Skip to content
2000
Volume 31, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673262124231102042914
2023-11-16
2024-11-22
Loading full text...

Full text loading...

References

  1. RotllanN. The underlying pathology of atherosclerosis: Different players.Int. J. Mol. Sci.2022236323510.3390/ijms2306323535328656
    [Google Scholar]
  2. BjörkegrenJ.L.M. LusisA.J. Atherosclerosis: recent developments.Cell2022185101630164510.1016/j.cell.2022.04.00435504280
    [Google Scholar]
  3. KlisicA. KavaricN. VujcicS. MihajlovicM. ZeljkovicA. IvanisevicJ. Spasojevic-KalimanovskaV. NinicA. Kotur-StevuljevicJ. VekicJ. Inverse association between serum endocan levels and small LDL and HDL particles in patients with type 2 diabetes mellitus.Eur. Rev. Med. Pharmacol. Sci.202024158127813510.26355/eurrev_202008_2249932767341
    [Google Scholar]
  4. SalekeenR. HaiderA. N. AkhterF. BillahM. M. IslamM. E. Didarul IslamK. M. Lipid oxidation in pathophysiology of atherosclerosis: Current understanding and therapeutic strategies.Int. J. Cardiol. Cardiovasc. Risk Prev.20221420014310.1016/j.ijcrp.2022.200143
    [Google Scholar]
  5. ShaoW. WangS. WangX. YaoL. YuanX. HuangD. LvB. YeY. XueH. miRNA-29a inhibits atherosclerotic plaque formation by mediating macrophage autophagy via PI3K/AKT/mTOR pathway.Aging20221452418243110.18632/aging.20395135288486
    [Google Scholar]
  6. JavadifarA. RastgooS. BanachM. JamialahmadiT. JohnstonT.P. SahebkarA. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs.Int. J. Mol. Sci.2021225252910.3390/ijms2205252933802600
    [Google Scholar]
  7. VekicJ. ZeljkovicA. StefanovicA. Jelic-IvanovicZ. Spasojevic-KalimanovskaV. Obesity and dyslipidemia.Metabolism201992718110.1016/j.metabol.2018.11.00530447223
    [Google Scholar]
  8. KhalifehM. SantosR.D. OskueeR.K. BadieeA. Aghaee-BakhtiariS.H. SahebkarA. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis.Prog. Lipid Res.20238910119710.1016/j.plipres.2022.10119736400247
    [Google Scholar]
  9. KongP. CuiZ.Y. HuangX.F. ZhangD.D. GuoR.J. HanM. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention.Signal Transduct. Target. Ther.20227113110.1038/s41392‑022‑00955‑735459215
    [Google Scholar]
  10. YurtsevenE. UralD. BaysalK. TokgözoğluL. An update on the role of PCSK9 in atherosclerosis.J. Atheroscler. Thromb.202027990991810.5551/jat.5540032713931
    [Google Scholar]
  11. D'ArdesD. SantilliF. GuagnanoM. T. BucciM. CipolloneF. From endothelium to lipids, through microRNAs and PCSK9: A fascinating travel across atherosclerosis.High Blood Press Cardiovasc. Prev.202027>11810.1007/s40292‑019‑00356‑y
    [Google Scholar]
  12. RicciC. RuscicaM. PCSK9 induces a pro-inflammatory response in macrophages.Sci. Rep.201881226710.1038/s41598‑018‑20425‑x
    [Google Scholar]
  13. FerriN. TibollaG. PirilloA. CipolloneF. MezzettiA. PaciaS. CorsiniA. CatapanoA.L. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels.Atherosclerosis2012220238138610.1016/j.atherosclerosis.2011.11.02622176652
    [Google Scholar]
  14. FerenceB.A. RobinsonJ.G. BrookR.D. CatapanoA.L. ChapmanM.J. NeffD.R. VorosS. GiuglianoR.P. Davey SmithG. FazioS. SabatineM.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes.N. Engl. J. Med.2016375222144215310.1056/NEJMoa160430427959767
    [Google Scholar]
  15. KhanS.U. YedlapatiS.H. LoneA.N. HaoQ. GuyattG. DelvauxN. BekkeringG.E.T. VandvikP.O. RiazI.B. LiS. AertgeertsB. RodondiN. PCSK9 inhibitors and ezetimibe with or without statin therapy for cardiovascular risk reduction: A systematic review and network meta-analysis.BMJ2022377e06911610.1136/bmj‑2021‑06911635508321
    [Google Scholar]
  16. BanerjeeY. Pantea StoianA. CiceroA. F. G. Inclisiran: A small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia.Expert Opin. Drug Saf.202221192010.1080/14740338.2022.1988568
    [Google Scholar]
  17. MaulucciG. CiprianiF. RussoD. CasavecchiaG. Di StasoC. Di MartinoL. RuggieroA. Di BiaseM. BrunettiN.D. Improved endothelial function after short-term therapy with evolocumab.J. Clin. Lipidol.201812366967310.1016/j.jacl.2018.02.00429544724
    [Google Scholar]
  18. CiceroA.F.G. TothP.P. FogacciF. VirdisA. BorghiC. Improvement in arterial stiffness after short-term treatment with PCSK9 inhibitors.Nutr. Metab. Cardiovasc. Dis.201929552752910.1016/j.numecd.2019.01.01030954414
    [Google Scholar]
  19. KlisicA. Radoman VujacicI. MunjasJ. NinicA. Kotur-StevuljevicJ. Micro-ribonucleic acid modulation with oxidative stress and inflammation in patients with type 2 diabetes mellitus - a review article.Arch. Med. Sci.202218487088010.5114/aoms/14679635832702
    [Google Scholar]
  20. XiangY. MaoL. ZuoM. L. SongG. L. TanL. M. YangZ. B. The role of MicroRNAs in hyperlipidemia: From pathogenesis to therapeutical application.Mediators Inflamm.20222022310190010.1155/2022/3101900
    [Google Scholar]
  21. GiglioR. V. NikolicD. VoltiG. L. Liraglutide increases serum levels of microRNA-27b, -130a and -210 in patients with type 2 diabetes mellitus: A novel epigenetic effect.Metabolites2020101039110.3390/metabo10100391
    [Google Scholar]
  22. SignorelliS.S. VolsiG.L. PitruzzellaA. FioreV. MangiaficoM. VanellaL. ParentiR. RizzoM. VoltiG.L. Circulating miR-130a, miR-27b, and miR-210 in patients with peripheral artery disease and their potential relationship with oxidative stress.Angiology2016671094595010.1177/000331971663824226980776
    [Google Scholar]
  23. MacvaninM.T. ZafirovicS. ObradovicM. IsenovicE.R. Editorial: Non-coding RNA in diabetes and cardiovascular diseases.Front. Endocrinol.202314114985710.3389/fendo.2023.114985736814579
    [Google Scholar]
  24. MacvaninM. ObradovicM. ZafirovicS. StanimirovicJ. IsenovicE.R. The role of miRNAs in metabolic diseases.Curr. Med. Chem.202330171922194410.2174/092986732966622080116153635927902
    [Google Scholar]
  25. MacvaninM.T. GluvicZ. RadovanovicJ. EssackM. GaoX. IsenovicE.R. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs.Front. Endocrinol.202314112461310.3389/fendo.2023.112461336950696
    [Google Scholar]
  26. AryalB. RotllanN. Fernández-HernandoC. Noncoding RNAs and atherosclerosis.Curr. Atheroscler. Rep.201416540710.1007/s11883‑014‑0407‑324623179
    [Google Scholar]
  27. JacksonA.O. RegineM.A. SubrataC. LongS. Molecular mechanisms and genetic regulation in atherosclerosis.Int. J. Cardiol. Heart Vasc.201821364410.1016/j.ijcha.2018.09.00630276232
    [Google Scholar]
  28. DongJ. HeM. LiJ. PessentheinerA. WangC. ZhangJ. SunY. WangW.T. ZhangY. LiuJ. WangS.C. HuangP.H. GordtsP.L.S.M. YuanZ.Y. TsimikasS. ShyyJ.Y.J. microRNA-483 ameliorates hypercholesterolemia by inhibiting PCSK9 production.JCI Insight2020523e14381210.1172/jci.insight.14381233119548
    [Google Scholar]
  29. KrittanawongC. KhawajaM. RosensonR.S. AmosC.I. NambiV. LavieC.J. ViraniS.S. Association of PCSK9 variants with the risk of atherosclerotic cardiovascular disease and variable responses to PCSK9 inhibitor therapy.Curr. Probl. Cardiol.202247710104310.1016/j.cpcardiol.2021.10104334780866
    [Google Scholar]
  30. JeongH.J. LeeH.S. KimK.S. KimY.K. YoonD. ParkS.W. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2.J. Lipid Res.200849239940910.1194/jlr.M700443‑JLR20017921436
    [Google Scholar]
  31. CaoG. QianY.W. KowalaM. KonradR. Further LDL cholesterol lowering through targeting PCSK9 for coronary artery disease.Endocr. Metab. Immune Disord. Drug Targets20088423824310.2174/18715300878684828619075777
    [Google Scholar]
  32. LibbyP. Inflammation in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20123292045205110.1161/ATVBAHA.108.17970522895665
    [Google Scholar]
  33. TopperJ.N. CaiJ. FalbD. GimbroneM.A.Jr Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: Cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress.Proc. Natl. Acad. Sci.19969319104171042210.1073/pnas.93.19.104178816815
    [Google Scholar]
  34. RidkerP.M. Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin.Eur. Heart J.201637221720172210.1093/eurheartj/ehw02426908943
    [Google Scholar]
  35. LibbyP. Inflammation in atherosclerosis.Nature2002420691786887410.1038/nature0132312490960
    [Google Scholar]
  36. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑833883728
    [Google Scholar]
  37. RossR. Atherosclerosis--an inflammatory disease.N. Engl. J. Med.1999340211512610.1056/NEJM1999011434002079887164
    [Google Scholar]
  38. SuwaidiJ.A. HamasakiS. HiganoS.T. NishimuraR.A. HolmesD.R.Jr LermanA. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction.Circulation2000101994895410.1161/01.CIR.101.9.94810704159
    [Google Scholar]
  39. SchächingerV. BrittenM.B. ZeiherA.M. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease.Circulation2000101161899190610.1161/01.CIR.101.16.189910779454
    [Google Scholar]
  40. FélétouM. VanhoutteP.M. Endothelial dysfunction: A multifaceted disorder (The Wiggers Award Lecture).Am. J. Physiol. Heart Circ. Physiol.20062913H985H100210.1152/ajpheart.00292.200616632549
    [Google Scholar]
  41. LandmesserU. DrexlerH. The clinical significance of endothelial dysfunction.Curr. Opin. Cardiol.200520654755110.1097/01.hco.0000179821.11071.7916234629
    [Google Scholar]
  42. ZagoA.S. ZanescoA. Nitric oxide, cardiovascular disease and physical exercise.Arq. Bras. Cardiol.2006876e264e27010.1590/S0066‑782X200600190002917262101
    [Google Scholar]
  43. FlammerA.J. LüscherT.F. Three decades of endothelium research: From the detection of NO to the everyday implementation of endothelial function measurements in cardiovascular diseases.Swiss Med. Wkly.2010140w1312210.4414/smw.2010.1312221120736
    [Google Scholar]
  44. GoldsteinJ.L. BrownM.S. A century of cholesterol and coronaries: From plaques to genes to statins.Cell2015161116117210.1016/j.cell.2015.01.03625815993
    [Google Scholar]
  45. GisteråA. KlementM.L. PolyzosK.A. MailerR.K.W. DuhlinA. KarlssonM.C.I. KetelhuthD.F.J. HanssonG.K. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice.Circulation2018138222513252610.1161/CIRCULATIONAHA.118.03407629997115
    [Google Scholar]
  46. KruthH.S. Sequestration of aggregated low-density lipoproteins by macrophages.Curr. Opin. Lipidol.200213548348810.1097/00041433‑200210000‑0000312352011
    [Google Scholar]
  47. WitztumJ.L. BerlinerJ.A. Oxidized phospholipids and isoprostanes in atherosclerosis.Curr. Opin. Lipidol.19989544144810.1097/00041433‑199810000‑000089812198
    [Google Scholar]
  48. DichtlW. NilssonL. GoncalvesI. AresM.P.S. BanfiC. CalaraF. HamstenA. ErikssonP. NilssonJ. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells.Circ. Res.19998491085109410.1161/01.RES.84.9.108510325246
    [Google Scholar]
  49. KranzhöferR. SchmidtJ. PfeifferC.A.H. HaglS. LibbyP. KüblerW. Angiotensin induces inflammatory activation of human vascular smooth muscle cells.Arterioscler. Thromb. Vasc. Biol.19991971623162910.1161/01.ATV.19.7.162310397679
    [Google Scholar]
  50. YudkinJ.S. StehouwerC.D.A. EmeisJ.J. CoppackS.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue?Arterioscler. Thromb. Vasc. Biol.199919497297810.1161/01.ATV.19.4.97210195925
    [Google Scholar]
  51. KarabulutA. The role of microbiologic agents in the progression of the atherosclerosis: A comprehensive review.J. Saudi Heart Assoc.202032344045010.37616/2212‑5043.119833299789
    [Google Scholar]
  52. ZaricB.L. RadovanovicJ.N. GluvicZ. StewartA.J. EssackM. MotwalliO. GojoboriT. IsenovicE.R. Atherosclerosis linked to aberrant amino acid metabolism and immunosuppressive amino acid catabolizing enzymes.Front. Immunol.20201155175810.3389/fimmu.2020.55175833117340
    [Google Scholar]
  53. LibbyP. RidkerP.M. MaseriA. Inflammation and atherosclerosis.Circulation200210591135114310.1161/hc0902.10435311877368
    [Google Scholar]
  54. ObradovicM. ZaricB. Sudar-MilovanovicE. IlincicB. StokicE. PerovicM. IsenovicE.R. PCSK9 and hypercholesterolemia: Therapeutic approach.Curr. Drug Targets20181991058106710.2174/138945011966617120510140129210646
    [Google Scholar]
  55. DaviesM.J. Stability and instability: Two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995.Circulation19969482013202010.1161/01.CIR.94.8.20138873680
    [Google Scholar]
  56. de BoerO. van der WalA.C. TeelingP. BeckerA.E. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: A prominent role for neovascularization?Cardiovasc. Res.199941244344910.1016/S0008‑6363(98)00255‑710341843
    [Google Scholar]
  57. SeidahN. G. PratA. The multifaceted biology of PCSK9.Endocr. Rev.202243355858210.1210/endrev/bnab035
    [Google Scholar]
  58. BanachM. RizzoM. ObradovicM. MontaltoG. RyszJ. MikhailidisD.P. IsenovicE.R. PCSK9 inhibition - a novel mechanism to treat lipid disorders?Curr. Pharm. Des.201319213869387710.2174/1381612811319999030323286435
    [Google Scholar]
  59. PiperD. E. JacksonS. LiuQ. RomanowW. G. ShetterlyS. ThibaultS. T. ShanB. WalkerN. P. The crystal structure of PCSK9: A regulator of plasma LDL-cholesterol.Structure200715554555210.1016/j.str.2007.04.004
    [Google Scholar]
  60. SaloweS.P. ZhangL. ZokianH.J. GesellJ.J. ZinkD.L. WiltsieJ. AiX. KavanaM. PintoS. In vitro assays for the discovery of PCSK9 autoprocessing inhibitors.SLAS Discov.201621101034104110.1177/108705711665731227412534
    [Google Scholar]
  61. KornevaV. KuznetsovaT. JuliusU. The state of the problem of achieving extremely low LDL levels.Curr. Pharm. Des.202127373841385710.2174/138161282799921011118203033430743
    [Google Scholar]
  62. ShapiroM.D. TavoriH. FazioS. PCSK9: From basic science discoveries to clinical trials.Circ. Res.2018122101420143810.1161/CIRCRESAHA.118.31122729748367
    [Google Scholar]
  63. SeidahN.G. GarçonD. Expanding biology of PCSK9: Roles in atherosclerosis and beyond.Curr. Atheroscler. Rep.2022241082183010.1007/s11883‑022‑01057‑z35904732
    [Google Scholar]
  64. ChorbaJ.S. ShokatK.M. The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis.J. Biol. Chem.201428942290302904310.1074/jbc.M114.59486125210046
    [Google Scholar]
  65. LinX.L. XiaoL.L. TangZ.H. JiangZ.S. LiuM.H. Role of PCSK9 in lipid metabolism and atherosclerosis.Biomed. Pharmacother.2018104364410.1016/j.biopha.2018.05.02429758414
    [Google Scholar]
  66. SunL. YangX. LiQ. ZengP. LiuY. LiuL. ChenY. YuM. MaC. LiX. LiY. ZhangR. ZhuY. MiaoQ.R. HanJ. DuanY. Activation of adiponectin receptor regulates proprotein convertase subtilisin/kexin type 9 expression and inhibits lesions in apoe-deficient mice.Arterioscler. Thromb. Vasc. Biol.20173771290130010.1161/ATVBAHA.117.30963028546220
    [Google Scholar]
  67. SchulzR. SchlüterK.D. LaufsU. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9).Basic Res. Cardiol.20151102410.1007/s00395‑015‑0463‑z25600226
    [Google Scholar]
  68. SoskićS.S. DobutovićB.D. SudarE.M. ObradovićM.M. NikolićD.M. ZarićB.L. StojanovićS.Đ. StokićE.J. MikhailidisD.P. IsenovićE.R. Peroxisome proliferator-activated receptors and atherosclerosis.Angiology201162752353410.1177/000331971140101221467121
    [Google Scholar]
  69. SosnowskaB. MazidiM. PensonP. Gluba-BrzózkaA. RyszJ. BanachM. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis.Atherosclerosis201726527528210.1016/j.atherosclerosis.2017.08.02728870631
    [Google Scholar]
  70. WinnikS. AuwerxJ. SinclairD.A. MatterC.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside.Eur. Heart J.201536483404341210.1093/eurheartj/ehv29026112889
    [Google Scholar]
  71. LuqueroA. BadimonL. Borrell-PagesM. PCSK9 functions in atherosclerosis are not limited to plasmatic LDL-cholesterol regulation.Front. Cardiovasc. Med.2021863972710.3389/fcvm.2021.63972733834043
    [Google Scholar]
  72. StanimirovicJ. ObradovicM. JovanovicA. Sudar-MilovanovicE. ZafirovicS. PittS. J. StewartA. J. IsenovicE. R. A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats.Nitric Oxide : Biol. Chem.201654515910.1016/j.niox.2016.02.007
    [Google Scholar]
  73. SeidahN.G. PasquatoA. AndréoU. How do enveloped viruses exploit the secretory proprotein convertases to regulate infectivity and spread?Viruses2021137122910.3390/v1307122934202098
    [Google Scholar]
  74. LiuX. BaoX. HuM. ChangH. JiaoM. ChengJ. XieL. HuangQ. LiF. LiC. Y. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer.Nature2020588783969369810.1038/s41586‑020‑2911‑7
    [Google Scholar]
  75. CoppingerC. MovahedM.R. AzemawahV. PeytonL. GregoryJ. HashemzadehM. A comprehensive review of PCSK9 inhibitors.J. Cardiovasc. Pharmacol. Ther.2022271074248422110010710.1177/1074248422110010735593194
    [Google Scholar]
  76. Tomic NaglicD. ManojlovicM. PejakovicS. StepanovicK. Prodanovic SimeunovicJ. Lipoprotein(a): Role in atherosclerosis and new treatment options.Biomol. Biomed.202323457558310.17305/bb.2023.8992
    [Google Scholar]
  77. SchwartzG.G. StegP.G. SzarekM. BhattD.L. BittnerV.A. DiazR. EdelbergJ.M. GoodmanS.G. HanotinC. HarringtonR.A. JukemaJ.W. LecorpsG. MahaffeyK.W. MoryusefA. PordyR. QuinteroK. RoeM.T. SasielaW.J. TambyJ.F. TricociP. WhiteH.D. ZeiherA.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome.N. Engl. J. Med.2018379222097210710.1056/NEJMoa180117430403574
    [Google Scholar]
  78. SabatineM.S. GiuglianoR.P. KeechA.C. HonarpourN. WiviottS.D. MurphyS.A. KuderJ.F. WangH. LiuT. WassermanS.M. SeverP.S. PedersenT.R. Evolocumab and clinical outcomes in patients with cardiovascular disease.N. Engl. J. Med.2017376181713172210.1056/NEJMoa161566428304224
    [Google Scholar]
  79. ChenH. ChenX. PCSK9 inhibitors for acute coronary syndrome: The era of early implementation.Front. Cardiovasc. Med.202310113878710.3389/fcvm.2023.113878737200976
    [Google Scholar]
  80. HaoY. YangY. WangY. LiJ. Effect of the early application of evolocumab on blood lipid profile and cardiovascular prognosis in patients with extremely high-risk acute coronary syndrome.Int. Heart J.202263466967710.1536/ihj.22‑05235831153
    [Google Scholar]
  81. BlomD.J. KorenM.J. RothE. MonsalvoM.L. DjedjosC.S. NelsonP. ElliottM. WassermanS.M. BallantyneC.M. HolmanR.R. Evaluation of the efficacy, safety and glycaemic effects of evolocumab (AMG 145) in hypercholesterolaemic patients stratified by glycaemic status and metabolic syndrome.Diabetes Obes. Metab.20171919810710.1111/dom.1278827619750
    [Google Scholar]
  82. GiuglianoR.P. MachF. ZavitzK. KurtzC. ImK. KanevskyE. SchneiderJ. WangH. KeechA. PedersenT.R. SabatineM.S. SeverP.S. RobinsonJ.G. HonarpourN. WassermanS.M. OttB.R. Cognitive function in a randomized trial of evolocumab.N. Engl. J. Med.2017377763364310.1056/NEJMoa170113128813214
    [Google Scholar]
  83. MehtaS.R. PareG. LonnE.M. JollyS.S. NatarajanM.K. Pinilla-EcheverriN. SchwalmJ.D. ShethT.N. SibbaldM. TsangM. ValettasN. VelianouJ.L. LeeS.F. FerdousT. NaumanS. NguyenH. McCreadyT. McQueenM.J. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A randomised, double-blind, sham-controlled trial.EuroIntervention20221811e888e89610.4244/EIJ‑D‑22‑0073536349701
    [Google Scholar]
  84. KoskinasK.C. WindeckerS. PedrazziniG. MuellerC. CookS. MatterC.M. MullerO. HänerJ. GencerB. CrljenicaC. AminiP. DeckarmO. IglesiasJ.F. RäberL. HegD. MachF. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS).J. Am. Coll. Cardiol.201974202452246210.1016/j.jacc.2019.08.01031479722
    [Google Scholar]
  85. RäberL. UekiY. OtsukaT. LosdatS. HänerJ.D. LonborgJ. FahrniG. IglesiasJ.F. van GeunsR.J. OndracekA.S. Radu Juul JensenM.D. ZanchinC. StorteckyS. SpirkD. SiontisG.C.M. SalehL. MatterC.M. DaemenJ. MachF. HegD. WindeckerS. EngstrømT. LangI.M. KoskinasK.C. AmbühlM. BärS. FrenkA. MorfL.U. InderkumA. LeuthardS. KavaliauskaiteR. RexhajE. ShibutaniH. MitterV.R. KaiserC. MayrM. EberliF.R. O’SullivanC.J. TemplinC. von EckardsteinA. GhandilyanA. PawarR. JonkerH. HofbauerT. GoliaschG. BangL. SørensenR. Tovar ForeroM.N. DegrauweS. Ten CateT. Effect of alirocumab added to high-intensity statin therapy on coronary atherosclerosis in patients with acute myocardial infarction.JAMA2022327181771178110.1001/jama.2022.521835368058
    [Google Scholar]
  86. GabaP. O’DonoghueM.L. ParkJ.G. WiviottS.D. AtarD. KuderJ.F. ImK. MurphyS.A. De FerrariG.M. GaciongZ.A. TothK. Gouni-BertholdI. Lopez-MirandaJ. SchieleF. MachF. Flores-ArredondoJ.H. LópezJ.A.G. Elliott-DaveyM. WangB. MonsalvoM.L. AbbasiS. GiuglianoR.P. SabatineM.S. Association between achieved low-density lipoprotein cholesterol levels and long-term cardiovascular and safety outcomes: An analysis of fourier-ole.Circulation2023147161192120310.1161/CIRCULATIONAHA.122.06339936779348
    [Google Scholar]
  87. KaufmanT.M. WardenB.A. MinnierJ. MilesJ.R. DuellP.B. PurnellJ.Q. WojcikC. FazioS. ShapiroM.D. Application of PCSK9 inhibitors in practice.Circ. Res.20191241323710.1161/CIRCRESAHA.118.31419130605414
    [Google Scholar]
  88. O’DonoghueM.L. GiuglianoR.P. WiviottS.D. AtarD. KeechA. KuderJ.F. ImK. MurphyS.A. Flores-ArredondoJ.H. LópezJ.A.G. Elliott-DaveyM. WangB. MonsalvoM.L. AbbasiS. SabatineM.S. Long-term evolocumab in patients with established atherosclerotic cardiovascular disease.Circulation2022146151109111910.1161/CIRCULATIONAHA.122.06162036031810
    [Google Scholar]
  89. FerrariF. SteinR. MottaM.T. MoriguchiE.H. PCSK9 inhibitors: Clinical relevance, molecular mechanisms, and safety in clinical practice.Arq. Bras. Cardiol.2019112445346010.5935/abc.2019002930843929
    [Google Scholar]
  90. LakoskiS.G. LagaceT.A. CohenJ.C. HortonJ.D. HobbsH.H. Genetic and metabolic determinants of plasma PCSK9 levels.J. Clin. Endocrinol. Metab.20099472537254310.1210/jc.2009‑014119351729
    [Google Scholar]
  91. TóthŠ. FedačkoJ. PekárováT. HertelyováZ. KatzM. MugheesA. KuzmaJ. ŠtefaničP. KopolovetsI. PellaD. Elevated circulating PCSK9 concentrations predict subclinical atherosclerotic changes in low risk obese and non-obese patients.Cardiol. Ther.20176228128910.1007/s40119‑017‑0092‑828623549
    [Google Scholar]
  92. SotlerT. ŠebeštjenM. PCSK9 as an atherothrombotic risk factor.Int. J. Mol. Sci.2023243196610.3390/ijms24031966
    [Google Scholar]
  93. ZhuY. XianX. WangZ. BiY. ChenQ. HanX. TangD. ChenR. Research progress on the relationship between atherosclerosis and inflammation.Biomolecules2018838010.3390/biom803008030142970
    [Google Scholar]
  94. BaraleC. MelchiondaE. MorottiA. PCSK9 biology and its role in atherothrombosis.Int. J. Mol. Sci.20212211588010.3390/ijms22115880
    [Google Scholar]
  95. XiaX. PengZ. GuH. WangM. WangG. ZhangD. Regulation of PCSK9 expression and function: mechanisms and therapeutic implications.Front. Cardiovasc. Med.2021876403810.3389/fcvm.2021.76403834782856
    [Google Scholar]
  96. TrpkovicA. ResanovicI. StanimirovicJ. RadakD. MousaS.A. Cenic-MilosevicD. JevremovicD. IsenovicE.R. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases.Crit. Rev. Clin. Lab. Sci.2015522708510.3109/10408363.2014.99206325537066
    [Google Scholar]
  97. DingZ. LiuS. WangX. TheusS. DengX. FanY. ZhouS. MehtaJ.L. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages.Cardiovasc. Res.201811481145115310.1093/cvr/cvy07929617722
    [Google Scholar]
  98. WuN.Q. ShiH.W. LiJ.J. Proprotein convertase subtilisin/kexin type 9 and inflammation: An updated review.Front. Cardiovasc. Med.2022976351610.3389/fcvm.2022.76351635252378
    [Google Scholar]
  99. ShapiroM.D. FazioS. PCSK9 and atherosclerosis - lipids and beyond.J. Atheroscler. Thromb.201724546247210.5551/jat.RV1700328302950
    [Google Scholar]
  100. XuB. LiS. FangY. ZouY. SongD. ZhangS. CaiY. Proprotein convertase subtilisin/kexin type 9 promotes gastric cancer metastasis and suppresses apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation.Front. Oncol.20211060966310.3389/fonc.2020.60966333489919
    [Google Scholar]
  101. Guijarro-MuñozI. CompteM. Álvarez-CienfuegosA. Álvarez-VallinaL. SanzL. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes.J. Biol. Chem.201428942457246810.1074/jbc.M113.52116124307174
    [Google Scholar]
  102. LiuA. FrostegårdJ. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque.J. Intern. Med.2018284219321010.1111/joim.1275829617044
    [Google Scholar]
  103. CammisottoV. PastoriD. NocellaC. BartimocciaS. CastellaniV. MarcheseC. Sili ScavalliA. EttorreE. ViceconteN. VioliF. PignatelliP. CarnevaleR. PCSK9 regulates Nox2-mediated platelet activation via CD36 receptor in patients with atrial fibrillation.Antioxidants20209429610.3390/antiox904029632252393
    [Google Scholar]
  104. CameraM. RossettiL. BarbieriS.S. ZanottiI. CancianiB. TrabattoniD. RuscicaM. TremoliE. FerriN. PCSK9 as a positive modulator of platelet activation.J. Am. Coll. Cardiol.201871895295410.1016/j.jacc.2017.11.06929471945
    [Google Scholar]
  105. OchoaE. IriondoM. ManzanoC. FullaondoA. VillarI. Ruiz-IrastorzaG. ZubiagaA.M. EstonbaA. LDLR and PCSK9 are associated with the presence of antiphospholipid antibodies and the development of thrombosis in aPLA carriers.PLoS One2016111e014699010.1371/journal.pone.014699026820623
    [Google Scholar]
  106. ZulkapliR. MuidS.A. WangS.M. NawawiH. PCSK9 inhibitors reduce PCSK9 and early atherogenic biomarkers in stimulated human coronary artery endothelial cells.Int. J. Mol. Sci.2023246509810.3390/ijms2406509836982171
    [Google Scholar]
  107. FeingoldK.R. MoserA. ShigenagaJ.K. GrunfeldC. Inflammation stimulates niacin receptor (GPR109A/HCA2) expression in adipose tissue and macrophages.J. Lipid Res.201455122501250810.1194/jlr.M05095525320346
    [Google Scholar]
  108. ShahP.K. Inflammation and plaque vulnerability.Cardiovasc. Drugs Ther.2009231314010.1007/s10557‑008‑6147‑218949542
    [Google Scholar]
  109. GrebeA. HossF. LatzE. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis.Circ. Res.2018122121722174010.1161/CIRCRESAHA.118.31136229880500
    [Google Scholar]
  110. WuC.Y. TangZ.H. JiangL. LiX.F. JiangZ.S. LiuL.S. PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax–caspase9–caspase3 pathway.Mol. Cell. Biochem.20123591-234735810.1007/s11010‑011‑1028‑621847580
    [Google Scholar]
  111. LiJ. LiangX. WangY. XuZ. LiG. Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced endothelial cell apoptosis.Mol. Med. Rep.20171621817182510.3892/mmr.2017.680328656218
    [Google Scholar]
  112. LiS. GuoY.L. XuR.X. ZhangY. ZhuC.G. SunJ. QingP. WuN.Q. JiangL.X. LiJ.J. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease.Atherosclerosis2014234244144510.1016/j.atherosclerosis.2014.04.00124769476
    [Google Scholar]
  113. DaneshJ. LewingtonS. ThompsonS.G. LoweG.D. CollinsR. KostisJ.B. WilsonA.C. FolsomA.R. WuK. BenderlyM. GoldbourtU. WilleitJ. KiechlS. YarnellJ.W. SweetnamP.M. ElwoodP.C. CushmanM. PsatyB.M. TracyR.P. Tybjaerg-HansenA. HaverkateF. de MaatM.P. FowkesF.G. LeeA.J. SmithF.B. SalomaaV. HaraldK. RasiR. VahteraE. JousilahtiP. PekkanenJ. D’AgostinoR. KannelW.B. WilsonP.W. ToflerG. Arocha-PiñangoC.L. Rodriguez-LarraldeA. NagyE. MijaresM. EspinosaR. Rodriquez-RoaE. RyderE. Diez-EwaldM.P. CamposG. FernandezV. TorresE. MarchioliR. ValagussaF. RosengrenA. WilhelmsenL. LappasG. ErikssonH. CremerP. NagelD. CurbJ.D. RodriguezB. YanoK. SalonenJ.T. NyyssönenK. TuomainenT.P. HedbladB. LindP. LoewelH. KoenigW. MeadeT.W. CooperJ.A. De StavolaB. KnottenbeltC. MillerG.J. CooperJ.A. BauerK.A. RosenbergR.D. SatoS. KitamuraA. NaitoY. PalosuoT. DucimetiereP. AmouyelP. ArveilerD. EvansA.E. FerrieresJ. Juhan-VagueI. BinghamA. SchulteH. AssmannG. CantinB. LamarcheB. DesprésJ.P. DagenaisG.R. Tunstall-PedoeH. WoodwardM. Ben-ShlomoY. Davey SmithG. PalmieriV. YehJ.L. RudnickaA. RidkerP. RodeghieroF. TosettoA. ShepherdJ. FordI. RobertsonM. BrunnerE. ShipleyM. FeskensE.J. KromhoutD. DickinsonA. IrelandB. JuzwishinK. KaptogeS. LewingtonS. MemonA. SarwarN. WalkerM. WheelerJ. WhiteI. WoodA. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: An individual participant meta-analysis.JAMA2005294141799180910.1001/jama.294.14.179916219884
    [Google Scholar]
  114. ZhangY. ZhuC.G. XuR.X. LiS. GuoY.L. SunJ. LiJ.J. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease.J. Clin. Lipidol.20148549450010.1016/j.jacl.2014.07.00125234562
    [Google Scholar]
  115. TaechalertpaisarnJ. ZhaoB. LiangX. BurgessK. Small molecule inhibitors of the PCSK9·LDLR interaction.J. Am. Chem. Soc.201814093242324910.1021/jacs.7b09360
    [Google Scholar]
  116. LondreganA.T. WeiL. XiaoJ. LintnerN.G. PetersenD. DulleaR.G. McClureK.F. BoltM.W. WarmusJ.S. CoffeyS.B. LimberakisC. GenovinoJ. ThumaB.A. HespK.D. AspnesG.E. ReidichB. SalattoC.T. ChabotJ.R. CateJ.H.D. LirasS. PiotrowskiD.W. Small molecule proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors: Hit to lead optimization of systemic agents.J. Med. Chem.201861135704571810.1021/acs.jmedchem.8b0065029878763
    [Google Scholar]
  117. PettersenD. FjellströmO. Small molecule modulators of PCSK9 - A literature and patent overview.Bioorg. Med. Chem. Lett.20182871155116010.1016/j.bmcl.2018.02.04629519739
    [Google Scholar]
  118. AhamadS. MathewS. KhanW.A. MohananK. Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia.Drug Discov. Today20222751332134910.1016/j.drudis.2022.01.01435121175
    [Google Scholar]
  119. LintnerN. G. McClureK. F. PetersenD. LondreganA. T. PiotrowskiD. W. WeiL. XiaoJ. BoltM. LoriaP. M. MaguireB. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain.PLoS Biol.2017153e200188210.1371/journal.pbio.2001882
    [Google Scholar]
  120. PetersenD.N. HawkinsJ. RuangsirilukW. StevensK.A. MaguireB.A. O’ConnellT.N. RockeB.N. BoehmM. RuggeriR.B. RolphT. HepworthD. LoriaP.M. CarpinoP.A. A small-molecule anti-secretagogue of PCSK9 targets the 80S ribosome to inhibit PCSK9 protein translation.Cell Chem. Biol.201623111362137110.1016/j.chembiol.2016.08.01627746128
    [Google Scholar]
  121. McClureK.F. PiotrowskiD.W. PetersenD. WeiL. XiaoJ. LondreganA.T. KamletA.S. Dechert-SchmittA.M. RaymerB. RuggeriR.B. CanterburyD. LimberakisC. LirasS. DaSilva-JardineP. DulleaR.G. LoriaP.M. ReidichB. SalattoC.T. EngH. KimotoE. AtkinsonK. King-AhmadA. ScottD. BeaumontK. ChabotJ.R. BoltM.W. MarescaK. DahlK. ArakawaR. TakanoA. HalldinC. Liver-targeted small-molecule inhibitors of proprotein convertase subtilisin/kexin type 9 synthesis.Angew. Chem. Int. Ed.20175651162181622210.1002/anie.20170874429073340
    [Google Scholar]
  122. ZhangY. EigenbrotC. ZhouL. ShiaS. LiW. QuanC. TomJ. MoranP. Di LelloP. SkeltonN.J. Kong-BeltranM. PetersonA. KirchhoferD. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor.J. Biol. Chem.2014289294295510.1074/jbc.M113.51406724225950
    [Google Scholar]
  123. SchroederC.I. SwedbergJ.E. WithkaJ.M. RosengrenK.J. AkcanM. ClaytonD.J. DalyN.L. ChenevalO. BorzilleriK.A. GrifforM. StockI. CollessB. WalshP. SunderlandP. ReyesA. DulleaR. AmmiratiM. LiuS. McClureK.F. TuM. BhattacharyaS.K. LirasS. PriceD.A. CraikD.J. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro.Chem. Biol.201421228429410.1016/j.chembiol.2013.11.01424440079
    [Google Scholar]
  124. ZhangY. UltschM. SkeltonN. J. BurdickD. J. BeresiniM. H. LiW. Kong-BeltranM. PetersonA. QuinnJ. ChiuC. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists.Nat. Struct. Mol. Biol.2017241084885610.1038/nsmb.3453
    [Google Scholar]
  125. EvisonB.J. PalmerJ.T. LambertG. TreutleinH. ZengJ. NativelB. ChemelloK. ZhuQ. WangJ. TengY. TangW. XuY. RathiA.K. KumarS. SuchowerskaA.K. ParmarJ. DixonI. KellyG.E. BonnarJ. A small molecule inhibitor of PCSK9 that antagonizes LDL receptor binding via interaction with a cryptic PCSK9 binding groove.Bioorg. Med. Chem.202028611534410.1016/j.bmc.2020.11534432051094
    [Google Scholar]
  126. MinD.K. LeeH.S. LeeN. LeeC.J. SongH.J. YangG.E. YoonD. ParkS.W. In silico screening of chemical libraries to develop inhibitors that hamper the interaction of PCSK9 with the LDL receptor.Yonsei Med. J.20155651251125710.3349/ymj.2015.56.5.125126256967
    [Google Scholar]
  127. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.00219167326
    [Google Scholar]
  128. BartelD.P. MicroRNAs.Cell2004116228129710.1016/S0092‑8674(04)00045‑514744438
    [Google Scholar]
  129. GuoH. IngoliaN.T. WeissmanJ.S. BartelD.P. Mammalian microRNAs predominantly act to decrease target mRNA levels.Nature2010466730883584010.1038/nature0926720703300
    [Google Scholar]
  130. FormanJ.J. Legesse-MillerA. CollerH.A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence.Proc. Natl. Acad. Sci.200810539148791488410.1073/pnas.080323010518812516
    [Google Scholar]
  131. ZhouH. RigoutsosI. MiR-103a-3p targets the 5′ UTR of GPRC5A in pancreatic cells.RNA20142091431143910.1261/rna.045757.11424984703
    [Google Scholar]
  132. ZhangY. FanM. ZhangX. HuangF. WuK. ZhangJ. LiuJ. HuangZ. LuoH. TaoL. ZhangH. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.RNA201420121878188910.1261/rna.045633.11425336585
    [Google Scholar]
  133. HanJ. LeeY. YeomK.H. KimY.K. JinH. KimV.N. The Drosha-DGCR8 complex in primary microRNA processing.Genes Dev.200418243016302710.1101/gad.126250415574589
    [Google Scholar]
  134. SiomiH. SiomiM.C. Posttranscriptional regulation of microRNA biogenesis in animals.Mol. Cell201038332333210.1016/j.molcel.2010.03.01320471939
    [Google Scholar]
  135. FriedmanR.C. FarhK.K.H. BurgeC.B. BartelD.P. Most mammalian mRNAs are conserved targets of microRNAs.Genome Res.20091919210510.1101/gr.082701.10818955434
    [Google Scholar]
  136. SelbachM. SchwanhäusserB. ThierfelderN. FangZ. KhaninR. RajewskyN. Widespread changes in protein synthesis induced by microRNAs.Nature20084557209586310.1038/nature0722818668040
    [Google Scholar]
  137. GrimsonA. FarhK.K.H. JohnstonW.K. Garrett-EngeleP. LimL.P. BartelD.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing.Mol. Cell20072719110510.1016/j.molcel.2007.06.01717612493
    [Google Scholar]
  138. DoenchJ.G. SharpP.A. Specificity of microRNA target selection in translational repression.Genes Dev.200418550451110.1101/gad.118440415014042
    [Google Scholar]
  139. WangR. DongL.D. MengX.B. ShiQ. SunW.Y. Unique MicroRNA signatures associated with early coronary atherosclerotic plaques.Biochem. Biophys. Res. Commun.2015464257457910.1016/j.bbrc.2015.07.01026159918
    [Google Scholar]
  140. RaitoharjuE. LyytikäinenL.P. LevulaM. OksalaN. MennanderA. TarkkaM. KloppN. IlligT. KähönenM. KarhunenP.J. LaaksonenR. LehtimäkiT. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study.Atherosclerosis2011219121121710.1016/j.atherosclerosis.2011.07.02021820659
    [Google Scholar]
  141. CipolloneF. FelicioniL. SarzaniR. UcchinoS. SpigonardoF. MandoliniC. MalatestaS. BucciM. MammarellaC. SantovitoD. de LutiisF. MarchettiA. MezzettiA. ButtittaF. A unique microRNA signature associated with plaque instability in humans.Stroke20114292556256310.1161/STROKEAHA.110.59757521817153
    [Google Scholar]
  142. FacciniJ. RuidavetsJ.B. CordelierP. MartinsF. MaoretJ.J. BongardV. FerrièresJ. RoncalliJ. ElbazM. VindisC. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease.Sci. Rep.2017714291610.1038/srep4291628205634
    [Google Scholar]
  143. FichtlschererS. De RosaS. FoxH. SchwietzT. FischerA. LiebetrauC. WeberM. HammC.W. RöxeT. Müller-ArdoganM. BonauerA. ZeiherA.M. DimmelerS. Circulating microRNAs in patients with coronary artery disease.Circ. Res.2010107567768410.1161/CIRCRESAHA.109.21556620595655
    [Google Scholar]
  144. WeberM. BakerM.B. PatelR.S. QuyyumiA.A. BaoG. SearlesC.D. MicroRNA expression profile in CAD patients and the impact of ACEI/ARB.Cardiol. Res. Pract.201120111510.4061/2011/53291521785714
    [Google Scholar]
  145. ZhuG. YangL. GuoR. LiuH. ShiY. YeJ. YangZ. microRNA-155 is inversely associated with severity of coronary stenotic lesions calculated by the gensini score.Coron. Artery Dis.201425430431010.1097/MCA.000000000000008824525789
    [Google Scholar]
  146. ZellerT. KellerT. OjedaF. ReichlinT. TwerenboldR. TzikasS. WildP.S. ReiterM. CzyzE. LacknerK.J. MunzelT. MuellerC. BlankenbergS. Assessment of microRNAs in patients with unstable angina pectoris.Eur. Heart J.201435312106211410.1093/eurheartj/ehu15124727883
    [Google Scholar]
  147. LiuK. XuekelatiS. ZhouK. YanZ. YangX. InayatA. WuJ. GuoX. Expression profiles of six atherosclerosis-associated microRNAs that cluster in patients with hyperhomocysteinemia: A clinical study.DNA Cell Biol.201837318919810.1089/dna.2017.384529461880
    [Google Scholar]
  148. GimbroneM.A.Jr García-CardeñaG. Endothelial cell dysfunction and the pathobiology of atherosclerosis.Circ. Res.2016118462063610.1161/CIRCRESAHA.115.30630126892962
    [Google Scholar]
  149. FeinbergM.W. MooreK.J. MicroRNA regulation of atherosclerosis.Circ. Res.2016118470372010.1161/CIRCRESAHA.115.30630026892968
    [Google Scholar]
  150. BoonR.A. Endothelial microRNA tells smooth muscle cells to proliferate.Circ. Res.201311317810.1161/CIRCRESAHA.113.30163623788500
    [Google Scholar]
  151. JaéN. DimmelerS. Noncoding RNAs in vascular diseases.Circ. Res.202012691127114510.1161/CIRCRESAHA.119.31593832324505
    [Google Scholar]
  152. FasoloF. Di GregoliK. MaegdefesselL. JohnsonJ.L. Non-coding RNAs in cardiovascular cell biology and atherosclerosis.Cardiovasc. Res.2019115121732175610.1093/cvr/cvz20331389987
    [Google Scholar]
  153. FangY. DaviesP.F. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium.Arterioscler. Thromb. Vasc. Biol.201232497998710.1161/ATVBAHA.111.24405322267480
    [Google Scholar]
  154. LoyerX. PotteauxS. VionA.C. GuérinC.L. BoulkrounS. RautouP.E. RamkhelawonB. EspositoB. DallozM. PaulJ.L. JuliaP. MaccarioJ. BoulangerC.M. MallatZ. TedguiA. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice.Circ. Res.2014114343444310.1161/CIRCRESAHA.114.30221324255059
    [Google Scholar]
  155. HosenM.R. GoodyP.R. ZietzerA. NickenigG. JansenF. MicroRNAs as master regulators of atherosclerosis: From pathogenesis to novel therapeutic options.Antioxid. Redox Signal.202033962164410.1089/ars.2020.810732408755
    [Google Scholar]
  156. MooreK.J. SheedyF.J. FisherE.A. Macrophages in atherosclerosis: A dynamic balance.Nat. Rev. Immunol.2013131070972110.1038/nri352023995626
    [Google Scholar]
  157. Self-FordhamJ.B. NaqviA.R. UttamaniJ.R. KulkarniV. NaresS. MicroRNA: Dynamic regulators of macrophage polarization and plasticity.Front. Immunol.20178106210.3389/fimmu.2017.0106228912781
    [Google Scholar]
  158. CurtaleG. RubinoM. LocatiM. MicroRNAs as molecular switches in macrophage activation.Front. Immunol.20191079910.3389/fimmu.2019.0079931057539
    [Google Scholar]
  159. ZhangY. ZhangM. ZhongM. SuoQ. LvK. Expression profiles of miRNAs in polarized macrophages.Int. J. Mol. Med.201331479780210.3892/ijmm.2013.126023443577
    [Google Scholar]
  160. ParkY.M. CD36, a scavenger receptor implicated in atherosclerosis.Exp. Mol. Med.2014466e9910.1038/emm.2014.3824903227
    [Google Scholar]
  161. KuchibhotlaS. VanegasD. KennedyD.J. GuyE. NimakoG. MortonR.E. FebbraioM. Absence of CD36 protects against atherosclerosis in ApoE knock-out mice with no additional protection provided by absence of scavenger receptor A I/II.Cardiovasc. Res.200878118519610.1093/cvr/cvm09318065445
    [Google Scholar]
  162. LiB.R. XiaL.Q. LiuJ. liaoL.L. ZhangY. DengM. ZhongH.J. FengT.T. HeP.P. OuyangX.P. miR-758-5p regulates cholesterol uptake via targeting the CD36 3′UTR.Biochem. Biophys. Res. Commun.20174941-238438910.1016/j.bbrc.2017.09.15028965954
    [Google Scholar]
  163. ChenT. HuangZ. WangL. WangY. WuF. MengS. WangC. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages.Cardiovasc. Res.200983113113910.1093/cvr/cvp12119377067
    [Google Scholar]
  164. BanerjeeS. CuiH. XieN. TanZ. YangS. IcyuzM. ThannickalV.J. AbrahamE. LiuG. miR-125a-5p regulates differential activation of macrophages and inflammation.J. Biol. Chem.201328849354283543610.1074/jbc.M112.42686624151079
    [Google Scholar]
  165. YangK. HeY.S. WangX.Q. LuL. ChenQ.J. LiuJ. SunZ. ShenW.F. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4.FEBS Lett.2011585685486010.1016/j.febslet.2011.02.00921329689
    [Google Scholar]
  166. ZhangM. WuJ.F. ChenW.J. TangS.L. MoZ.C. TangY.Y. LiY. WangJ.L. LiuX.Y. PengJ. ChenK. HeP.P. LvY.C. OuyangX.P. YaoF. TangD.P. CayabyabF.S. ZhangD.W. ZhengX.L. TianG.P. TangC.K. MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages.Atherosclerosis20142341546410.1016/j.atherosclerosis.2014.02.00824608080
    [Google Scholar]
  167. XieW. LiL. ZhangM. ChengH.P. GongD. LvY.C. YaoF. HeP.P. OuyangX.P. LanG. LiuD. ZhaoZ.W. TanY.L. ZhengX.L. YinW.D. TangC.K. MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice.PLoS One2016116e015708510.1371/journal.pone.015708527257686
    [Google Scholar]
  168. AlvarezM.L. KhosroheidariM. EddyE. DoneS.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis.Atherosclerosis2015242259560410.1016/j.atherosclerosis.2015.08.02326318398
    [Google Scholar]
  169. Canfrán-DuqueA. LinC.S. GoedekeL. SuárezY. Fernández-HernandoC. Micro-RNAs and high-density lipoprotein metabolism.Arterioscler. Thromb. Vasc. Biol.20163661076108410.1161/ATVBAHA.116.30702827079881
    [Google Scholar]
  170. NishigaM. HorieT. KuwabaraY. NagaoK. BabaO. NakaoT. NishinoT. HakunoD. NakashimaY. NishiH. NakazekiF. IdeY. KoyamaS. KimuraM. HanadaR. NakamuraT. InadaT. HasegawaK. ConwayS.J. KitaT. KimuraT. OnoK. MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol.Circ. Res.2017120583584710.1161/CIRCRESAHA.116.30952827920122
    [Google Scholar]
  171. KarunakaranD. ThrushA.B. NguyenM.A. RichardsL. GeoffrionM. SingaraveluR. RamphosE. ShangariP. OuimetM. PezackiJ.P. MooreK.J. PerisicL. MaegdefesselL. HedinU. HarperM.E. RaynerK.J. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-mir33 in atherosclerosis.Circ. Res.2015117326627810.1161/CIRCRESAHA.117.30562426002865
    [Google Scholar]
  172. OuimetM. EdiriweeraH.N. GundraU.M. SheedyF.J. RamkhelawonB. HutchisonS.B. RineholdK. van SolingenC. FullertonM.D. CecchiniK. RaynerK.J. SteinbergG.R. ZamoreP.D. FisherE.A. LokeP. MooreK.J. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis.J. Clin. Invest.2015125124334434810.1172/JCI8167626517695
    [Google Scholar]
  173. RaynerK.J. SuárezY. DávalosA. ParathathS. FitzgeraldM.L. TamehiroN. FisherE.A. MooreK.J. Fernández-HernandoC. MiR-33 contributes to the regulation of cholesterol homeostasis.Science201032859851570157310.1126/science.118986220466885
    [Google Scholar]
  174. RaynerK.J. SheedyF.J. EsauC.C. HussainF.N. TemelR.E. ParathathS. van GilsJ.M. RaynerA.J. ChangA.N. SuarezY. Fernandez-HernandoC. FisherE.A. MooreK.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.J. Clin. Invest.201112172921293110.1172/JCI5727521646721
    [Google Scholar]
  175. GoedekeL. RotllanN. Canfrán-DuqueA. ArandaJ.F. RamírezC.M. AraldiE. LinC.S. AndersonN.N. WagschalA. de CaboR. HortonJ.D. LasunciónM.A. NäärA.M. SuárezY. Fernández-HernandoC. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels.Nat. Med.201521111280128910.1038/nm.394926437365
    [Google Scholar]
  176. de Aguiar VallimT.Q. TarlingE.J. KimT. CivelekM. BaldánÁ. EsauC. EdwardsP.A. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.Circ. Res.2013112121602161210.1161/CIRCRESAHA.112.30064823519696
    [Google Scholar]
  177. RamírezC.M. GoedekeL. RotllanN. YoonJ.H. Cirera-SalinasD. MattisonJ.A. SuárezY. de CaboR. GorospeM. Fernández-HernandoC. MicroRNA 33 regulates glucose metabolism.Mol. Cell. Biol.201333152891290210.1128/MCB.00016‑1323716591
    [Google Scholar]
  178. OuimetM. EdiriweeraH. AfonsoM.S. RamkhelawonB. SingaraveluR. LiaoX. BandlerR.C. RahmanK. FisherE.A. RaynerK.J. PezackiJ.P. TabasI. MooreK.J. microRNA-33 regulates macrophage autophagy in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20173761058106710.1161/ATVBAHA.116.30891628428217
    [Google Scholar]
  179. AfonsoM.S. SharmaM. SchlegelM. van SolingenC. KoelwynG.J. ShanleyL.C. BeckettL. PeledD. RahmanK. GiannarelliC. LiH. BrownE.J. Khodadadi-JamayranA. FisherE.A. MooreK.J. miR-33 silencing reprograms the immune cell landscape in atherosclerotic plaques.Circ. Res.202112881122113810.1161/CIRCRESAHA.120.31791433593073
    [Google Scholar]
  180. ZhangX. RotllanN. Canfrán-DuqueA. SunJ. ToczekJ. MoshnikovaA. Targeted suppression of miRNA-33 using pHLIP improves atherosclerosis regression.Circ Res.202213111779010.1161/CIRCRESAHA.121.320296
    [Google Scholar]
  181. Canfrán-DuqueA. RamírezC.M. GoedekeL. LinC.S. Fernández-HernandoC. microRNAs and HDL life cycle.Cardiovasc. Res.2014103341442210.1093/cvr/cvu14024895349
    [Google Scholar]
  182. Najafi-ShoushtariS.H. KristoF. LiY. ShiodaT. CohenD.E. GersztenR.E. NäärA.M. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.Science201032859851566156910.1126/science.118912320466882
    [Google Scholar]
  183. MarquartT.J. AllenR.M. OryD.S. BaldánÁ. miR-33 links SREBP-2 induction to repression of sterol transporters.Proc. Natl. Acad. Sci.201010727122281223210.1073/pnas.100519110720566875
    [Google Scholar]
  184. SidorkiewiczM. Is microRNA-33 an appropriate target in the treatment of atherosclerosis?Nutrients202315490210.3390/nu1504090236839260
    [Google Scholar]
  185. HorieT. BabaO. KuwabaraY. ChujoY. WatanabeS. KinoshitaM. HoriguchiM. NakamuraT. ChonabayashiK. HishizawaM. HasegawaK. KumeN. YokodeM. KitaT. KimuraT. OnoK. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice.J. Am. Heart Assoc.201216e00337610.1161/JAHA.112.00337623316322
    [Google Scholar]
  186. RamírezC.M. RotllanN. VlassovA.V. DávalosA. LiM. GoedekeL. ArandaJ.F. Cirera-SalinasD. AraldiE. SalernoA. WanschelA. ZavadilJ. CastrilloA. KimJ. SuárezY. Fernández-HernandoC. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144.Circ. Res.2013112121592160110.1161/CIRCRESAHA.112.30062623519695
    [Google Scholar]
  187. TabetF. VickersK.C. Cuesta TorresL.F. WieseC.B. ShoucriB.M. LambertG. CatherinetC. Prado-LourencoL. LevinM.G. ThackerS. SethupathyP. BarterP.J. RemaleyA.T. RyeK.A. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.Nat. Commun.201451329210.1038/ncomms429224576947
    [Google Scholar]
  188. Rossi-HerringG. BelmonteT. Rivas-UrbinaA. BenítezS. RotllanN. CrespoJ. Llorente-CortésV. Sánchez-QuesadaJ.L. de Gonzalo-CalvoD. Circulating lipoprotein-carried miRNome analysis reveals novel VLDL-enriched microRNAs that strongly correlate with the HDL-microRNA profile.Biomed. Pharmacother.202316211462310.1016/j.biopha.2023.11462337023624
    [Google Scholar]
  189. ZhangX. PriceN.L. Fernández-HernandoC. Non-coding RNAs in lipid metabolism.Vascul. Pharmacol.20191149310210.1016/j.vph.2018.06.01129929012
    [Google Scholar]
  190. TsaiW.C. HsuS.D. HsuC.S. LaiT.C. ChenS.J. ShenR. HuangY. ChenH.C. LeeC.H. TsaiT.F. HsuM.T. WuJ.C. HuangH.D. ShiaoM.S. HsiaoM. TsouA.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis.J. Clin. Invest.201212282884289710.1172/JCI6345522820290
    [Google Scholar]
  191. AgbuP. CarthewR.W. MicroRNA-mediated regulation of glucose and lipid metabolism.Nat. Rev. Mol. Cell Biol.202122642543810.1038/s41580‑021‑00354‑w33772227
    [Google Scholar]
  192. NaeliP. Mirzadeh AzadF. MalakootianM. SeidahN.G. MowlaS.J. Post-transcriptional regulation of PCSK9 by miR-191, miR-222, and miR-224.Front. Genet.2017818910.3389/fgene.2017.0018929230236
    [Google Scholar]
  193. BaiJ. NaH. HuaX. WeiY. YeT. ZhangY. JianG. ZengW. YanL. TangQ. A retrospective study of NENs and miR-224 promotes apoptosis of BON-1 cells by targeting PCSK9 inhibition.Oncotarget2017846929693910.18632/oncotarget.1432228036293
    [Google Scholar]
  194. SalernoA.G. van SolingenC. ScottiE. WanschelA.C.B.A. AfonsoM.S. OldebekenS.R. SpiroW. TontonozP. RaynerK.J. MooreK.J. LDL receptor pathway regulation by miR-224 and miR-520d.Front. Cardiovasc. Med.202078110.3389/fcvm.2020.0008132528976
    [Google Scholar]
  195. ChandraA. SharmaK. PratapK. SinghV. SainiN. Inhibition of microRNA-128-3p attenuates hypercholesterolemia in mouse model.Life Sci.202126411863310.1016/j.lfs.2020.11863333190783
    [Google Scholar]
  196. WangN. HeL. MicroRNA-148a regulates low-density lipoprotein metabolism by repressing the (pro)renin receptor.PLoS One2020155e022535610.1371/journal.pone.0225356
    [Google Scholar]
  197. ShibataC. KishikawaT. OtsukaM. OhnoM. YoshikawaT. TakataA. YoshidaH. KoikeK. Inhibition of microRNA122 decreases SREBP1 expression by modulating suppressor of cytokine signaling 3 expression.Biochem. Biophys. Res. Commun.2013438123023510.1016/j.bbrc.2013.07.06423891753
    [Google Scholar]
  198. MenonB. GulappaT. MenonK.M.J. miR-122 regulates LH receptor expression by activating sterol response element binding protein in rat ovaries.Endocrinology201515693370338010.1210/en.2015‑112126125464
    [Google Scholar]
  199. IraniS. PanX. PeckB.C.E. IqbalJ. SethupathyP. HussainM.M. MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice.J. Biol. Chem.201629135183971840910.1074/jbc.M116.72845127365390
    [Google Scholar]
  200. LiX. FengS. LuoY. LongK. LinZ. MaJ. JiangA. JinL. TangQ. LiM. WangX. Expression profiles of microRNAs in oxidized low-density lipoprotein-stimulated RAW 264.7 cells. In vitro Cell. Dev. Biol. Anim.20185429911010.1007/s11626‑017‑0225‑329322359
    [Google Scholar]
  201. AtaeiS. GanjaliS. BanachM. KarimiE. SahebkarA. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with PCSK9/LDLR pathway.Arch. Med. Sci.202219120320810.5114/aoms/15200036817686
    [Google Scholar]
  202. van SolingenC. OldebekenS.R. SalernoA.G. WanschelA.C.B.A. MooreK.J. High-throughput screening identifies MicroRNAs regulating human PCSK9 and hepatic low-density lipoprotein receptor expression.Front. Cardiovasc. Med.2021866729810.3389/fcvm.2021.66729834322524
    [Google Scholar]
  203. LosB. BorgesJ.B. OliveiraV.F. FreitasR.C.C. Dagli-HernandezC. BortolinR.H. GonçalvesR.M. FaludiA.A. RodriguesA.C. BastosG.M. JannesC.E. PereiraA.C. HirataR.D.C. HirataM.H. Functional analysis of PCSK9 3′UTR variants and mRNA–miRNA interactions in patients with familial hypercholesterolemia.Epigenomics2021131077979110.2217/epi‑2020‑046233899508
    [Google Scholar]
  204. GuptaN. FiskerN. AsselinM.C. LindholmM. RosenbohmC. ØrumH. ElménJ. SeidahN.G. StraarupE.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo.PLoS One201055e1068210.1371/journal.pone.001068220498851
    [Google Scholar]
  205. DongB. LiH. SinghA.B. CaoA. LiuJ. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway.J. Biol. Chem.201529074047405810.1074/jbc.M114.59722925540198
    [Google Scholar]
  206. NiY.G. Di MarcoS. CondraJ.H. PetersonL.B. WangW. WangF. PanditS. HammondH.A. RosaR. CummingsR.T. WoodD.D. LiuX. BottomleyM.J. ShenX. CubbonR.M. WangS. JohnsD.G. VolpariC. HamuroL. ChinJ. HuangL. ZhaoJ.Z. VitelliS. HaytkoP. WisniewskiD. MitnaulL.J. SparrowC.P. HubbardB. CarfíA. SitlaniA. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo.J. Lipid Res.2011521788610.1194/jlr.M01144520959675
    [Google Scholar]
  207. BanerjeeY. SantosR.D. Al-RasadiK. RizzoM. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns?Atherosclerosis2016248627510.1016/j.atherosclerosis.2016.02.01826987067
    [Google Scholar]
  208. ChanJ.C.Y. PiperD.E. CaoQ. LiuD. KingC. WangW. TangJ. LiuQ. HigbeeJ. XiaZ. DiY. ShetterlyS. ArimuraZ. SalomonisH. RomanowW.G. ThibaultS.T. ZhangR. CaoP. YangX.P. YuT. LuM. RetterM.W. KwonG. HenneK. PanO. TsaiM.M. FuchslocherB. YangE. ZhouL. LeeK.J. DarisM. ShengJ. WangY. ShenW.D. YehW.C. EmeryM. WalkerN.P.C. ShanB. SchwarzM. JacksonS.M. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates.Proc. Natl. Acad. Sci.2009106249820982510.1073/pnas.090384910619443683
    [Google Scholar]
  209. SteinE.A. MellisS. YancopoulosG.D. StahlN. LoganD. SmithW.B. LisbonE. GutierrezM. WebbC. WuR. DuY. KranzT. GasparinoE. SwergoldG.D. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol.N. Engl. J. Med.2012366121108111810.1056/NEJMoa110580322435370
    [Google Scholar]
  210. LiangH. Chaparro-RiggersJ. StropP. GengT. SuttonJ.E. TsaiD. BaiL. AbdicheY. DilleyJ. YuJ. WuS. ChinS.M. LeeN.A. RossiA. LinJ.C. RajpalA. PonsJ. SheltonD.L. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates.J. Pharmacol. Exp. Ther.2012340222823610.1124/jpet.111.18741922019884
    [Google Scholar]
  211. ParkS.W. MoonY.A. HortonJ.D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver.J. Biol. Chem.200427948506305063810.1074/jbc.M41007720015385538
    [Google Scholar]
  212. MayerG. PoirierS. SeidahN.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels.J. Biol. Chem.200828346317913180110.1074/jbc.M80597120018799458
    [Google Scholar]
  213. Gouni-BertholdI. BertholdH.K. Antisense oligonucleotides for the treatment of dyslipidemia.Curr. Pharm. Des.201117995096010.2174/13816121179542883021418033
    [Google Scholar]
  214. Frank-KamenetskyM. GrefhorstA. AndersonN.N. RacieT.S. BramlageB. AkincA. ButlerD. CharisseK. DorkinR. FanY. Gamba-VitaloC. HadwigerP. JayaramanM. JohnM. JayaprakashK.N. MaierM. NechevL. RajeevK.G. ReadT. RöhlI. SoutschekJ. TanP. WongJ. WangG. ZimmermannT. de FougerollesA. VornlocherH.P. LangerR. AndersonD.G. ManoharanM. KotelianskyV. HortonJ.D. FitzgeraldK. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates.Proc. Natl. Acad. Sci.200810533119151192010.1073/pnas.080543410518695239
    [Google Scholar]
  215. NiY.G. CondraJ.H. OrsattiL. ShenX. Di MarcoS. PanditS. BottomleyM.J. RuggeriL. CummingsR.T. CubbonR.M. SantoroJ.C. EhrhardtA. LewisD. FisherT.S. HaS. NjimoluhL. WoodD.D. HammondH.A. WisniewskiD. VolpariC. NotoA. Lo SurdoP. HubbardB. CarfíA. SitlaniA. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake.J. Biol. Chem.201028517128821289110.1074/jbc.M110.11303520172854
    [Google Scholar]
  216. AkramO.N. BernierA. PetridesF. WongG. LambertG. Beyond LDL cholesterol, a new role for PCSK9.Arterioscler. Thromb. Vasc. Biol.20103071279128110.1161/ATVBAHA.110.20900720554949
    [Google Scholar]
  217. SquizzatoA. SuterM.B. NeroneM. GiuglianoR.P. DentaliF. MarescaA.M. CampiottiL. GrandiA.M. GuastiL. PCSK9 inhibitors for treating dyslipidemia in patients at different cardiovascular risk: A systematic review and a meta-analysis.Intern. Emerg. Med.20171271043105310.1007/s11739‑017‑1708‑728695455
    [Google Scholar]
  218. BanachM. PensonP.E. VrablikM. BuncM. DyrbusK. FedackoJ. GaitaD. GierlotkaM. JaraiZ. MagdaS.L. MargeticE. MargoczyR. Durak-NalbanticA. OstadalP. PellaD. TrbusicM. UdroiuC.A. VlachopoulosC. VulicD. FrasZ. DudekD. ReinerŽ. Optimal use of lipid-lowering therapy after acute coronary syndromes: A Position Paper endorsed by the International Lipid Expert Panel (ILEP).Pharmacol. Res.202116610549910.1016/j.phrs.2021.10549933607265
    [Google Scholar]
  219. RallidisL.S. SkoumasI. LiberopoulosE.N. VlachopoulosC. KiouriE. KoutagiarI. AnastasiouG. KosmasN. ElisafM.S. TousoulisD. IliodromitisE. PCSK9 inhibitors in clinical practice: Novel directions and new experiences.Hellenic J. Cardiol.202061424124510.1016/j.hjc.2019.10.00331783124
    [Google Scholar]
  220. HanY. ChenJ. ChopraV.K. ZhangS. SuG. MaC. HuangZ. MaY. YaoZ. YuanZ. ZhaoQ. KuanprasertS. Baccara-DinetM.T. ManvelianG. LiJ. ChenR. ODYSSEY EAST: Alirocumab efficacy and safety vs ezetimibe in high cardiovascular risk patients with hypercholesterolemia and on maximally tolerated statin in China, India, and Thailand.J. Clin. Lipidol.202014198108.e810.1016/j.jacl.2019.10.01531882376
    [Google Scholar]
  221. ChoL. DentR. StroesE.S.G. SteinE.A. SullivanD. RuzzaA. FlowerA. SomaratneR. RosensonR.S. Persistent safety and efficacy of evolocumab in patients with statin intolerance: A subset analysis of the OSLER open-label extension studies.Cardiovasc. Drugs Ther.201832436537210.1007/s10557‑018‑6817‑730073585
    [Google Scholar]
  222. WattsG.F. ChanD.C. DentR. SomaratneR. WassermanS.M. ScottR. BurrowsS. R BarrettP.H. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism.Circulation2017135433835110.1161/CIRCULATIONAHA.116.02508027941065
    [Google Scholar]
  223. RaneP. B. PatelJ. HarrisonD. J. ShepherdJ. LeithA. BaileyH. PiercyJ. Patient characteristics and real-world treatment patterns among early users of PCSK9 inhibitors.Am. J. Cardiovasc. Drugs.201818210310810.1007/s40256‑017‑0246‑z
    [Google Scholar]
  224. ArrietaA. HongJ.C. KheraR. ViraniS.S. KrumholzH.M. NasirK. Updated cost-effectiveness assessments of PCSK9 inhibitors from the perspectives of the health system and private payers.JAMA Cardiol.20172121369137410.1001/jamacardio.2017.365529049467
    [Google Scholar]
  225. StroesE. ColquhounD. SullivanD. CiveiraF. RosensonR.S. WattsG.F. BruckertE. ChoL. DentR. KnuselB. XueA. ScottR. WassermanS.M. RoccoM. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab.J. Am. Coll. Cardiol.201463232541254810.1016/j.jacc.2014.03.01924694531
    [Google Scholar]
  226. KobaS. InoueI. CyrilleM. LuC. InomataH. ShimauchiJ. KajinamiK. Evolocumab vs. ezetimibe in statin-intolerant hyperlipidemic Japanese patients: Phase 3 GAUSS-4 trial.J. Atheroscler. Thromb.202027547148410.5551/jat.5096331748467
    [Google Scholar]
  227. NissenS.E. StroesE. Dent-AcostaR.E. RosensonR.S. LehmanS.J. SattarN. PreissD. BruckertE. CeškaR. LeporN. BallantyneC.M. Gouni-BertholdI. ElliottM. BrennanD.M. WassermanS.M. SomaratneR. ScottR. SteinE.A. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance.JAMA2016315151580159010.1001/jama.2016.360827039291
    [Google Scholar]
  228. MoriartyP.M. ThompsonP.D. CannonC.P. GuytonJ.R. BergeronJ. ZieveF.J. BruckertE. JacobsonT.A. KopeckyS.L. Baccara-DinetM.T. DuY. PordyR. GipeD.A. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial.J. Clin. Lipidol.20159675876910.1016/j.jacl.2015.08.00626687696
    [Google Scholar]
  229. RaalF.J. HonarpourN. BlomD.J. HovinghG.K. XuF. ScottR. WassermanS.M. SteinE.A. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial.Lancet2015385996534135010.1016/S0140‑6736(14)61374‑X25282520
    [Google Scholar]
  230. KasteleinJ.J.P. GinsbergH.N. LangsletG. HovinghG.K. CeskaR. DufourR. BlomD. CiveiraF. KrempfM. LorenzatoC. ZhaoJ. PordyR. Baccara-DinetM.T. GipeD.A. GeigerM.J. FarnierM. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia.Eur. Heart J.20153643ehv37010.1093/eurheartj/ehv37026330422
    [Google Scholar]
  231. CupidoA.J. ReeskampL.F. KasteleinJ.J.P. Novel lipid modifying drugs to lower LDL cholesterol.Curr. Opin. Lipidol.201728436737310.1097/MOL.000000000000042828445176
    [Google Scholar]
  232. FitzgeraldK. Frank-KamenetskyM. Shulga-MorskayaS. LiebowA. BettencourtB.R. SutherlandJ.E. HutabaratR.M. ClausenV.A. KarstenV. CehelskyJ. NochurS.V. KotelianskiV. HortonJ. MantT. ChiesaJ. RitterJ. MunisamyM. VaishnawA.K. GollobJ.A. SimonA. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: A randomised, single-blind, placebo-controlled, phase 1 trial.Lancet20143839911606810.1016/S0140‑6736(13)61914‑524094767
    [Google Scholar]
  233. SahebkarA. WattsG.F. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: What can the clinician expect?Cardiovasc. Drugs Ther.201327655956710.1007/s10557‑013‑6479‑423913122
    [Google Scholar]
  234. GaudetD. KereiakesD.J. McKenneyJ.M. RothE.M. HanotinC. GipeD. DuY. FerrandA.C. GinsbergH.N. SteinE.A. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials).Am. J. Cardiol.2014114571171510.1016/j.amjcard.2014.05.06025060413
    [Google Scholar]
  235. MomtaziA.A. BanachM. PirroM. SteinE.A. SahebkarA. PCSK9 and diabetes: Is there a link?Drug Discov. Today201722688389510.1016/j.drudis.2017.01.00628111330
    [Google Scholar]
  236. RothE.M. TaskinenM.R. GinsbergH.N. KasteleinJ.J.P. ColhounH.M. RobinsonJ.G. MerletL. PordyR. Baccara-DinetM.T. Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24week, double-blind, randomized Phase 3 trial.Int. J. Cardiol.20141761556110.1016/j.ijcard.2014.06.04925037695
    [Google Scholar]
  237. OtaH. OmoriH. KawasakiM. HirakawaA. MatsuoH. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study.Eur. Heart J. Cardiovasc. Imaging202223221722810.1093/ehjci/jeab03433637979
    [Google Scholar]
  238. WuZ. GaoL. LinZ. Can proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors regress coronary atherosclerotic plaque? A systematic review and meta-analysis.Am. J. Transl. Res.202315145246536777825
    [Google Scholar]
  239. NichollsS.J. PuriR. AndersonT. BallantyneC.M. ChoL. KasteleinJ.J.P. KoenigW. SomaratneR. KassahunH. YangJ. WassermanS.M. ScottR. UngiI. PodolecJ. OphuisA.O. CornelJ.H. BorgmanM. BrennanD.M. NissenS.E. Effect of evolocumab on progression of coronary disease in statin-treated patients.JAMA2016316222373238410.1001/jama.2016.1695127846344
    [Google Scholar]
  240. KorenM.J. SabatineM.S. GiuglianoR.P. LangsletG. WiviottS.D. KassahunH. RuzzaA. MaY. SomaratneR. RaalF.J. Long-term low-density lipoprotein cholesterol–lowering efficacy, persistence, and safety of evolocumab in treatment of hypercholesterolemia.JAMA Cardiol.20172659860710.1001/jamacardio.2017.074728291870
    [Google Scholar]
  241. DurairajA. SabatesA. NievesJ. MoraesB. BaumS. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and its inhibitors: A review of physiology, biology, and clinical data.Curr. Treat. Options Cardiovasc. Med.20171985810.1007/s11936‑017‑0556‑028639183
    [Google Scholar]
  242. RayK.K. LandmesserU. LeiterL.A. KallendD. DufourR. KarakasM. HallT. TroquayR.P.T. TurnerT. VisserenF.L.J. WijngaardP. WrightR.S. KasteleinJ.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol.N. Engl. J. Med.2017376151430144010.1056/NEJMoa161575828306389
    [Google Scholar]
  243. TurgeonR.D. TsuyukiR.T. GyenesG.T. PearsonG.J. Cardiovascular efficacy and safety of PCSK9 inhibitors: Systematic review and meta-analysis including the ODYSSEY outcomes trial.Can. J. Cardiol.201834121600160510.1016/j.cjca.2018.04.00230527147
    [Google Scholar]
  244. TavoriH. GiunzioniI. FazioS. PCSK9 inhibition to reduce cardiovascular disease risk.Curr. Opin. Endocrinol. Diabetes Obes.201522212613210.1097/MED.000000000000013725692926
    [Google Scholar]
  245. RallidisL.S. FountoulakiK. Anastasiou-NanaM. Managing the underestimated risk of statin-associated myopathy.Int. J. Cardiol.2012159316917610.1016/j.ijcard.2011.07.04821813193
    [Google Scholar]
  246. TrpkovicA. StanimirovicJ. RizzoM. ResanovicI. SoskicS. JevremovicD. IsenovicE.R. High-sensitivity C-reactive protein and statin initiation.Angiology201566650350710.1177/000331971454300025053677
    [Google Scholar]
  247. JellingerP. S. HandelsmanY. RosenblitP. D. BloomgardenZ. T. FonsecaV. A. GarberA. J. GrunbergerG. GuerinC. K. BellD. S. H. MechanickJ. I. American association of clinical endocrinologists and american college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease.Endocr. Pract.201723S218710.4158/EP171764.APPGL
    [Google Scholar]
  248. MachF. BaigentC. CatapanoA.L. KoskinasK.C. CasulaM. BadimonL. ChapmanM.J. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM.R. TokgozogluL. WiklundO. MuellerC. DrexelH. AboyansV. CorsiniA. DoehnerW. FarnierM. GiganteB. KayikciogluM. KrstacicG. LambrinouE. LewisB.S. MasipJ. MoulinP. PetersenS. PetronioA.S. PiepoliM.F. PintóX. RäberL. RayK.K. ReinerŽ. RiesenW.F. RoffiM. SchmidJ-P. ShlyakhtoE. SimpsonI.A. StroesE. SudanoI. TselepisA.D. ViigimaaM. VindisC. VonbankA. VrablikM. VrsalovicM. ZamoranoJ.L. ColletJ-P. KoskinasK.C. CasulaM. BadimonL. John ChapmanM. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM-R. TokgozogluL. WiklundO. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. TouyzR.M. NiboucheD. ZelveianP.H. SiostrzonekP. NajafovR. van de BorneP. PojskicB. PostadzhiyanA. KyprisL. ŠpinarJ. LarsenM.L. EldinH.S. ViigimaaM. StrandbergT.E. FerrièresJ. AgladzeR. LaufsU. RallidisL. BajnokL. GudjónssonT. MaherV. HenkinY. GuliziaM.M. MussagaliyevaA. BajraktariG. KerimkulovaA. LatkovskisG. HamouiO. SlapikasR. VisserL. DingliP. IvanovV. BoskovicA. NazziM. VisserenF. MitevskaI. RetterstølK. JankowskiP. Fontes-CarvalhoR. GaitaD. EzhovM. FoscoliM. GigaV. PellaD. FrasZ. de IslaL.P. HagströmE. LehmannR. AbidL. OzdoganO. MitchenkoO. PatelR.S. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk.Eur. Heart J.202041111118810.1093/eurheartj/ehz45531504418
    [Google Scholar]
  249. AvisH.J. HuttenB.A. GagnéC. LangsletG. McCrindleB.W. WiegmanA. HsiaJ. KasteleinJ.J.P. SteinE.A. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia.J. Am. Coll. Cardiol.201055111121112610.1016/j.jacc.2009.10.04220223367
    [Google Scholar]
  250. ZhangX.L. ZhuQ.Q. ZhuL. ChenJ.Z. ChenQ.H. LiG.N. XieJ. KangL.N. XuB. Safety and efficacy of anti-PCSK9 antibodies: A meta-analysis of 25 randomized, controlled trials.BMC Med.201513112310.1186/s12916‑015‑0358‑826099511
    [Google Scholar]
  251. NishikidoT. Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease.Cardiovasc. Diabetol.20232212010.1186/s12933‑023‑01752‑436717882
    [Google Scholar]
  252. RayK.K. WrightR.S. KallendD. KoenigW. LeiterL.A. RaalF.J. BischJ.A. RichardsonT. JarosM. WijngaardP.L.J. KasteleinJ.J.P. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol.N. Engl. J. Med.2020382161507151910.1056/NEJMoa191238732187462
    [Google Scholar]
  253. CasulaM. OlmastroniE. BoccalariM.T. TragniE. PirilloA. CatapanoA.L. Cardiovascular events with PCSK9 inhibitors: An updated meta-analysis of randomised controlled trials.Pharmacol. Res.201914314315010.1016/j.phrs.2019.03.02130926528
    [Google Scholar]
  254. Gouni-BertholdI. DescampsO. S. FraassU. HartfieldE. AllcottK. Systematic review of published phase 3 data on anti-PCSK9 monoclonal antibodies in patients with hypercholesterolaemia.Br. J. Clin. Pharmacol.20168261412144310.1111/bcp.13066
    [Google Scholar]
  255. KaratasakisA. DanekB.A. KaracsonyiJ. RanganB.V. RoesleM.K. KnickelbineT. MiedemaM.D. KhaliliH. AhmadZ. AbdullahS. BanerjeeS. BrilakisE.S. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: A meta-analysis of 35 randomized controlled trials.J. Am. Heart Assoc.2017612e00691010.1161/JAHA.117.00691029223954
    [Google Scholar]
  256. AlTurkiA. MarafiM. DawasA. DubeM.P. VieiraL. ShermanM.H. GregoireJ. ThanassoulisG. TardifJ.C. HuynhT. Meta-analysis of randomized controlled trials assessing the impact of proprotein convertase subtilisin/kexin type 9 antibodies on mortality and cardiovascular outcomes.Am. J. Cardiol.2019124121869187510.1016/j.amjcard.2019.09.01131679643
    [Google Scholar]
  257. ChoiH.D. KimJ.H. An updated meta-analysis for safety evaluation of alirocumab and evolocumab as PCSK9 inhibitors.Cardiovasc. Ther.2023202311110.1155/2023/736255136704607
    [Google Scholar]
  258. Bielecka-DabrowaA. MikhailidisD.P. HannamS. AronowW.S. RyszJ. BanachM. Statins and dilated cardiomyopathy: Do we have enough data?Expert Opin. Investig. Drugs201120331532310.1517/13543784.2011.55057021210757
    [Google Scholar]
  259. WierzbickiA.S. HardmanT.C. ViljoenA. Inhibition of pro-protein convertase subtilisin kexin 9 [corrected] (PCSK-9) as a treatment for hyperlipidaemia.Expert Opin. Investig. Drugs201221566767610.1517/13543784.2012.67934022493980
    [Google Scholar]
  260. LambertG. CharltonF. RyeK.A. PiperD.E. Molecular basis of PCSK9 function.Atherosclerosis200920311710.1016/j.atherosclerosis.2008.06.01018649882
    [Google Scholar]
  261. TibollaG. NorataG.D. ArtaliR. MeneghettiF. CatapanoA.L. Proprotein convertase subtilisin/kexin type 9 (PCSK9): From structure–function relation to therapeutic inhibition.Nutr. Metab. Cardiovasc. Dis.2011211183584310.1016/j.numecd.2011.06.00221943799
    [Google Scholar]
  262. QianY.W. SchmidtR.J. ZhangY. ChuS. LinA. WangH. WangX. BeyerT.P. BenschW.R. LiW. EhsaniM.E. LuD. KonradR.J. EachoP.I. MollerD.E. KarathanasisS.K. CaoG. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis.J. Lipid Res.20074871488149810.1194/jlr.M700071‑JLR20017449864
    [Google Scholar]
  263. LagaceT.A. CurtisD.E. GarutiR. McNuttM.C. ParkS.W. PratherH.B. AndersonN.N. HoY.K. HammerR.E. HortonJ.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice.J. Clin. Invest.2006116112995300510.1172/JCI2938317080197
    [Google Scholar]
  264. NassouryN. BlasioleD.A. Tebon OlerA. BenjannetS. HamelinJ. PouponV. McPhersonP.S. AttieA.D. PratA. SeidahN.G. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR.Traffic20078671873210.1111/j.1600‑0854.2007.00562.x17461796
    [Google Scholar]
  265. ZhangD.W. LagaceT.A. GarutiR. ZhaoZ. McDonaldM. HortonJ.D. CohenJ.C. HobbsH.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation.J. Biol. Chem.200728225186021861210.1074/jbc.M70202720017452316
    [Google Scholar]
  266. FisherT.S. SurdoP.L. PanditS. MattuM. SantoroJ.C. WisniewskiD. CummingsR.T. CalzettaA. CubbonR.M. FischerP.A. TarachandaniA. De FrancescoR. WrightS.D. SparrowC.P. CarfiA. SitlaniA. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation.J. Biol. Chem.200728228205022051210.1074/jbc.M70163420017493938
    [Google Scholar]
  267. AlbornW.E. CaoG. CareskeyH.E. QianY.W. SubramaniamD.R. DaviesJ. ConnerE.M. KonradR.J. Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol.Clin. Chem.200753101814181910.1373/clinchem.2007.09128017702855
    [Google Scholar]
  268. CariouB. Le MayC. CostetP. Clinical aspects of PCSK9.Atherosclerosis2011216225826510.1016/j.atherosclerosis.2011.04.01821596380
    [Google Scholar]
  269. SullivanD. OlssonA.G. ScottR. KimJ.B. XueA. GebskiV. WassermanS.M. SteinE.A. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: The GAUSS randomized trial.JAMA2012308232497250610.1001/jama.2012.2579023128163
    [Google Scholar]
  270. TrouttJ.S. AlbornW.E. CaoG. KonradR.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels.J. Lipid Res.201051234535110.1194/jlr.M00062019738285
    [Google Scholar]
  271. ChernogubovaE. StrawbridgeR. MahdessianH. MälarstigA. KrapivnerS. GiganteB. HelléniusM.L. de FaireU. Franco-CerecedaA. SyvänenA.C. TrouttJ.S. KonradR.J. ErikssonP. HamstenA. van ’t HooftF.M. Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels.Arterioscler. Thromb. Vasc. Biol.20123261526153410.1161/ATVBAHA.111.24054922460556
    [Google Scholar]
  272. BasakA. Palmer-SmithH. MishraP. Proprotein convertase subtilisin kexin9 (PCSK9): A novel target for cholesterol regulation.Protein Pept. Lett.201219657558510.2174/09298661280049402022519528
    [Google Scholar]
  273. LevensonA.E. ShahA.S. KhouryP.R. KimballT.R. UrbinaE.M. de FerrantiS.D. MaahsD.M. DolanL.M. WadwaR.P. BiddingerS.B. Obesity and type 2 diabetes are associated with elevated PCSK9 levels in young women.Pediatr. Diabetes201718875576010.1111/pedi.1249028093849
    [Google Scholar]
  274. XuL. ZhaoG. ZhuH. WangS. Peroxisome proliferator-activated receptor-γ antagonizes LOX-1-mediated endothelial injury by transcriptional activation of miR-590-5p.PPAR Res.20192019271517610.1155/2019/2715176
    [Google Scholar]
  275. JiangH. FanC. LuY. CuiX. LiuJ. Astragaloside regulates lncRNA LOC100912373 and the miR-17-5p/PDK1 axis to inhibit the proliferation of fibroblast-like synoviocytes in rats with rheumatoid arthritis.Int. J. Mol. Med.202148113010.3892/ijmm.2021.496334013364
    [Google Scholar]
  276. ZhaoJ. CuiL. SunJ. XieZ. ZhangL. DingZ. QuanX. Notoginsenoside R1 alleviates oxidized low-density lipoprotein-induced apoptosis, inflammatory response, and oxidative stress in HUVECS through modulation of XIST/miR-221-3p/TRAF6 axis.Cell. Signal.20207610978110.1016/j.cellsig.2020.10978132947021
    [Google Scholar]
  277. RenK. JiangT. ZhouH. F. LiangY. ZhaoG. J. apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation.Cell Physiol. Biochem.20184752170218410.1159/000491528
    [Google Scholar]
  278. YuanX. ChenJ. DaiM. Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-κB pathway.Int. J. Mol. Med.20163861871187810.3892/ijmm.2016.277827748840
    [Google Scholar]
  279. BaiY. LiuX. ChenQ. ChenT. JiangN. GuoZ. Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 upregulating the expression of miR-29a-3p.Sci. Rep.20211111963710.1038/s41598‑021‑98916‑734608195
    [Google Scholar]
  280. AbdollahiE. KeyhanfarF. DelbandiA.A. FalakR. HajimiresmaielS.J. ShafieiM. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages.Eur. J. Pharmacol.202291817471510.1016/j.ejphar.2021.17471535026193
    [Google Scholar]
  281. CaoG. XuanX. ZhangR. HuJ. DongH. Gene therapy for cardiovascular disease: Basic research and clinical prospects.Front. Cardiovasc. Med.2021876014010.3389/fcvm.2021.76014034805315
    [Google Scholar]
  282. WuZ. AsokanA. SamulskiR. J. Adeno-associated virus serotypes: Vector toolkit for human gene therapy.Mol. Ther.20061433162710.1016/j.ymthe.2006.05.009
    [Google Scholar]
  283. GriegerJ.C. SamulskiR.J. Packaging capacity of adeno-associated virus serotypes: Impact of larger genomes on infectivity and postentry steps.J. Virol.200579159933994410.1128/JVI.79.15.9933‑9944.200516014954
    [Google Scholar]
  284. DongJ.Y. FanP.D. FrizzellR.A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus.Hum. Gene Ther.19967172101211210.1089/hum.1996.7.17‑21018934224
    [Google Scholar]
  285. AthanasopoulosT. MunyeM.M. Yáñez-MuñozR.J. Nonintegrating gene therapy vectors.Hematol. Oncol. Clin. North Am.201731575377010.1016/j.hoc.2017.06.00728895845
    [Google Scholar]
  286. ZhenS. LiX. Liposomal delivery of CRISPR/Cas9.Cancer Gene Ther.2020277-851552710.1038/s41417‑019‑0141‑731676843
    [Google Scholar]
  287. QiY. SongH. XiaoH. ChengG. YuB. XuF.J. Fluorinated acid-labile branched hydroxyl-rich nanosystems for flexible and robust delivery of plasmids.Small20181442180306110.1002/smll.20180306130238691
    [Google Scholar]
  288. ZhangX. XuC. GaoS. LiP. KongY. LiT. LiY. XuF. J. CRISPR/Cas9 delivery mediated with hydroxyl-rich nanosystems for gene editing in aorta.Adv. Sci.2019612190038610.1002/advs.201900386
    [Google Scholar]
  289. CharbeN.B. LagosC.F. OrtizC.A.V. TambuwalaM. PalakurthiS.S. ZacconiF.C. PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: A proof-of-concept study.Biomed. Pharmacother.202215311342810.1016/j.biopha.2022.11342836076548
    [Google Scholar]
  290. PaunovskaK. LoughreyD. DahlmanJ.E. Drug delivery systems for RNA therapeutics.Nat. Rev. Genet.202223526528010.1038/s41576‑021‑00439‑434983972
    [Google Scholar]
  291. VartakT. KumaresanS. BrennanE. Decoding microRNA drivers in atherosclerosis.Biosci. Rep.2022427BSR2021235510.1042/BSR20212355
    [Google Scholar]
  292. SegalM. SlackF.J. Challenges identifying efficacious miRNA therapeutics for cancer.Expert Opin. Drug Discov.202015998799110.1080/17460441.2020.176577032421364
    [Google Scholar]
  293. DostaP. TamargoI. RamosV. KumarS. KangD. W. BorrósS. Delivery of anti-microRNA-712 to inflamed endothelial cells using poly(β-amino ester) nanoparticles conjugated with vcam-1 targeting peptide.Adv. Healthc. Mater.20211015e200189410.1002/adhm.202001894
    [Google Scholar]
  294. KamalyN. FredmanG. SubramanianM. GaddeS. PesicA. CheungL. FayadZ.A. LangerR. TabasI. Cameron FarokhzadO. Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles.Proc. Natl. Acad. Sci.2013110166506651110.1073/pnas.130337711023533277
    [Google Scholar]
  295. KamalyN. FredmanG. FojasJ.J.R. SubramanianM. ChoiW.I.I. ZepedaK. VilosC. YuM. GaddeS. WuJ. MiltonJ. Carvalho LeitaoR. Rosa FernandesL. HasanM. GaoH. NguyenV. HarrisJ. TabasI. FarokhzadO.C. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis.ACS Nano20161055280529210.1021/acsnano.6b0111427100066
    [Google Scholar]
  296. FredmanG. KamalyN. SpolituS. MiltonJ. GhorpadeD. ChiassonR. KuriakoseG. PerrettiM. FarokhzadO. TabasI. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice.Sci. Transl. Med.20157275275ra2010.1126/scitranslmed.aaa106525695999
    [Google Scholar]
  297. EsauC. DavisS. MurrayS.F. YuX.X. PandeyS.K. PearM. WattsL. BootenS.L. GrahamM. McKayR. SubramaniamA. ProppS. LolloB.A. FreierS. BennettC.F. BhanotS. MoniaB.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.Cell Metab.200632879810.1016/j.cmet.2006.01.00516459310
    [Google Scholar]
  298. YamanS.O. OremA. YucesanF.B. KuralB.V. OremC. Evaluation of circulating miR-122, miR-30c and miR-33a levels and their association with lipids, lipoproteins in postprandial lipemia.Life Sci.202126411858510.1016/j.lfs.2020.11858533058914
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673262124231102042914
Loading
/content/journals/cmc/10.2174/0109298673262124231102042914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test