Skip to content
2000
Volume 31, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Dyslipidemia and altered lipid metabolism are closely involved in the pathogenesis and clinical manifestation of many metabolic and non-metabolic diseases. Therefore, mitigation of pharmacological and nutritional factors together with lifestyle modifications is paramount. One potential nutraceutical exhibiting cell signaling and lipid-modulating properties implicated in dyslipidemias is curcumin. Specifically, recent evidence suggest that curcumin may improve lipid metabolism and prevent dyslipidemia-induced cardiovascular complications several pathways. Although the exact molecular mechanisms involved are not well understood, the evidence presented in this review suggests that curcumin can provide significant lipid benefits modulation of adipogenesis and lipolysis, and prevention or reduction of lipid peroxidation and lipotoxicity different molecular pathways. Curcumin can also improve the lipid profile and reduce dyslipidemia-dependent cardiovascular problems by impacting important mechanisms of fatty acid oxidation, lipid absorption, and cholesterol metabolism. Although only limited direct supporting evidence is available, in this review we assess the available knowledge regarding the possible nutraceutical effects of curcumin on lipid homeostasis and its possible impacts on dyslipidemic cardiovascular events from a mechanistic viewpoint.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230707094644
2023-08-10
2024-11-14
Loading full text...

Full text loading...

References

  1. LiangW. NishinoI. State of the art in muscle lipid diseases.Acta Myol.2010292351621314018
    [Google Scholar]
  2. LeeC-H. OlsonP. EvansR.M. Minireview: Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors.Endocrinology200314462201220712746275
    [Google Scholar]
  3. Mesa-HerreraF. Taoro-GonzálezL. Valdés-BaizabalC. DiazM. MarínR. Lipid and lipid raft alteration in aging and neurodegenerative diseases: A window for the development of new biomarkers.Int. J. Mol. Sci.20192015381031382686
    [Google Scholar]
  4. GercV. MasicI. SalihefendicN. ZildzicM. Cardiovascular diseases (CVDs) in COVID-19 pandemic era.Mater. Sociomed.202032215816432843866
    [Google Scholar]
  5. VaduganathanM. MensahG.A. TurcoJ.V. FusterV. RothG.A. The global burden of cardiovascular diseases and risk: A compass for future health.J. Am. Coll. Cardiol.2022802523612371
    [Google Scholar]
  6. ChenL. ChenX.W. HuangX. SongB.L. WangY. WangY. Regulation of glucose and lipid metabolism in health and disease.Sci. China Life Sci.201962111420145831686320
    [Google Scholar]
  7. HaileK. TimergaA. Dyslipidemia and its associated risk factors among adult type-2 diabetic patients at Jimma University Medical Center, Jimma, Southwest Ethiopia.Diabetes Metab. Syndr. Obes.2020134589459733273834
    [Google Scholar]
  8. SavelieffM.G. CallaghanB.C. FeldmanE.L. The emerging role of dyslipidemia in diabetic microvascular complications.Curr. Opin. Endocrinol. Diabetes Obes.202027211512332073426
    [Google Scholar]
  9. AthyrosV.G. DoumasM. ImprialosK.P. StavropoulosK. GeorgianouE. KatsimardouA. KaragiannisA. Diabetes and lipid metabolism.Hormones2018171616729858856
    [Google Scholar]
  10. ChandelN.S. Lipid metabolism.Cold Spring Harb. Perspect. Biol.2021139a04057634470787
    [Google Scholar]
  11. LongJ. ZhangC.J. ZhuN. DuK. YinY.F. TanX. LiaoD.F. QinL. Lipid metabolism and carcinogenesis, cancer development.Am. J. Cancer Res.20188577879129888102
    [Google Scholar]
  12. ChungK.W. Advances in understanding of the role of lipid metabolism in aging.Cells202110488033924316
    [Google Scholar]
  13. PonzianiF.R. PecereS. GasbarriniA. OjettiV. Physiology and pathophysiology of liver lipid metabolism.Expert Rev. Gastroenterol. Hepatol.2015981055106726070860
    [Google Scholar]
  14. KoC-W. QuJ. BlackD.D. TsoP. Regulation of intestinal lipid metabolism: Current concepts and relevance to disease.Nat. Rev. Gastroenterol. Hepatol.202017316918332015520
    [Google Scholar]
  15. SchoelerM. CaesarR. Dietary lipids, gut microbiota and lipid metabolism.Rev. Endocr. Metab. Disord.201920446147231707624
    [Google Scholar]
  16. SéguroF. RabèsJ.P. TaraszkiewiczD. RuidavetsJ.B. BongardV. FerrièresJ. Genetic diagnosis of familial hypercholesterolemia is associated with a premature and high coronary heart disease risk.Clin. Cardiol.201841338539129574850
    [Google Scholar]
  17. PennoG. SoliniA. ZoppiniG. FondelliC. TrevisanR. VedovatoM. GrudenG. LamacchiaO. PontiroliA.E. ArosioM. OrsiE. PuglieseG. Hypertriglyceridemia is independently associated with renal, but not retinal complications in subjects with type 2 diabetes: A cross-sectional analysis of the Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicenter Study.PLoS One2015105e012551225942403
    [Google Scholar]
  18. ZhouY. WangC. ShiK. YinX. Relationship between dyslipidemia and diabetic retinopathy: A systematic review and meta-analysis.Medicine20189736e1228330200172
    [Google Scholar]
  19. JengC-J. HsiehY.T. YangC.M. YangC.H. LinC.L. WangI.J. Diabetic retinopathy in patients with dyslipidemia: Development and progression.Ophthalmol. Retina201821384531047300
    [Google Scholar]
  20. JellingerP.S. HandelsmanY. RosenblitP.D. BloomgardenZ.T. FonsecaV.A. GarberA.J. GrunbergerG. GuerinC.K. BellD.S.H. MechanickJ.I. Pessah-PollackR. WyneK. SmithD. BrintonE.A. FazioS. DavidsonM. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease.Endocr. Pract.201723S.218728437620
    [Google Scholar]
  21. PolT. HeldC. WesterberghJ. LindbäckJ. AlexanderJ.H. AlingsM. ErolC. GotoS. HalvorsenS. HuberK. HannaM. LopesR.D. RuzylloW. GrangerC.B. HijaziZ. Dyslipidemia and risk of cardiovascular events in patients with atrial fibrillation treated with oral anticoagulation therapy: Insights from the ARISTOTLE (apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation) trial.J. Am. Heart Assoc.201873e00744429419390
    [Google Scholar]
  22. HedayatniaM. AsadiZ. Zare-FeyzabadiR. Yaghooti-KhorasaniM. GhazizadehH. Ghaffarian-ZirakR. Nosrati-TirkaniA. Mohammadi-BajgiranM. RohbanM. SadabadiF. RahimiH.R. GhalandariM. GhaffariM.S. YousefiA. PouresmaeiliE. BesharatlouM.R. MoohebatiM. FernsG.A. EsmailyH. Ghayour-MobarhanM. Dyslipidemia and cardiovascular disease risk among the MASHAD study population.Lipids Health Dis.20201914232178672
    [Google Scholar]
  23. VaziriN.D. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease.Clin. Exp. Nephrol.201418226526823974528
    [Google Scholar]
  24. YangX. LiY. LiY. RenX. ZhangX. HuD. GaoY. XingY. ShangH. Oxidative stress-mediated atherosclerosis: Mechanisms and therapies.Front. Physiol.2017860028878685
    [Google Scholar]
  25. YaribeygiH. FarrokhiF.R. ButlerA.E. SahebkarA. Insulin resistance: Review of the underlying molecular mechanisms.J. Cell. Physiol.201923468152816130317615
    [Google Scholar]
  26. WengrofskyP. LeeJ. MakaryusA.N. Dyslipidemia and its role in the pathogenesis of atherosclerotic cardiovascular disease: Implications for evaluation and targets for treatment of dyslipidemia based on recent guidelines.Dyslipidemia.IntechOpen2019
    [Google Scholar]
  27. CavieresV. ValdesK. MorenoB. Moore-CarrascoR. GonzalezD.R. Vascular hypercontractility and endothelial dysfunction before development of atherosclerosis in moderate dyslipidemia: Role for nitric oxide and interleukin-6.Am. J. Cardiovasc. Dis.20144311412225360389
    [Google Scholar]
  28. ErcanM. FirtinaS. KonukogluD. Comparison of plasma viscosity as a marker of endothelial dysfunction with nitric oxide and asymmetric dimethylarginine in subjects with dyslipidemia.Clin. Hemorheol. Microcirc.201457431532323455843
    [Google Scholar]
  29. KhutamiC. SumiwiS.A. Khairul IkramN.K. MuchtaridiM. The effects of antioxidants from natural products on obesity, dyslipidemia, diabetes and their molecular signaling mechanism.Int. J. Mol. Sci.2022234205635216172
    [Google Scholar]
  30. ZhangY. LiX. ZouD. LiuW. YangJ. ZhuN. HuoL. WangM. HongJ. WuP. RenG. NingG. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine.J. Clin. Endocrinol. Metab.20089372559256518397984
    [Google Scholar]
  31. TianH. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin.Chem. Eng. J.2020382123043
    [Google Scholar]
  32. AlkushiA.G. Alternative natural management of dyslipidemia.DyslipidemiaIntechOpen2019
    [Google Scholar]
  33. SinghS.P. SashidharaK.V. Lipid lowering agents of natural origin: An account of some promising chemotypes.Eur. J. Med. Chem.201714033134828987600
    [Google Scholar]
  34. BahmaniM. MirhoseiniM. ShirzadH. SedighiM. ShahinfardN. Rafieian-KopaeiM. A review on promising natural agents effective on hyperlipidemia.J. Evid. Based Complementary Altern. Med.201520322823825633423
    [Google Scholar]
  35. KitaT. ImaiS. SawadaH. KumagaiH. SetoH. The biosynthetic pathway of curcuminoid in turmeric (Curcuma longa) as revealed by 13C-labeled precursors.Biosci. Biotechnol. Biochem.20087271789179818603793
    [Google Scholar]
  36. TrujilloJ. ChirinoY.I. Molina-JijónE. Andérica-RomeroA.C. TapiaE. Pedraza-ChaverríJ. Renoprotective effect of the antioxidant curcumin: Recent findings.Redox Biol.20131144845624191240
    [Google Scholar]
  37. HussainZ. ThuH.E. AmjadM.W. HussainF. AhmedT.A. KhanS. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives.Mater. Sci. Eng. C2017771316132628532009
    [Google Scholar]
  38. YallapuM.M. JaggiM. ChauhanS.C. β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells.Colloids Surf. B Biointerfaces201079111312520456930
    [Google Scholar]
  39. LababidiN. SigalV. KoennekeA. SchwarzkopfK. ManzA. SchneiderM. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration.Beilstein J. Nanotechnol.20191012280229331807413
    [Google Scholar]
  40. LoprestiA.L. DrummondP.D. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study.J. Affect. Disord.201720718819627723543
    [Google Scholar]
  41. TeterB. MoriharaT. LimG.P. ChuT. JonesM.R. ZuoX. PaulR.M. FrautschyS.A. ColeG.M. Curcumin restores innate immune Alzheimer’s disease risk gene expression to ameliorate Alzheimer pathogenesis.Neurobiol. Dis.201912743244830951849
    [Google Scholar]
  42. SahebkarA. Molecular mechanisms for curcumin benefits against ischemic injury.Fertil. Steril.2010945e75e7620797714
    [Google Scholar]
  43. MohajeriM. BianconiV. Ávila-RodriguezM.F. BarretoG.E. JamialahmadiT. PirroM. SahebkarA. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system.Pharmacol. Res.202015610476532217147
    [Google Scholar]
  44. Momtazi-BorojeniA.A. HaftcheshmehS.M. EsmaeiliS.A. JohnstonT.P. AbdollahiE. SahebkarA. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus.Autoimmun. Rev.201817212513529180127
    [Google Scholar]
  45. GhasemiF. BagheriH. BarretoG.E. ReadM.I. SahebkarA. Effects of curcumin on microglial cells.Neurotox. Res.2019361122630949950
    [Google Scholar]
  46. KunnumakkaraA.B. BordoloiD. PadmavathiG. MonishaJ. RoyN.K. PrasadS. AggarwalB.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases.Br. J. Pharmacol.2017174111325134827638428
    [Google Scholar]
  47. IranshahiM. SahebkarA. HosseiniS.T. TakasakiM. KonoshimaT. TokudaH. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo.Phytomedicine2010173-426927319577457
    [Google Scholar]
  48. PanahiY. GhaneiM. BashiriS. HajihashemiA. SahebkarA. Short-term curcuminoid supplementation for chronic pulmonary complications due to sulfur mustard intoxication: Positive results of a randomized double-blind placebo-controlled trial.Drug Res.2015651156757325268878
    [Google Scholar]
  49. Marjaneh R.M.; Rahmani F.; Hassanian S.M.; Rezaei N.; Hashemzehi M.; Bahrami A.; Ariakia F.; Fiuji H.; Sahebkar A.; Avan A.; Khazaei M.; Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell Physiol. 2018 Oct; 233(10):6785-6798. Epub 2018 May 810.1002/jcp.2653829737515
  50. Keihanian F.; Saeidinia A.; Bagheri R.K.; Johnston T.P.; Sahebkar A.; Curcumin, hemostasis, thrombosis, and coagulation. J. Cell Physiol. 2018 Jun; 233(6):4497-4511. http://dx.doi.org/10.1002/jcp.26249. Epub 2017 Dec 26. PMID: 29052850.
  51. Khayatan D.; Razavi S.M.; Arab Z.N.; Niknejad A.H.; Nouri K.; Momtaz S.; Gumpricht E.; Jamialahmadi T.; Abdolghaffari A.H.; Barreto G.E.; Sahebkar A.; Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother. 2022 Oct; 154:113621. http://dx.doi.org/10.1016/j.biopha.2022.113621. Epub 2022 Aug 30. PMID: 36055110.
  52. HeidariZ. DaeiM. BoozariM. JamialahmadiT. SahebkarA. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence.Phytother. Res.20223641442145834904764
    [Google Scholar]
  53. PanahiY. KhaliliN. SahebiE. NamaziS. ReinerŽ. MajeedM. SahebkarA. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial.Complement. Ther. Med.2017331528735818
    [Google Scholar]
  54. Hasanzadeh S.; Read M.I.; Bland A.R.; Majeed M.; Jamialahmadi T.; Sahebkar A.; Curcumin: An inflammasome silencer. Pharmacol. Res. 2020 Sep; 159:104921. http://dx.doi.org/10.1016/j.phrs.2020.104921. Epub 2020 May 25. PMID: 32464325.
  55. Mokhtari-Zaer A.; Marefati N.; Atkin S.L.; Butler A.E.; Sahebkar A.; The protective role of curcumin in myocardial ischemia-reperfusion injury. J. Cell Physiol. 2018 Jan; 234(1):214-222. http://dx.doi.org/10.1002/jcp.26848. Epub 2018 Jul 3. PMID: 29968913.
  56. SoetiknoV. WatanabeK. SariF.R. HarimaM. ThandavarayanR.A. VeeraveeduP.T. ArozalW. SukumaranV. LakshmananA.P. ArumugamS. SuzukiK. Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats.Mol. Nutr. Food Res.201155111655166510.1002/mnfr.20110008022045654
    [Google Scholar]
  57. LuM. YinN. LiuW. CuiX. ChenS. WangE. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling.Biomed Res Int.20172017151698510.1155/2017/151698528194406
    [Google Scholar]
  58. SoltaniS. BoozariM. CiceroA.F.G. JamialahmadiT. SahebkarA. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis.Phytother. Res.20213562854287810.1002/ptr.699133464676
    [Google Scholar]
  59. GanjaliS. BlessoC.N. BanachM. PirroM. MajeedM. SahebkarA. Effects of curcumin on HDL functionality.Pharmacol. Res.201711920821810.1016/j.phrs.2017.02.00828192240
    [Google Scholar]
  60. AhmadianM. WangY. SulH.S. Lipolysis in adipocytes.Int. J. Biochem. Cell Biol.201042555555910.1016/j.biocel.2009.12.00920025992
    [Google Scholar]
  61. SanchoV. TrigoM.V. GonzálezN. ValverdeI. MalaisseW.J. Villanueva-PeñacarrilloM.L. Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats.J. Mol. Endocrinol.2005351273810.1677/jme.1.0174716087719
    [Google Scholar]
  62. ZhaoX. FengD. WangQ. AbdullaA. XieX.J. ZhouJ. SunY. YangE.S. LiuL.P. VaitheesvaranB. BridgesL. KurlandI.J. StrichR. NiJ.Q. WangC. EricssonJ. PessinJ.E. JiJ.Y. YangF. Regulation of lipogenesis by cyclin-dependent kinase 8–mediated control of SREBP-1.J. Clin. Invest.201212272417242710.1172/JCI6146222684109
    [Google Scholar]
  63. DucheixS. LobaccaroJ.M.A. MartinP.G. GuillouH. Liver X Receptor: An oxysterol sensor and a major player in the control of lipogenesis.Chem. Phys. Lipids2011164650051410.1016/j.chemphyslip.2011.06.00421693109
    [Google Scholar]
  64. WangY. ViscarraJ. KimS.J. SulH.S. Transcriptional regulation of hepatic lipogenesis.Nat. Rev. Mol. Cell Biol.2015161167868910.1038/nrm407426490400
    [Google Scholar]
  65. SandersF.W.B. GriffinJ.L. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose.Biol. Rev. Camb. Philos. Soc.201691245246810.1111/brv.1217825740151
    [Google Scholar]
  66. DuncanR.E. AhmadianM. JaworskiK. Sarkadi-NagyE. SulH.S. Regulation of lipolysis in adipocytes.Annu. Rev. Nutr.20072717910110.1146/annurev.nutr.27.061406.09373417313320
    [Google Scholar]
  67. KoboriM. TakahashiY. TakedaH. TakahashiM. IzumiY. AkimotoY. SakuraiM. OikeH. NakagawaT. ItohM. BambaT. KimuraT. Dietary intake of curcumin improves eIF2 signaling and reduces lipid levels in the white adipose tissue of obese mice.Sci. Rep.201881908110.1038/s41598‑018‑27105‑w29899429
    [Google Scholar]
  68. SongW.Y. ChoiJ.H. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats.Nutr. Res. Pract.201610548749310.4162/nrp.2016.10.5.48727698955
    [Google Scholar]
  69. CuiY. YuS. GaoW. ZhaoZ. WuJ. XiaoM. AnL. Dietary curcumin supplementation regulates the lipid metabolism in laying hens.Ital. J. Anim. Sci.20222111106111610.1080/1828051X.2022.2071774
    [Google Scholar]
  70. WangL. ZhangB. HuangF. LiuB. XieY. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.J. Lipid Res.20165771243125510.1194/jlr.M06739727220352
    [Google Scholar]
  71. ShaoW. YuZ. ChiangY. YangY. ChaiT. FoltzW. LuH. FantusI.G. JinT. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes.PLoS One201271e2878410.1371/journal.pone.002878422253696
    [Google Scholar]
  72. EjazA. WuD. KwanP. MeydaniM. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.J. Nutr.2009139591992510.3945/jn.108.10096619297423
    [Google Scholar]
  73. PanY. ZhaoD. YuN. AnT. MiaoJ. MoF. GuY. ZhangD. GaoS. JiangG. Curcumin improves glycolipid metabolism through regulating peroxisome proliferator activated receptor γ signalling pathway in high-fat diet-induced obese mice and 3T3-L1 adipocytes.R. Soc. Open Sci.201741117091710.1098/rsos.17091729291086
    [Google Scholar]
  74. XieZ. ShenG. WangY. WuC. Curcumin supplementation regulates lipid metabolism in broiler chickens.Poult. Sci.201998142242910.3382/ps/pey31530053224
    [Google Scholar]
  75. ShahidS.U. SarwarS. The abnormal lipid profile in obesity and Coronary Heart Disease (CHD) in Pakistani subjects.Lipids Health Dis.20201911731900179
    [Google Scholar]
  76. MaY. TemkinS.M. HawkridgeA.M. GuoC. WangW. WangX.Y. FangX. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer.Cancer Lett.20184359210010.1016/j.canlet.2018.08.00630102953
    [Google Scholar]
  77. Al BatranR. AlmutairiM. UssherJ.R. Glucagon-like peptide-1 receptor mediated control of cardiac energy metabolism.Peptides20181009410010.1016/j.peptides.2017.12.00529412838
    [Google Scholar]
  78. PilzS. MärzW. Free fatty acids as a cardiovascular risk factor.Clin. Chem. Lab. Med.200846442943410.1515/CCLM.2008.11818605928
    [Google Scholar]
  79. I S SobczakA. A BlindauerC. J StewartA. Changes in plasma free fatty acids associated with type-2 diabetes.Nutrients2019119202210.3390/nu1109202231466350
    [Google Scholar]
  80. GhoshA. GaoL. ThakurA. SiuP.M. LaiC.W.K. Role of free fatty acids in endothelial dysfunction.J. Biomed. Sci.20172415010.1186/s12929‑017‑0357‑528750629
    [Google Scholar]
  81. XinY. ZhangJ. FanY. WangC. Serum free fatty acids are associated with severe coronary artery calcification, especially in diabetes: A retrospective study.BMC Cardiovasc. Disord.202121134310.1186/s12872‑021‑02152‑w34266394
    [Google Scholar]
  82. BerbéeJ.F.P. BoonM.R. KhedoeP.P.S.J. BarteltA. SchleinC. WorthmannA. KooijmanS. HoekeG. MolI.M. JohnC. JungC. VazirpanahN. BrouwersL.P.J. GordtsP.L.S.M. EskoJ.D. HiemstraP.S. HavekesL.M. SchejaL. HeerenJ. RensenP.C.N. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development.Nat. Commun.201561635610.1038/ncomms735625754609
    [Google Scholar]
  83. GaoC.L. ZhuC. ZhaoY.P. ChenX.H. JiC.B. ZhangC.M. ZhuJ.G. XiaZ.K. TongM.L. GuoX.R. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes.Mol. Cell. Endocrinol.20103201-2253310.1016/j.mce.2010.01.03920144685
    [Google Scholar]
  84. JangE.M. ChoiM.S. JungU.J. KimM.J. KimH.J. JeonS.M. ShinS.K. SeongC.N. LeeM.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat–fed hamsters.Metabolism200857111576158310.1016/j.metabol.2008.06.01418940397
    [Google Scholar]
  85. NaL.X. ZhangY.L. LiY. LiuL.Y. LiR. KongT. SunC.H. Curcumin improves insulin resistance in skeletal muscle of rats.Nutr. Metab. Cardiovasc. Dis.201121752653310.1016/j.numecd.2009.11.00920227862
    [Google Scholar]
  86. Meléndez-SalcidoC.G. Vargas-OrtizK. Silva-GaonaO.G. León-GarcíaM.C. Ortega-HernándezL.A. Macías-CervantesM.H. Ramírez-EmilianoJ. Perez- VazquezV. Curcumin ameliorates protein expression changes involved in mitochondrial fatty acids metabolism in heart of mice fed a high-fructose diet.Res Square202011510.21203/rs.3.rs‑17918/v1
    [Google Scholar]
  87. JiR. XiangX. LiX. MaiK. AiQ. Effects of dietary curcumin on growth, antioxidant capacity, fatty acid composition and expression of lipid metabolism-related genes of large yellow croaker fed a high-fat diet.Br. J. Nutr.2021126334535410.1017/S000711452000417133076999
    [Google Scholar]
  88. NiuY. HeJ. AhmadH. WangC. ZhongX. ZhangL. CuiT. ZhangJ. WangT. Curcumin attenuates insulin resistance and hepatic lipid accumulation in a rat model of intra-uterine growth restriction through insulin signalling pathway and sterol regulatory element binding proteins.Br. J. Nutr.2019122661662410.1017/S000711451900150831237229
    [Google Scholar]
  89. TranchidaF. ShintuL. RakotoniainaZ. TchiakpeL. DeyrisV. HiolA. CaldarelliS. Metabolomic and lipidomic analysis of serum samples following Curcuma longa extract supplementation in high-fructose and saturated fat fed rats.PLoS One2015108e013594810.1371/journal.pone.013594826288372
    [Google Scholar]
  90. KamalakkannanN. RukkumaniR. ViswanathanP. RajasekharanK.N. MenonV.P. Effect of curcumin and its analogue on lipids in carbon tetrachloride–induced hepatotoxicity: A comparative study.Pharm. Biol.200543546046610.1080/13880200590963880
    [Google Scholar]
  91. WeisbergS.P. LeibelR. TortorielloD.V. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity.Endocrinology200814973549355810.1210/en.2008‑026218403477
    [Google Scholar]
  92. WuL.Y. ChenC.W. ChenL.K. ChouH.Y. ChangC.L. JuanC.C. Curcumin attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation.Nutrients20191110230710.3390/nu1110230731569380
    [Google Scholar]
  93. Ceja-GaliciaZ.A. García-ArroyoF.E. Aparicio-TrejoO.E. El-HafidiM. Gonzaga-SánchezG. León-ContrerasJ.C. Hernández-PandoR. Guevara-CruzM. TovarA.R. Rojas-MoralesP. Aranda-RiveraA.K. Sánchez-LozadaL.G. TapiaE. Pedraza-ChaverriJ. Therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia: Association with the improvement of renal mitochondrial β-oxidation and lipid metabolism in kidney and liver.Antioxidants20221111219510.3390/antiox1111219536358567
    [Google Scholar]
  94. ZengC. ZhongP. ZhaoY. KanchanaK. ZhangY. KhanZ.A. ChakrabartiS. WuL. WangJ. LiangG. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo.J. Mol. Cell. Cardiol.20157911210.1016/j.yjmcc.2014.10.00225444713
    [Google Scholar]
  95. ThotaR.N. AcharyaS.H. AbbottK.A. GargM.L. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for prevention of type 2 diabetes (COP-D): Study protocol for a randomised controlled trial.Trials201617156510.1186/s13063‑016‑1702‑927894336
    [Google Scholar]
  96. Saraf-BankS. AhmadiA. PaknahadZ. MaracyM. NourianM. Effects of curcumin on cardiovascular risk factors in obese and overweight adolescent girls: A randomized clinical trial.Sao Paulo Med. J.2019137541442210.1590/1516‑3180.2018.045412041931691723
    [Google Scholar]
  97. LichtensteinA.H. JonesP.J. Lipids: Absorption and transport.Present knowledge in nutrition. Erdman JrJ.W. MacdonaldI.A. ZeiselS.H. Wiley Online Library10th ed.2012111111710.1002/9781119946045.ch9
    [Google Scholar]
  98. Jalili-NikM. MahboobniaK. GuestP.C. MajeedM. Al-RasadiK. JamialahmadiT. SahebkarA. Impact of curcumin on hepatic low-density lipoprotein uptake.Physical Exercise and Natural and Synthetic Products in Health and Disease. GuestP.C. New York, NYSpringer2022234339540010.1007/978‑1‑0716‑1558‑4_29
    [Google Scholar]
  99. ZouJ. ZhangS. LiP. ZhengX. FengD. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet–fed apolipoprotein E knockout mice.Nutr. Res.201856324010.1016/j.nutres.2018.04.01730055772
    [Google Scholar]
  100. FengD. OhlssonL. DuanR.D. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression.Lipids Health Dis.2010914010.1186/1476‑511X‑9‑4020403165
    [Google Scholar]
  101. FergusonJ.J.A. StojanovskiE. MacDonald-WicksL. GargM.L. Curcumin potentiates cholesterol-lowering effects of phytosterols in hypercholesterolaemic individuals. A randomised controlled trial.Metabolism201882223510.1016/j.metabol.2017.12.00929291429
    [Google Scholar]
  102. YuanF. WuW. MaL. WangD. HuM. GongJ. FangK. XuL. DongH. LuF. Turmeric and curcuminiods ameliorate disorders of glycometabolism among subjects with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials.Pharmacol. Res.202217710612110.1016/j.phrs.2022.10612135143971
    [Google Scholar]
  103. GroenenA.G. HalmosB. TallA.R. WesterterpM. Cholesterol efflux pathways, inflammation, and atherosclerosis.Crit. Rev. Biochem. Mol. Biol.202156442643910.1080/10409238.2021.192521734182846
    [Google Scholar]
  104. Aguilar-BallesterM. Herrero-CerveraA. VinuéÁ. Martínez-HervásS. González-NavarroH. Impact of cholesterol metabolism in immune cell function and atherosclerosis.Nutrients2020127202110.3390/nu1207202132645995
    [Google Scholar]
  105. ShinS.K. HaT.Y. McGregorR.A. ChoiM.S. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism.Mol. Nutr. Food Res.201155121829184010.1002/mnfr.20110044022058071
    [Google Scholar]
  106. QinnaN.A. KamonaB.S. AlhussainyT.M. TahaH. BadwanA.A. MatalkaK.Z. Effects of prickly pear dried leaves, artichoke leaves, turmeric and garlic extracts, and their combinations on preventing dyslipidemia in rats.ISRN Pharmacol.201216797910.5402/2012/16797922811929
    [Google Scholar]
  107. RiyadP. Atherosclerotic plaque regression and HMG-CoA reductase inhibition potential of curcumin: An integrative omics and in-vivo study.J. Appl. Biol. Biotechnol.202210113
    [Google Scholar]
  108. SahebkarA. Are curcuminoids effective C-reactive protein-lowering agents in clinical practice? Evidence from a meta-analysis.Phytother. Res.201428563364210.1002/ptr.504523922235
    [Google Scholar]
  109. SahebkarA. Curcuminoids for the management of hypertriglyceridaemia.Nat. Rev. Cardiol.201411212312310.1038/nrcardio.2013.140‑c124395048
    [Google Scholar]
  110. ValentineC. OhnishiK. IrieK. MurakamiA. Curcumin may induce lipolysis via proteo-stress in Huh7 human hepatoma cells.J. Clin. Biochem. Nutr.2019652919810.3164/jcbn.19‑731592057
    [Google Scholar]
  111. AkilaG. RajakrishnanV. ViswanathanP. RajashekaranK.N. MenonV.P. Effects of curcumin on lipid profile and lipid peroxidation status in experimental hepatic fibrosis.Hepatol. Res.199811314715710.1016/S1386‑6346(98)00026‑6
    [Google Scholar]
  112. VafaT.S. EmadiM. SadoughiS.D. Effect of curcumin on Bax, Bcl-2, antioxidant enzymes and lipid peroxidation of sperm after freezing procedure.J. Ardabil Uni. Med. Sci.201818112013010.29252/jarums.18.1.120
    [Google Scholar]
  113. Soto-UrquietaM.G. López-BrionesS. Pérez-VázquezV. Saavedra-MolinaA. González-HernándezG.A. Ramírez-EmilianoJ. Curcumin restores mitochondrial functions and decreases lipid peroxidation in liver and kidneys of diabetic db/db mice.Biol. Res.20144717410.1186/0717‑6287‑47‑7425723052
    [Google Scholar]
  114. KalpanaC. MenonV.P. Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity.Pol. J. Pharmacol.200456558158615591646
    [Google Scholar]
  115. OzcelikM. ErişirM. GulerO. BaykaraM. KirmanE. The effect of curcumin on lipid peroxidation and selected antioxidants in irradiated rats.Acta Vet. Brno201887437938510.2754/avb201887040379
    [Google Scholar]
  116. MahfouzM. ZhouQ. KummerowA. Effect of curcumin on LDL oxidation in vitro, and lipid peroxidation and antioxidant enzymes in cholesterol fed rabbits.Int. J. Vitam. Nutr. Res.201181637839110.1024/0300‑9831/a00008422673922
    [Google Scholar]
  117. MozolewskaP. DuzowskaK. PakietA. MikaA. ŚledzińskiT. Inhibitors of fatty acid synthesis and oxidation as potential anticancer agents in colorectal cancer treatment.Anticancer Res.20204094843485610.21873/anticanres.1448732878772
    [Google Scholar]
  118. YounesianO. KazerouniF. Dehghan-NayeriN. OmraniD. RahimipourA. ShanakiM. Rezapour KalkhoranM. CheshmiF. Effect of curcumin on fatty acid synthase expression and enzyme activity in breast cancer cell line SKBR3.Int. J. Cancer Manag.201710310.5812/ijcm.8173
    [Google Scholar]
  119. MarnettL.J. Lipid peroxidation—DNA damage by malondialdehyde.Mutat. Res.19994241-2839510.1016/S0027‑5107(99)00010‑X10064852
    [Google Scholar]
  120. BasuS. DeD. Dev KhannaH. KumarA. Lipid peroxidation, DNA damage and total antioxidant status in neonatal hyperbilirubinemia.J. Perinatol.201434751952310.1038/jp.2014.4524674982
    [Google Scholar]
  121. KuoJ.J. ChangH.H. TsaiT.H. LeeT.Y. Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis.Int. J. Mol. Med.201230364364910.3892/ijmm.2012.102022692588
    [Google Scholar]
  122. TsaiI.J. ChenC.W. TsaiS.Y. WangP.Y. OwagaE. HsiehR.H. Curcumin supplementation ameliorated vascular dysfunction and improved antioxidant status in rats fed a high-sucrose, high-fat diet.Appl. Physiol. Nutr. Metab.201843766967610.1139/apnm‑2017‑067029378153
    [Google Scholar]
  123. ZhaoL. LuoR. YuH. LiS. YuQ. WangW. CaiK. XuT. ChenR. TianW. Curcumin protects human umbilical vein endothelial cells against high oxidized low density lipoprotein-induced lipotoxicity and modulates autophagy.Iran. J. Basic Med. Sci.202124121734174235432800
    [Google Scholar]
  124. QinS. HuangL. GongJ. ShenS. HuangJ. RenH. HuH. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: A meta-analysis of randomized controlled trials.Nutr. J.20171616810.1186/s12937‑017‑0293‑y29020971
    [Google Scholar]
  125. CoxF.F. MisiouA. VierkantA. Ale-AghaN. GrandochM. HaendelerJ. AltschmiedJ. Protective effects of curcumin in cardiovascular diseases—Impact on oxidative stress and mitochondria.Cells202211334210.3390/cells1103034235159155
    [Google Scholar]
  126. AhmadabadyS. BeheshtiF. ShahidpourF. KhordadE. HosseiniM. A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats.Biochem. Biophys. Rep.20212510090810.1016/j.bbrep.2021.10090833506115
    [Google Scholar]
  127. SalehiB. Del Prado-AudeloM.L. CortésH. Leyva-GómezG. Stojanović-RadićZ. SinghY.D. PatraJ.K. DasG. MartinsN. MartorellM. Sharifi-RadM. ChoW.C. Sharifi-RadJ. Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases.J. Clin. Med.20209374610.3390/jcm903074632164244
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230707094644
Loading
/content/journals/cmc/10.2174/0929867331666230707094644
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test