M. BaharI. ProDy: Protein dynamics inferred from theory and experiments.Bioinformatics201127111575157710.1093/bioinformatics/btr16821471012
    [Google Scholar]
  147. EyalE. YangL.W. BaharI. Anisotropic network model: Systematic evaluation and a new web interface.Bioinformatics200622212619262710.1093/bioinformatics/btl44816928735
    [Google Scholar]
  148. RossC. NizamiB. GlenisterM. AmamuddyS.O. AtilganA.R. AtilganC. BishopT.Ö. MODE-TASK: Large-scale protein motion tools.Bioinformatics201834213759376310.1093/bioinformatics/bty42729850770
    [Google Scholar]
  149. HubbardR.E. Fragment approaches in structure-based drug discovery.J. Synchrotron Radiat.200815322723010.1107/S090904950705666X18421145
    [Google Scholar]
  150. PalmerN. PeakmanT.M. NortonD. ReesD.C. Design and synthesis of dihydroisoquinolones for fragment-based drug discovery (FBDD).Org. Biomol. Chem.20161451599161010.1039/C5OB02461G26741115
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673294251240229070740
Loading
/content/journals/cmc/10.2174/0109298673294251240229070740
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): covaxi; fragment-based drug discovery; inhibitor; main protease; ritonavir; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test