Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Parkinson’s disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α-synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using beta-carboline (also known as “β-carboline”) and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and indoles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties.

In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230913100624
2023-09-20
2025-01-19
Loading full text...

Full text loading...

References

  1. FeiginV.L. NicholsE. AlamT. BannickM.S. BeghiE. BlakeN. CulpepperW.J. DorseyE.R. ElbazA. EllenbogenR.G. FisherJ.L. FitzmauriceC. GiussaniG. GlennieL. JamesS.L. JohnsonC.O. KassebaumN.J. LogroscinoG. MarinB. Mountjoy-VenningW.C. NguyenM. Ofori-AsensoR. PatelA.P. PiccininniM. RothG.A. SteinerT.J. StovnerL.J. SzoekeC.E.I. TheadomA. VollsetS.E. WallinM.T. WrightC. ZuntJ.R. AbbasiN. Abd-AllahF. AbdelalimA. AbdollahpourI. AboyansV. AbrahaH.N. AcharyaD. AdamuA.A. AdebayoO.M. AdeoyeA.M. AdsuarJ.C. AfaridehM. AgrawalS. AhmadiA. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemiR.O. AkseerN. Al-EyadhyA. Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Bi-adgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Kara-mi, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mo-hammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Neurol.201918545948010.1016/S1474‑4422(18)30499‑X
    [Google Scholar]
  2. KowalS.L. DallT.M. ChakrabartiR. StormM.V. JainA. The current and projected economic burden of Parkinson’s disease in the United States.Mov. Disord.201328331131810.1002/mds.25292
    [Google Scholar]
  3. DorseyE.R. ConstantinescuR. ThompsonJ.P. BiglanK.M. HollowayR.G. KieburtzK. MarshallF.J. RavinaB.M. SchifittoG. SiderowfA. TannerC.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030.Neurology200768538438610.1212/01.wnl.0000247740.47667.03
    [Google Scholar]
  4. AmmarA. TrabelsiK. HermassiS. KolahiA.A. MansourniaM. JahramiH. BoukhrisO. BoujelbaneM. GlennJ. ClarkC. NejadghaderiA. PuceL. SafiriS. ChtourouH. SchöllhornW. ZmijewskiP. BragazziN. Global disease burden attributed to low physical activity in 204 countries and territories from 1990 to 2019: Insights from the global burden of disease 2019 study.Biol. Sport202340383585510.5114/biolsport.2023.121322
    [Google Scholar]
  5. LonikarN. ChoudhariP. BhusnuareO. In silico analysis of marine indole alkaloids for design of adenosine A2A receptor antagonist.J. Biomol. Struct. Dyn.202139103515352210.1080/07391102.2020.1765874
    [Google Scholar]
  6. GermanD.C. ManayeK. SmithW.K. WoodwardD.J. SaperC.B. Midbrain dopaminergic cell loss in parkinson’s disease: Computer visualization.Ann. Neurol.198926450751410.1002/ana.410260403
    [Google Scholar]
  7. LothariusJ. BrundinP. Pathogenesis of parkinson’s disease: Dopamine, vesicles and α-synuclein.Nat. Rev. Neurosci.200231293294210.1038/nrn983
    [Google Scholar]
  8. GottwaldM.D. AminoffM.J. New frontiers in the pharmacological management of Parkinson's disease.Drugs Today.200844753154510.1358/dot.2008.44.7.1217105
    [Google Scholar]
  9. SimuniT. JaggiJ.L. MulhollandH. HurtigH.I. ColcherA. SiderowfA.D. RavinaB. SkolnickB.E. GoldsteinR. SternM.B. BaltuchG.H. Bilateral stimulation of the subthalamic nucleus in patients with Parkinson disease: A study of efficacy and safety.J. Neurosurg.200296466667210.3171/jns.2002.96.4.0666
    [Google Scholar]
  10. AnsahT.A. FergusonM.C. NayyarT. DeutchA.Y. Age- and duration-dependent effects of MPTP on cortical serotonin systems.Neurosci. Lett.2011504216016410.1016/j.neulet.2011.09.026
    [Google Scholar]
  11. JankovicJ. Parkinson’s disease: Clinical features and diagnosis.J. Neurol. Neurosurg. Psychiatry200879436837610.1136/jnnp.2007.131045
    [Google Scholar]
  12. HurleyM.J. BrandonB. GentlemanS.M. DexterD.T. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins.Brain201313672077209710.1093/brain/awt134
    [Google Scholar]
  13. BłaszczykJ.W. Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis.Front. Neurosci.20161026910.3389/fnins.2016.00269
    [Google Scholar]
  14. AosakiT. MiuraM. SuzukiT. NishimuraK. MasudaM. Acetylcholine-dopamine balance hypothesis in the striatum: An update.Geriatr. Gerontol. Int.201010S148S15710.1111/j.1447‑0594.2010.00588.x
    [Google Scholar]
  15. StefanisL. α-Synuclein in Parkinson’s disease.Cold Spring Harb. Perspect. Med.201222a00939910.1101/cshperspect.a009399
    [Google Scholar]
  16. MouradianM.M. Recent advances in the genetics and pathogenesis of Parkinson disease.Neurology200258217918510.1212/WNL.58.2.179
    [Google Scholar]
  17. DauerW. KholodilovN. VilaM. TrillatA.C. GoodchildR. LarsenK.E. StaalR. TieuK. SchmitzY. YuanC.A. RochaM. Jackson-LewisV. HerschS. SulzerD. PrzedborskiS. BurkeR. HenR. Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP.Proc. Natl. Acad. Sci. USA20029922145241452910.1073/pnas.172514599
    [Google Scholar]
  18. Ostrerova-GoltsN. PetrucelliL. HardyJ. LeeJ.M. FarerM. WolozinB. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity.J. Neurosci.200020166048605410.1523/JNEUROSCI.20‑16‑06048.2000
    [Google Scholar]
  19. FowlerJ.S. VolkowN.D. WangG.J. LoganJ. PappasN. SheaC. MacGregorR. Age-related increases in brain monoamine oxidase B in living healthy human subjects.Neurobiol. Aging199718443143510.1016/S0197‑4580(97)00037‑7
    [Google Scholar]
  20. AndreiC. DazziC. LottiL. TorrisiM.R. ChiminiG. RubartelliA. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles.Mol. Biol. Cell19991051463147510.1091/mbc.10.5.1463
    [Google Scholar]
  21. ZhouS. SchuetzJ.D. BuntingK.D. ColapietroA.M. SampathJ. MorrisJ.J. LagutinaI. GrosveldG.C. OsawaM. NakauchiH. SorrentinoB.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype.Nat. Med.2001791028103410.1038/nm0901‑1028
    [Google Scholar]
  22. FliegerO. EnglingA. BucalaR. LueH. NickelW. BernhagenJ. Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter.FEBS Lett.20035511-3788610.1016/S0014‑5793(03)00900‑1
    [Google Scholar]
  23. LoebingerM.R. GiangrecoA. GrootK.R. PrichardL. AllenK. SimpsonC. BazleyL. NavaniN. TibrewalS. DaviesD. JanesS.M. Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter block-ade.Br. J. Cancer200898238038710.1038/sj.bjc.6604185
    [Google Scholar]
  24. FryeB.C. HalfterS. DjudjajS. MuehlenbergP. WeberS. RaffetsederU. En-NiaA. KnottH. BaronJ.M. DooleyS. BernhagenJ. MertensP.R. Y‐box protein‐1 is actively secreted through a non‐classical pathway and acts as an extracellular mitogen.EMBO Rep.200910778378910.1038/embor.2009.81
    [Google Scholar]
  25. MaitiP. MannaJ. DunbarG.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments.Transl. Neurodegener.2017612810.1186/s40035‑017‑0099‑z
    [Google Scholar]
  26. KitadaT. AsakawaS. HattoriN. MatsumineH. YamamuraY. MinoshimaS. YokochiM. MizunoY. ShimizuN. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism.nature1998392667660560810.1038/33416
    [Google Scholar]
  27. BouhoucheA. TibarH. Ben El HajR. El BayadK. RazineR. TazroutS. SkalliA. BouslamN. ElouardiL. BenomarA. YahyaouiM. RegraguiW. LRRK2 G2019S mutation: Prevalence and clinical features in moroccans with Parkinson’s disease.Parkinsons Dis.201720171710.1155/2017/2412486
    [Google Scholar]
  28. RubinszteinD.C. The roles of intracellular protein-degradation pathways in neurodegeneration.Nature2006443711378078610.1038/nature05291
    [Google Scholar]
  29. ChanN.C. SalazarA.M. PhamA.H. SweredoskiM.J. KolawaN.J. GrahamR.L.J. HessS. ChanD.C. Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy.Hum. Mol. Genet.20112091726173710.1093/hmg/ddr048
    [Google Scholar]
  30. DokladnyK. MyersO.B. MoseleyP.L. Heat shock response and autophagy—cooperation and control.Autophagy201511220021310.1080/15548627.2015.1009776
    [Google Scholar]
  31. MaitiP. MannaJ. VeleriS. FrautschyS. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin.BioMed Res. Int.2014201411410.1155/2014/495091
    [Google Scholar]
  32. WyttenbachA. Role of heat shock proteins during polyglutamine neurodegeneration.J. Mol. Neurosci.2004231-206909610.1385/JMN:23:1‑2:069
    [Google Scholar]
  33. ParkerW.D.Jr ParksJ.K. SwerdlowR.H. Complex I deficiency in Parkinson’s disease frontal cortex.Brain Res.2008118921521810.1016/j.brainres.2007.10.061
    [Google Scholar]
  34. CannonJ.R. TapiasV. NaH.M. HonickA.S. DroletR.E. GreenamyreJ.T. A highly reproducible rotenone model of Parkinson’s disease.Neurobiol. Dis.200934227929010.1016/j.nbd.2009.01.016
    [Google Scholar]
  35. AndersonG. NoorianA. TaylorG. AnithaM. BernhardD. SrinivasanS. GreeneJ. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease.Exp. Neurol.2007207141210.1016/j.expneurol.2007.05.010
    [Google Scholar]
  36. BezardE. DoveroS. BioulacB. GrossC.E. Kinetics of nigral degeneration in a chronic model of MPTP-treated mice.Neurosci. Lett.19972341475010.1016/S0304‑3940(97)00663‑0
    [Google Scholar]
  37. MarkL.P. ProstR.W. UlmerJ.L. SmithM.M. DanielsD.L. StrottmannJ.M. BrownW.D. Hacein-BeyL. Pictorial review of glutamate excitotoxicity: Fundamental concepts for neuroimaging.AJNR Am. J. Neuroradiol.2001221018131824 11733308
    [Google Scholar]
  38. DongX. WangY. QinZ. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases.Acta Pharmacol. Sin.200930437938710.1038/aps.2009.24
    [Google Scholar]
  39. Paisán-RuízC. JainS. EvansE.W. GilksW.P. SimónJ. van der BrugM. de MunainA.L. AparicioS. GilA.M. KhanN. JohnsonJ. MartinezJ.R. NichollD. CarreraI.M. PeňaA.S. de SilvaR. LeesA. Martí-MassóJ.F. Pérez-TurJ. WoodN.W. SingletonA.B. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease.Neuron200444459560010.1016/j.neuron.2004.10.023
    [Google Scholar]
  40. GalterD. WesterlundM. CarmineA. LindqvistE. SydowO. OlsonL. LRRK2 expression linked to dopamine-innervated areas.Ann. Neurol.200659471471910.1002/ana.20808
    [Google Scholar]
  41. HauserR.A. FreemanT.B. SnowB.J. NauertM. GaugerL. KordowerJ.H. OlanowC.W. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease.Arch. Neurol.199956217918710.1001/archneur.56.2.179
    [Google Scholar]
  42. PolymeropoulosM.H. HigginsJ.J. GolbeL.I. JohnsonW.G. IdeS.E. Di IorioG. SangesG. StenroosE.S. PhoL.T. SchafferA.A. LazzariniA.M. NussbaumR.L. DuvoisinR.C. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23.Sci.199627452901197119910.1126/science.274.5290.1197
    [Google Scholar]
  43. KuhlaA. LudwigS.C. KuhlaB. MünchG. VollmarB. Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer’s disease brain.Neurobiol. Aging201536275376110.1016/j.neurobiolaging.2014.09.025
    [Google Scholar]
  44. IpC.W. KlausL.C. KarikariA.A. VisanjiN.P. BrotchieJ.M. LangA.E. VolkmannJ. KoprichJ.B. AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: A new mouse model for Parkinson’s disease.Acta Neuropathol. Commun.2017511110.1186/s40478‑017‑0416‑x
    [Google Scholar]
  45. RichfieldE.K. ThiruchelvamM.J. Cory-SlechtaD.A. WuertzerC. GainetdinovR.R. CaronM.G. Di MonteD.A. FederoffH.J. Behavioral and neurochemical effects of wild-type and mutated human α-synuclein in transgenic mice.Exp. Neurol.20021751354810.1006/exnr.2002.7882
    [Google Scholar]
  46. JeonM.Y. LeeW.Y. KangH.Y. ChungE.J. The effects of L-3,4-dihydroxyphenylalanine and dopamine agonists on dopamine neurons in the progressive hemiparkinsonian rat models.Neurol. Res.200729328929510.1179/174313206X153996
    [Google Scholar]
  47. BarbeauA. L-dopa therapy in Parkinson’s disease: A critical review of nine years’ experience.Can. Med. Assoc. J.19691011359 4903690
    [Google Scholar]
  48. FosterH.D. HofferA. The two faces of L-DOPA: Benefits and adverse side effects in the treatment of Encephalitis lethargica, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis.Med. Hypotheses200462217718110.1016/S0306‑9877(03)00318‑9
    [Google Scholar]
  49. CenciM.A. Presynaptic mechanisms of l-DOPA-induced dyskinesia: The findings, the debate, and the therapeutic implications.Front. Neurol.2014524210.3389/fneur.2014.00242
    [Google Scholar]
  50. KorczynA.D. Drug treatment of Parkinson’s disease.Dialogues Clin. Neurosci.20226331532210.31887/DCNS.2004.6.3/akorczyn
    [Google Scholar]
  51. AntoniniA. AbbruzzeseG. BaroneP. BonuccelliU. LopianoL. OnofrjM. ZappiaM. QuattroneA. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): Relevance for motor and non-motor features.Neuropsychiatr. Dis. Treat.200841110.2147/NDT.S2404
    [Google Scholar]
  52. BrooksD.J. Dopamine agonists: Their role in the treatment of Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry200068668568910.1136/jnnp.68.6.685
    [Google Scholar]
  53. TintnerR. JankovicJ. Dopamine agonists in Parkinson’s disease.Expert Opin. Investig. Drugs200312111803182010.1517/13543784.12.11.1803
    [Google Scholar]
  54. JankovicJ. AguilarL.G. Current approaches to the treatment of Parkinson’s disease.Neuropsychiatr. Dis. Treat.20084474375710.2147/NDT.S2006
    [Google Scholar]
  55. ChenJ.J. MarshL. Anxiety in Parkinson’s disease: Identification and management.Ther. Adv. Neurol. Disord.201471525910.1177/1756285613495723
    [Google Scholar]
  56. DurifF. DebillyB. GalitzkyM. MorandD. VialletF. BorgM. ThoboisS. BroussolleE. RascolO. Clozapine improves dyskinesias in Parkinson disease: A double-blind, placebo-controlled study.Neurology200462338138810.1212/01.WNL.0000110317.52453.6C
    [Google Scholar]
  57. HuffmanJ.C. AlpertJ.E. An approach to the psychopharmacologic care of patients: Antidepressants, antipsychotics, anxiolytics, mood stabilizers, and natural remedies.Med. Clin. North Am.20109461141116010.1016/j.mcna.2010.08.009
    [Google Scholar]
  58. WinkM. In Alkaloids.Springer1998114410.1007/978‑1‑4757‑2905‑4_2
    [Google Scholar]
  59. RobertsM.F. Alkaloids: Biochemistry, ecology, and medicinal applications.Springer Science & Business Media201310.1007/978‑1‑4757‑2905‑4
    [Google Scholar]
  60. DeyP. KunduA. KumarA. GuptaM. LeeB.M. BhaktaT. DashS. KimH.S. Chapter 15: Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).in Recent advances in natural products analysis.Chapter 15Elsevier202050556710.1016/B978‑0‑12‑816455‑6.00015‑9
    [Google Scholar]
  61. ConnollyJ. HillR. RobinsonJ. Advances in flavours and fragrances. Dictionary of Terpenoids.LondonChapman & Hall199167773610.1007/978‑1‑4899‑4513‑6
    [Google Scholar]
  62. TalapatraS.K. TalapatraB. Alkaloids. general introduction.In Chemistry of Plant Natural Products.Springer201571772410.1007/978‑3‑642‑45410‑3_15
    [Google Scholar]
  63. HenningC.P. Compuestos secundarios nitrogenados: Alcaloides.Productos Naturales Vegetales201318
    [Google Scholar]
  64. GaoF. LiY.Y. WangD. HuangX. LiuQ. Diterpenoid alkaloids from the Chinese traditional herbal Fuzi and their cytotoxic activity.Molecules20121755187519410.3390/molecules17055187
    [Google Scholar]
  65. WangF.P. ChenQ.H. LiuX.Y. Diterpenoid alkaloids.Nat. Prod. Rep.201027452957010.1039/b916679c
    [Google Scholar]
  66. BorzeixM. CahnJ. Cerebral antioedematous effect of Teproside and of some vincamine derivatives.Int. J. Clin. Pharmacol.198444259261 6500773
    [Google Scholar]
  67. NgY.P. OrT.C.T. IpN.Y. Plant alkaloids as drug leads for Alzheimer’s disease.Neurochem. Int.20158926027010.1016/j.neuint.2015.07.018
    [Google Scholar]
  68. AmirkiaV. HeinrichM. Alkaloids as drug leads – A predictive structural and biodiversity-based analysis.Phytochem. Lett.201410xlviiiliii10.1016/j.phytol.2014.06.015
    [Google Scholar]
  69. DeyA. Plant-derived alkaloids: A promising window for neuroprotective drug discovery.Discovery and development of neuroprotective agents from natural products.Elsevier201823732010.1016/B978‑0‑12‑809593‑5.00006‑9
    [Google Scholar]
  70. CushnieT.P.T. CushnieB. LambA.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities.Int. J. Antimicrob. Agents201444537738610.1016/j.ijantimicag.2014.06.001
    [Google Scholar]
  71. CortesN. Posada-DuqueR.A. AlvarezR. AlzateF. BerkovS. Cardona-GómezG.P. OsorioE. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: A comparative study.Life Sci.2015122425010.1016/j.lfs.2014.12.011
    [Google Scholar]
  72. EstévezV. VillacampaM. MenéndezJ.C. Recent advances in the synthesis of pyrroles by multicomponent reactions.Chem. Soc. Rev.201443134633465710.1039/C3CS60015G
    [Google Scholar]
  73. KaurR. AroraS. Alkaloids-important therapeutic secondary metabolites of plant origin.J. Crit. Rev.20152318
    [Google Scholar]
  74. Gutiérrez-GrijalvaE.P. López-MartínezL.X. Contreras-AnguloL.A. Elizalde-RomeroC.A. HerediaJ.B. Plant Alkaloids: Structures and bioactive properties. Plant-derived bioactives.Springer20208511710.1007/978‑981‑15‑2361‑8_5
    [Google Scholar]
  75. GoelP. AlamO. NaimM.J. NawazF. IqbalM. AlamM.I. Recent advancement of piperidine moiety in treatment of cancer- A review.Eur. J. Med. Chem.201815748050210.1016/j.ejmech.2018.08.017
    [Google Scholar]
  76. KolevaI.I. van BeekT.A. SoffersA.E.M.F. DusemundB. RietjensI.M.C.M. Alkaloids in the human food chain - Natural occurrence and possible adverse effects.Mol. Nutr. Food Res.2012561305210.1002/mnfr.201100165
    [Google Scholar]
  77. MaoZ. HuangS. GaoL. WangA. HuangP. A novel and versatile method for the enantioselective syntheses of tropane alkaloids.Sci. China Chem.201457225226410.1007/s11426‑013‑4998‑2
    [Google Scholar]
  78. JirschitzkaJ. SchmidtG.W. ReicheltM. SchneiderB. GershenzonJ. D’AuriaJ.C. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae.Proc. Natl. Acad. Sci. USA201210926103041030910.1073/pnas.1200473109
    [Google Scholar]
  79. BylerK.G. WangC. SetzerW.N. Quinoline alkaloids as intercalative topoisomerase inhibitors.J. Mol. Model.200915121417142610.1007/s00894‑009‑0501‑6
    [Google Scholar]
  80. CaiX.H. LiY. SuJ. LiuY.P. LiX.N. LuoX.D. Novel indole and quinoline alkaloids from Melodinus yunnanensis.Nat. Prod. Bioprospect.201111252810.1007/s13659‑011‑0001‑0
    [Google Scholar]
  81. KhanA.Y. Suresh KumarG. Natural isoquinoline alkaloids: Binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme.Biophys. Rev.20157440742010.1007/s12551‑015‑0183‑5
    [Google Scholar]
  82. BhadraK. KumarG.S. Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design.Med. Res. Rev.201131682186210.1002/med.20202
    [Google Scholar]
  83. SzőkeÉ. LemberkovicsÉ. KursinszkiL. Alkaloids derived from lysine: Piperidine alkaloids.Natu. Produc201330334110.1007/978‑3‑642‑22144‑6_10
    [Google Scholar]
  84. GuirimandG. CourdavaultV. St-PierreB. BurlatV. Biosynthesis and regulation of alkaloids.Plant developmental biology-biotechnological perspectives.Springer201013916010.1007/978‑3‑642‑04670‑4_8
    [Google Scholar]
  85. SagiS. AvulaB. WangY.H. KhanI.A. Quantification and characterization of alkaloids from roots of Rauwolfia serpentina using ultra-high performance liquid chromatography-photo diode array-mass spectrometry.Anal. Bioanal. Chem.2016408117719010.1007/s00216‑015‑9093‑4
    [Google Scholar]
  86. SilvaV.G. SilvaR.O. DamascenoS.R.B. CarvalhoN.S. PrudêncioR.S. AragãoK.S. GuimarãesM.A. CamposS.A. VérasL.M.C. GodejohannM. LeiteJ.R.S.A. BarbosaA.L.R. MedeirosJ-V.R. Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus.J. Nat. Prod.20137661071107710.1021/np400099m
    [Google Scholar]
  87. DebnathB. SinghW.S. DasM. GoswamiS. SinghM.K. MaitiD. MannaK. Role of plant alkaloids on human health: A review of biological activities.Mater. Today Chem.20189567210.1016/j.mtchem.2018.05.001
    [Google Scholar]
  88. DavisR.A. CarrollA.R. QuinnR.J. Eudistomin V, a new β-Carboline from the Australian ascidian Pseudodistoma aureum.J. Nat. Prod.199861795996010.1021/np9800452
    [Google Scholar]
  89. Klein-JúniorL.C. CrettonS. Vander HeydenY. GasperA.L. Nejad-EbrahimiS. ChristenP. HenriquesA.T. Bioactive azepine-indole alkaloids from Psychotria nemorosa.J. Nat. Prod.202083485286310.1021/acs.jnatprod.9b00469
    [Google Scholar]
  90. SchmidtF. DouaronG.L. ChampyP. AmarM. Séon-MénielB. Raisman-VozariR. FigadèreB. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons.Bioorg. Med. Chem.201018145103511310.1016/j.bmc.2010.05.067
    [Google Scholar]
  91. dos Santos PassosC. Klein-JúniorL.C. de Mello AndradeJ.M. MattéC. HenriquesA.T. The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silico and in vitro approaches.Rev. Bras. Farmacogn.201525438238610.1016/j.bjp.2015.07.002
    [Google Scholar]
  92. Kozanecka-OkupnikW. JasiewiczB. PospiesznyT. JastrząbR. SkrobańskaM. MrówczyńskaL. Spectroscopy, molecular modeling and anti-oxidant activity studies on novel conjugates containing indole and uracil moiety.J. Mol. Struct.2018116913013710.1016/j.molstruc.2018.05.057
    [Google Scholar]
  93. KumarS. SinghA. KumarB. Screening of monoterpene indole alkaloids in six Rauwolfia species by ultra‐high performance liquid chromatography orbitrap velos pro mass spectrometer.Separ. Sci. Plus20192830030810.1002/sscp.201900029
    [Google Scholar]
  94. SatoY. OyobeN. OgawaT. SuzukiS. AoyamaH. NakamuraT. FujiokaH. ShutoS. ArisawaM. Design, synthesis, and monoamine oxidase inhibitory activity of (+)-cinchonaminone and its simplified derivatives.ACS Med. Chem. Lett.20211291464146910.1021/acsmedchemlett.1c00310
    [Google Scholar]
  95. XiaoX. TongZ. ZhangY. ZhouH. LuoM. HuT. HuP. KongL. LiuZ. YuC. HuangZ. HuL. Novel prenylated indole alkaloids with neuroprotection on sh-sy5y cells against oxidative stress targeting Keap1–Nrf2.Mar. Drugs202220319110.3390/md20030191
    [Google Scholar]
  96. LiY-J. LiJ. XieL. ZhouJ-Y. LiQ-X. YangR-Y. LiuY-P. FuY-H. Monoterpenoid indole alkaloids with potential neuroprotective activities from the stems and leaves of Melodinus cochinchinensis.Nat. Prod. Res.202136205181518810.1080/14786419.2021.1922406
    [Google Scholar]
  97. KrishnanN. MariappanadarV. DhanabalanA.K. DevadasanV. GopinathS.C.B. RamanP. Purification, identification and in silico models of alkaloids from Nardostachys jatamansi — bioactive compounds for neurodegenerative diseases.Biomass Convers. Biorefin.202211210.1007/s13399‑022‑03237‑y
    [Google Scholar]
  98. XuY. WangR. HouT. LiH. HanY. LiY. XuL. LuS. LiuL. ChengJ. WangJ.X. XuQ. LiuY. LiangX. Un-cariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors.Bioorg. Chem.202313010625710.1016/j.bioorg.2022.106257
    [Google Scholar]
  99. SmirnovaO.B. GolovkoT.V. GranikV.G. Carbolines. Part 2: Comparison of some of the properties of α-, γ-, and δ-carbolines (Review).Pharm. Chem. J.201145738940010.1007/s11094‑011‑0641‑8
    [Google Scholar]
  100. DaiJ. DanW. SchneiderU. WangJ. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities.Eur. J. Med. Chem.201815762265610.1016/j.ejmech.2018.08.027
    [Google Scholar]
  101. HerraizT. ChaparroC. Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee.Life Sci.200678879580210.1016/j.lfs.2005.05.074
    [Google Scholar]
  102. YangY.J. LeeJ.J. JinC.M. LimS.C. LeeM.K. Effects of harman and norharman on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells.Eur. J. Pharmacol.20085871-3576410.1016/j.ejphar.2008.03.050
    [Google Scholar]
  103. SamoylenkoV. RahmanM.M. TekwaniB.L. TripathiL.M. WangY.H. KhanS.I. KhanI.A. MillerL.S. JoshiV.C. MuhammadI. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease.J. Ethnopharmacol.2010127235736710.1016/j.jep.2009.10.030
    [Google Scholar]
  104. AdayevT. WegielJ. HwangY.W. Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A).Arch. Biochem. Biophys.2011507221221810.1016/j.abb.2010.12.024
    [Google Scholar]
  105. ShalgumA. GovindarajuluM. MajrashiM. RameshS. CollierW.E. GriffinG. AminR. BradfordC. MooreT. DhanasekaranM. Neuroprotective effects of Hibiscus Sabdariffa against hydrogen peroxide-induced toxicity.J. Herb. Med.201917-1810025310.1016/j.hermed.2018.100253
    [Google Scholar]
  106. NurmaganbetovZ.S. ArystanL.I. MuldaevaG.M. HaydargalievaL.S. AdekenovS.M. Experimental study of antiparkinsonian action of the harmine hydrochloride original compound.Pharmacol. Rep.20197161050105810.1016/j.pharep.2019.06.002
    [Google Scholar]
  107. CaiC.Z. ZhouH.F. YuanN.N. WuM.Y. LeeS.M.Y. RenJ.Y. SuH.X. LuJ.J. ChenX.P. LiM. TanJ-Q. LuJ-H. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation.Phytomedicine20196115284210.1016/j.phymed.2019.152842
    [Google Scholar]
  108. Katchborian-NetoA. SantosW.T. NicácioK.J. CorrêaJ.O.A. MurguM. MartinsT.M.M. GomesD.A. GoesA.M. SoaresM.G. DiasD.F. Chagas-PaulaD.A. PaulaA.C.C. Neuroprotective potential of ayahuasca and untargeted metabolomics analyses: Applicability to Parkinson’s disease.J. Ethnopharmacol.202025511274310.1016/j.jep.2020.112743
    [Google Scholar]
  109. DoskaliyevA. SeidakhmetovaR. TutaiD. GoldaevaK. SurovV. AdekenovS. S. Alkaloids of Peganum harmala L. and their pharmacological activity. Open Access Maced. J. Med. Sci.20219A76677510.3889/oamjms.2021.6654
    [Google Scholar]
  110. XuJ. AoY.L. HuangC. SongX. ZhangG. CuiW. WangY. ZhangX.Q. ZhangZ. Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson’s models via regulating autophagy-lysosome pathway.NPJ Parkinsons Dis.20228110010.1038/s41531‑022‑00361‑4
    [Google Scholar]
  111. SenhajiS. LamchouriF. AkabliT. ToufikH. In vitro antioxidant activities of five β-carboline alkaloids, molecular docking, and dynamic simulations.Struct. Chem.202233388389510.1007/s11224‑022‑01886‑3
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230913100624
Loading
/content/journals/cmc/10.2174/0929867331666230913100624
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alkaloids; indole; MAO-B; Parkinson’s disease; α-synuclein; β-carboline
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test