Skip to content
2000
Volume 31, Issue 42
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

While a congestive heart failure patient will ultimately need an assist device or even a replacement heart as the disease progresses, not every patient is qualified for such advanced therapy. Such patients awaiting better circulatory support benefit from positive inotropes in the meantime as palliative care. These agents are often prescribed in patients with acute decompensated heart failure, with reduced left ventricular ejection fraction and symptoms of organ dysfunction. Although positive inotropes, for example, digoxin, dobutamine, milrinone, levosimendan, , are successfully marketed and in use, a lot of their adverse effects, like arrhythmias, hypotension, and even sudden cardiac death, are rather encouraging further research on the development of novel positive inotropes. This review has investigated the molecular mechanisms of some of these adverse effects in terms of the proteins they target, followed by research on newer targets. Studies from 2013-2023 that have reported new small molecules with positive inotropic effects have been revisited in order to determine the progress made so far in drug discovery.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673262360231018193823
2023-10-31
2024-11-14
Loading full text...

Full text loading...

References

  1. GroenewegenA. RuttenF.H. MosterdA. HoesA.W. Epidemiology of heart failure.Eur. J. Heart Fail.20202281342135610.1002/ejhf.185832483830
    [Google Scholar]
  2. KannelW.B. Incidence and epidemiology of heart failure.Heart Fail. Rev.20005216717310.1023/A:100988482094116228142
    [Google Scholar]
  3. SavareseG. BecherP.M. LundL.H. SeferovicP. RosanoG.M.C. CoatsA.J.S. Global burden of heart failure: a comprehensive and updated review of epidemiology.Cardiovasc. Res.2023118173272328710.1093/cvr/cvac01335150240
    [Google Scholar]
  4. BozkurtB. CoatsA.J.S. TsutsuiH. AbdelhamidM. AdamopoulosS. AlbertN. AnkerS.D. AthertonJ. BöhmM. ButlerJ. DraznerM.H. FelkerG.M. FilippatosG. FonarowG.C. FiuzatM. Gomez-MesaJ.E. HeidenreichP. ImamuraT. JanuzziJ. JankowskaE.A. KhazanieP. KinugawaK. LamC.S.P. MatsueY. MetraM. OhtaniT. Francesco PiepoliM. PonikowskiP. RosanoG.M.C. SakataY. SeferoviĆP. StarlingR.C. TeerlinkJ.R. VardenyO. YamamotoK. YancyC. ZhangJ. ZierothS. Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure.J. Card. Fail.202127438741310.1016/j.cardfail.2021.01.02233663906
    [Google Scholar]
  5. FrancisG.S. TangW.H. Pathophysiology of congestive heart failure.Rev. Cardiovasc. Med.20034S2Suppl. 2S14S2012776009
    [Google Scholar]
  6. LinkM.G. YanG.X. KoweyP.R. Evaluation of toxicity for heart failure therapeutics: studying effects on the QT interval.Circ. Heart Fail.20103454755510.1161/CIRCHEARTFAILURE.109.91778120647490
    [Google Scholar]
  7. MalikA. BritoD. VaqarS. ChhabraL. Congestive heart failure. Stat PearlsStat Pearls Publishing2022
    [Google Scholar]
  8. KosarajuA. GoyalA. GrigorovaY. MakaryusA.N. Left ventricular ejection fraction. Stat Pearls; Stat Pearls Publishing.2017
    [Google Scholar]
  9. FrancisG.S. BartosJ.A. AdatyaS. Inotropes.J. Am. Coll. Cardiol.201463202069207810.1016/j.jacc.2014.01.01624530672
    [Google Scholar]
  10. McDonaghT.A. MetraM. AdamoM. GardnerR.S. BaumbachA. BöhmM. BurriH. ButlerJ. ČelutkienėJ. ChioncelO. ClelandJ.G.F. CoatsA.J.S. Crespo-LeiroM.G. FarmakisD. GilardM. HeymansS. HoesA.W. JaarsmaT. JankowskaE.A. LainscakM. LamC.S.P. LyonA.R. McMurrayJ.J.V. MebazaaA. MindhamR. MunerettoC. Francesco PiepoliM. PriceS. RosanoG.M.C. RuschitzkaF. Kathrine SkibelundA. Authors/Task Force Members ESC Scientific Document Group 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.Eur. J. Heart Fail.2022241413110.1002/ejhf.233335083827
    [Google Scholar]
  11. TariqS. AronowW. Use of inotropic agents in treatment of systolic heart failure.Int. J. Mol. Sci.20151612290602906810.3390/ijms16122614726690127
    [Google Scholar]
  12. PinnellJ. TurnerS. HowellS. Cardiac muscle physiology.Contin. Educ. Anaesth. Crit. Care Pain200773858810.1093/bjaceaccp/mkm013
    [Google Scholar]
  13. EisnerD.A. CaldwellJ.L. KistamásK. TraffordA.W. Calcium and excitation-contraction coupling in the heart.Circ. Res.2017121218119510.1161/CIRCRESAHA.117.31023028684623
    [Google Scholar]
  14. BarryS.P. TownsendP.A. What causes a broken heart--molecular insights into heart failure.Int. Rev. Cell Mol. Biol.201028411317910.1016/S1937‑6448(10)84003‑120875630
    [Google Scholar]
  15. ZiffO.J. KotechaD. Digoxin: The good and the bad.Trends Cardiovasc. Med.201626758559510.1016/j.tcm.2016.03.01127156593
    [Google Scholar]
  16. AhmadT. MillerP.E. McCulloughM. DesaiN.R. RielloR. PsotkaM. BöhmM. AllenL.A. TeerlinkJ.R. RosanoG.M.C. LindenfeldJ. Why has positive inotropy failed in chronic heart failure? Lessons from prior inotrope trials.Eur. J. Heart Fail.20192191064107810.1002/ejhf.155731407860
    [Google Scholar]
  17. ColucciW.S. WrightR.F. BraunwaldE. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 1.N. Engl. J. Med.1986314529029910.1056/NEJM1986013031405062867470
    [Google Scholar]
  18. NieminenM.S. FruhwaldS. HeunksL.M. SuominenP.K. GordonA.C. KivikkoM. PolleselloP. Levosimendan: current data, clinical use and future development.Heart Lung Vessel.20135422724524364017
    [Google Scholar]
  19. MorthJ.P. PedersenB.P. Toustrup-JensenM.S. SørensenT.L.M. PetersenJ. AndersenJ.P. VilsenB. NissenP. Crystal structure of the sodium–potassium pump.Nature200745071721043104910.1038/nature0641918075585
    [Google Scholar]
  20. FullerW. TullochL.B. ShattockM.J. CalaghanS.C. HowieJ. WypijewskiK.J. Regulation of the cardiac sodium pump.Cell. Mol. Life Sci.20137081357138010.1007/s00018‑012‑1134‑y22955490
    [Google Scholar]
  21. WasserstromJ.A. AistrupG.L. Digitalis: new actions for an old drug.Am. J. Physiol. Heart Circ. Physiol.20052895H1781H179310.1152/ajpheart.00707.200416219807
    [Google Scholar]
  22. AskariA. The sodium pump and digitalis drugs: Dogmas and fallacies.Pharmacol. Res. Perspect.201974e0050510.1002/prp2.50531360524
    [Google Scholar]
  23. HabeckM. HavivH. KatzA. Kapri-PardesE. AyciriexS. ShevchenkoA. OgawaH. ToyoshimaC. KarlishS.J.D. Stimulation, inhibition, or stabilization of Na,K-ATPase caused by specific lipid interactions at distinct sites.J. Biol. Chem.201529084829484210.1074/jbc.M114.61138425533463
    [Google Scholar]
  24. El-SeediH.R. KhalifaS.A.M. TaherE.A. FaragM.A. SaeedA. GamalM. HegazyM.E.F. YoussefD. MusharrafS.G. AlajlaniM.M. XiaoJ. EfferthT. Cardenolides: Insights from chemical structure and pharmacological utility.Pharmacol. Res.201914112317510.1016/j.phrs.2018.12.01530579976
    [Google Scholar]
  25. MotiejunaiteJ. AmarL. Vidal-PetiotE. Adrenergic receptors and cardiovascular effects of catecholamines.Ann Endocrinol (Paris)2021823-4193197
    [Google Scholar]
  26. NajafiA. SequeiraV. KusterD.W.D. van der VeldenJ. β-adrenergic receptor signalling and its functional consequences in the diseased heart.Eur. J. Clin. Invest.201646436237410.1111/eci.1259826842371
    [Google Scholar]
  27. CiccarelliM. SorrientoD. CoscioniE. IaccarinoG. SantulliG. Chapter 11 - Adrenergic receptors. Endocrinology of the Heart in Health and Disease.2017285315
    [Google Scholar]
  28. ArrigoM. MebazaaA. Understanding the differences among inotropes.Intensive Care Med.201541591291510.1007/s00134‑015‑3659‑725605474
    [Google Scholar]
  29. BobinP. Belacel-OuariM. BediouneI. ZhangL. LeroyJ. LeblaisV. FischmeisterR. VandecasteeleG. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective.Arch. Cardiovasc. Dis.20161096-743144310.1016/j.acvd.2016.02.00427184830
    [Google Scholar]
  30. KimG.E. KassD.A. Cardiac phosphodiesterases and their modulation for treating heart disease.Handb. Exp. Pharmacol.201624324926910.1007/164_2016_8227787716
    [Google Scholar]
  31. PreedyM.E.J. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure.Cardiovasc. Drugs Ther.202034340141710.1007/s10557‑020‑06959‑132172427
    [Google Scholar]
  32. MayhewD.J. PalmerK. Inotropes.Anaesth. Intensive Care Med.2015161050851210.1016/j.mpaic.2015.07.006
    [Google Scholar]
  33. GilotraN.A. DeVoreA.D. PovsicT.J. HaysA.G. HahnV.S. AgunbiadeT.A. DeLongA. SatlinA. ChenR. DavisR. KassD.A. Acute hemodynamic effects and tolerability of phosphodiesterase-1 inhibition with ITI-214 in human systolic heart failure.Circ. Heart Fail.2021149e00823610.1161/CIRCHEARTFAILURE.120.00823634461742
    [Google Scholar]
  34. HoffmanT.M. Phosphodiesterase inhibitors. Heart Failure in the Child and Young Adult.Elsevier201851752210.1016/B978‑0‑12‑802393‑8.00040‑5
    [Google Scholar]
  35. KamelR. LeroyJ. VandecasteeleG. FischmeisterR. Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure.Nat. Rev. Cardiol.20232029010810.1038/s41569‑022‑00756‑z36050457
    [Google Scholar]
  36. MovsesianM. AhmadF. HirschE. Functions of PDE3 isoforms in cardiac muscle.J. Cardiovasc. Dev. Dis.2018511010.3390/jcdd501001029415428
    [Google Scholar]
  37. LiM.X. HwangP.M. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs.Gene2015571215316610.1016/j.gene.2015.07.07426232335
    [Google Scholar]
  38. KalyvaA. ParthenakisF.I. MarketouM.E. KontarakiJ.E. VardasP.E. Biochemical characterisation of Troponin C mutations causing hypertrophic and dilated cardiomyopathies.J. Muscle Res. Cell Motil.201435216117810.1007/s10974‑014‑9382‑024744096
    [Google Scholar]
  39. GrześkG. WołowiecŁ. RogowiczD. GilewskiW. KowalkowskaM. BanachJ. HertmanowskiW. DobosiewiczM. The importance of pharmacokinetics, pharmacodynamic and repetitive use of levosimendan.Biomed. Pharmacother.202215311339110.1016/j.biopha.2022.11339136076524
    [Google Scholar]
  40. GonanoL.A. PetroffM.V. Subcellular mechanisms underlying digitalis-induced arrhythmias: role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect.Heart Lung Circ.201423121118112410.1016/j.hlc.2014.07.07425201479
    [Google Scholar]
  41. TseG. Mechanisms of cardiac arrhythmias.J. Arrhythm.2016322758110.1016/j.joa.2015.11.00327092186
    [Google Scholar]
  42. ZhangJ. SimpsonP.C. JensenB.C. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases.Am. J. Physiol. Heart Circ. Physiol.20213202H725H73310.1152/ajpheart.00621.202033275531
    [Google Scholar]
  43. BellettiA. CastroM.L. SilvettiS. GrecoT. Biondi-ZoccaiG. PasinL. ZangrilloA. LandoniG. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials.Br. J. Anaesth.2015115565667510.1093/bja/aev28426475799
    [Google Scholar]
  44. PolleselloP. PappZ. PappJ.G. Calcium sensitizers: What have we learned over the last 25years?Int. J. Cardiol.201620354354810.1016/j.ijcard.2015.10.24026580334
    [Google Scholar]
  45. AlsulamiK. MarstonS. Small molecules acting on myofilaments as treatments for heart and skeletal muscle diseases.Int. J. Mol. Sci.20202124959910.3390/ijms2124959933339418
    [Google Scholar]
  46. MeissnerG. The structural basis of ryanodine receptor ion channel function.J. Gen. Physiol.2017149121065108910.1085/jgp.20171187829122978
    [Google Scholar]
  47. MaxwellJ.T. DomeierT.L. BlatterL.A. Dantrolene prevents arrhythmogenic Ca 2+ release in heart failure.Am. J. Physiol. Heart Circ. Physiol.20123024H953H96310.1152/ajpheart.00936.201122180651
    [Google Scholar]
  48. FischerT.H. MaierL.S. SossallaS. The ryanodine receptor leak: how a tattered receptor plunges the failing heart into crisis.Heart Fail. Rev.201318447548310.1007/s10741‑012‑9339‑622932727
    [Google Scholar]
  49. HasenfussG. TeerlinkJ.R. Cardiac inotropes: current agents and future directions.Eur. Heart J.201132151838184510.1093/eurheartj/ehr02621388993
    [Google Scholar]
  50. MarxS.O. MarksA.R. Dysfunctional ryanodine receptors in the heart: New insights into complex cardiovascular diseases.J. Mol. Cell. Cardiol.20135822523110.1016/j.yjmcc.2013.03.00523507255
    [Google Scholar]
  51. PetzholdD. LossieJ. KellerS. WernerS. HaaseH. MoranoI. Human essential myosin light chain isoforms revealed distinct myosin binding, sarcomeric sorting, and inotropic activity.Cardiovasc. Res.201190351352010.1093/cvr/cvr02621262909
    [Google Scholar]
  52. Planelles-HerreroV.J. HartmanJ.J. Robert-PaganinJ. MalikF.I. HoudusseA. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil.Nat. Commun.20178119010.1038/s41467‑017‑00176‑528775348
    [Google Scholar]
  53. KaplinskyE. MallarkeyG. Cardiac myosin activators for heart failure therapy: focus on omecamtiv mecarbil.Drugs Context2018711010.7573/dic.21251829707029
    [Google Scholar]
  54. MetraM. PagnesiM. ClaggettB.L. DíazR. FelkerG.M. McMurrayJ.J.V. SolomonS.D. BondermanD. FangJ.C. FonsecaC. GoncalvesovaE. HowlettJ.G. LiJ. O’MearaE. MiaoZ.M. AbbasiS.A. HeitnerS.B. KupferS. MalikF.I. TeerlinkJ.R. Effects of omecamtiv mecarbil in heart failure with reduced ejection fraction according to blood pressure: the GALACTIC-HF trial.Eur. Heart J.202243485006501610.1093/eurheartj/ehac29335675469
    [Google Scholar]
  55. TeerlinkJ.R. DiazR. FelkerG.M. McMurrayJ.J.V. MetraM. SolomonS.D. AdamsK.F. AnandI. Arias-MendozaA. Biering-SørensenT. BöhmM. BondermanD. ClelandJ.G.F. CorbalanR. Crespo-LeiroM.G. DahlströmU. EcheverriaL.E. FangJ.C. FilippatosG. FonsecaC. GoncalvesovaE. GoudevA.R. HowlettJ.G. LanfearD.E. LiJ. LundM. MacdonaldP. MareevV. MomomuraS. O’MearaE. ParkhomenkoA. PonikowskiP. RamiresF.J.A. SerpytisP. SliwaK. SpinarJ. SuterT.M. TomcsanyiJ. VandekerckhoveH. VinereanuD. VoorsA.A. YilmazM.B. ZannadF. SharpstenL. LeggJ.C. VarinC. HonarpourN. AbbasiS.A. MalikF.I. KurtzC.E. GALACTIC-HF Investigators Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure.N. Engl. J. Med.2021384210511610.1056/NEJMoa202579733185990
    [Google Scholar]
  56. SikkelM.B. HaywardC. MacLeodK.T. HardingS.E. LyonA.R. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope.Br. J. Pharmacol.20141711385410.1111/bph.1247224138023
    [Google Scholar]
  57. ZhihaoL. JingyuN. LanL. MichaelS. RuiG. XiyunB. XiaozhiL. GuanweiF. SERCA2a: a key protein in the Ca2+ cycle of the heart failure.Heart Fail. Rev.202025352353510.1007/s10741‑019‑09873‑331701344
    [Google Scholar]
  58. ParkW.J. OhJ.G. SERCA2a: a prime target for modulation of cardiac contractility during heart failure.BMB Rep.201346523724310.5483/BMBRep.2013.46.5.07723710633
    [Google Scholar]
  59. KorpelaH. JärveläinenN. SiimesS. LampelaJ. AiraksinenJ. ValliK. TurunenM. PajulaJ. NurroJ. Ylä-HerttualaS. Gene therapy for ischaemic heart disease and heart failure.J. Intern. Med.2021290356758210.1111/joim.1330834033164
    [Google Scholar]
  60. ArcaroA. LemboG. TocchettiC.G. Nitroxyl (HNO) for treatment of acute heart failure.Curr. Heart Fail. Rep.201411322723510.1007/s11897‑014‑0210‑z24980211
    [Google Scholar]
  61. MaackC. EschenhagenT. HamdaniN. HeinzelF.R. LyonA.R. MansteinD.J. MetzgerJ. PappZ. TocchettiC.G. YilmazM.B. AnkerS.D. BalligandJ.L. BauersachsJ. BrutsaertD. CarrierL. ChlopickiS. ClelandJ.G. de BoerR.A. DietlA. FischmeisterR. HarjolaV.P. HeymansS. Hilfiker-KleinerD. HolzmeisterJ. de KeulenaerG. LimongelliG. LinkeW.A. LundL.H. MasipJ. MetraM. MuellerC. PieskeB. PonikowskiP. RistićA. RuschitzkaF. SeferovićP.M. SkouriH. ZimmermannW.H. MebazaaA. Treatments targeting inotropy.Eur. Heart J.201940443626364410.1093/eurheartj/ehy60030295807
    [Google Scholar]
  62. FerrandiM. BarassiP. Tadini-BuoninsegniF. BartolommeiG. MolinariI. TripodiM.G. ReinaC. MoncelliM.R. BianchiG. FerrariP. Istaroxime stimulates SERCA2a and accelerates calcium cycling in heart failure by relieving phospholamban inhibition.Br. J. Pharmacol.201316981849186110.1111/bph.1227823763364
    [Google Scholar]
  63. AvvisatoR. JankauskasS.S. SantulliG. Istaroxime and beyond: New therapeutic strategies to specifically activate SERCA and treat heart failure.J. Pharmacol. Exp. Ther.2023384122723010.1124/jpet.122.00144636581352
    [Google Scholar]
  64. Figueroa-ValverdeL. Diaz-CedilloF. Lopez-RamosM. Garcia-CerveraE. QuijanoK. CordobaJ. Changes induced by estradiol-ethylenediamine derivative on perfusion pressure and coronary resistance in isolated rat heart: L-type calcium channel.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.20111551273210.5507/bp.2011.01821475374
    [Google Scholar]
  65. TempletonJ.F. KumarV.P.S. CoteD. BoseD. ElliottD. KimR.S. LaBellaF.S. Progesterone derivatives that bind to the digitalis receptor: synthesis of 14.beta.-hydroxyprogesterone: a novel steroid with positive inotropic activity.J. Med. Chem.19873081502150510.1021/jm00391a0383612692
    [Google Scholar]
  66. López-RamosM. Figueroa-ValverdeL. Herrera-MezaS. Rosas-NexticapaM. Díaz-CedilloF. García-CerveraE. Pool-GómezE. Cahuich-CarrilloR. Design and synthesis of a new steroid-macrocyclic derivative with biological activity.J. Chem. Biol.2017102698410.1007/s12154‑017‑0165‑028405241
    [Google Scholar]
  67. LauroF.V. FranciscoD.C. ElodiaG.C. EduardoP.G. MarcelaR.N. LeninH.H. BettyS.A. Design and synthesis of new dihydrotestosterone derivative with positive inotropic activity.Steroids201595395010.1016/j.steroids.2014.12.02625578737
    [Google Scholar]
  68. RocchettiM. BesanaA. MostacciuoloG. MichelettiR. FerrariP. SarkoziS. SzegediC. JonaI. ZazaA. Modulation of sarcoplasmic reticulum function by Na+/K+ pump inhibitors with different toxicity: digoxin and PST2744 [(E,Z)-3-((2-aminoethoxy)imino)androstane-6,17-dione hydrochloride].J. Pharmacol. Exp. Ther.2005313120721510.1124/jpet.104.07793315576469
    [Google Scholar]
  69. MetraM. ChioncelO. CotterG. DavisonB. FilippatosG. MebazaaA. NovosadovaM. PonikowskiP. SimmonsP. SofferJ. SimonsonS. Safety and efficacy of istaroxime in patients with acute heart failure-related pre-cardiogenic shock – a multicentre, randomized, double-blind, placebo-controlled, parallel group study ( SEISMiC ).Eur. J. Heart Fail.202224101967197710.1002/ejhf.262935867804
    [Google Scholar]
  70. AriciM. FerrandiM. BarassiP. HsuS.C. TorreE. LuraghiA. RonchiC. ChangG.J. PeriF. FerrariP. BianchiG. RocchettiM. ZazaA. Istaroxime metabolite PST3093 selectively stimulates SERCA2a and reverses disease-induced changes in cardiac function.J. Pharmacol. Exp. Ther.2023384123124410.1124/jpet.122.00133536153005
    [Google Scholar]
  71. LuraghiA. FerrandiM. BarassiP. AriciM. HsuS.C. TorreE. RonchiC. RomerioA. ChangG.J. FerrariP. BianchiG. ZazaA. RocchettiM. PeriF. Highly selective SERCA2a activators: Preclinical development of a congeneric group of first-in-class drug leads against heart failure.J. Med. Chem.202265107324733310.1021/acs.jmedchem.2c0034735580334
    [Google Scholar]
  72. MengQ. YauL.F. LuJ.G. WuZ.Z. ZhangB.X. WangJ.R. JiangZ.H. Chemical profiling and cytotoxicity assay of bufadienolides in toad venom and toad skin.J. Ethnopharmacol.2016187748210.1016/j.jep.2016.03.06227063985
    [Google Scholar]
  73. LiangG. ChungT. GuoJ. ZhangR. XüW. TzenJ.T.C. JiangR. Novel cinobufagin oxime ether derivatives as potential Na+/K+-ATPase inhibitors: Synthesis, biological screening and molecular docking.Chem. Res. Chin. Univ.201733337838310.1007/s40242‑017‑6487‑1
    [Google Scholar]
  74. TangH.J. RuanL.J. TianH.Y. LiangG.P. YeW.C. HughesE. EsmannM. FedosovaN.U. ChungT.Y. TzenJ.T.C. JiangR.W. MiddletonD.A. Novel stereoselective bufadienolides reveal new insights into the requirements for Na+, K+-ATPase inhibition by cardiotonic steroids.Sci. Rep.2016612915510.1038/srep2915527377465
    [Google Scholar]
  75. WinkM. RobertsM.F. Alkaloids: biochemistry, ecology, and medicinal applications.Plenum Press1998
    [Google Scholar]
  76. WeiJ.W. LiaoJ.F. ChuangC.Y. ChenC.F. HanP.W. Cardiovascular effects of matrine isolated from the Chinese herb Shan-dou-gen.Proc. Natl. Sci. Counc. Repub. China B1985932152194070509
    [Google Scholar]
  77. BoidoV. ErcoliM. TonelliM. NovelliF. TassoB. SparatoreF. CicheroE. FossaP. DorigoP. FroldiG. New arylsparteine derivatives as positive inotropic drugs.J. Enzyme Inhib. Med. Chem.201732158859910.1080/14756366.2017.127915628133984
    [Google Scholar]
  78. LiW. C. Application of 2,5 -dihydroxymethyl-3,6-dimethyl pyrazine and its derivates in pharmacy.US8158630B22012
  79. LiuZ. LiW. WenH.M. BianH.M. ZhangJ. ChenL. ChenL. YangK.D. Synthesis, biological evaluation, and pharmacokinetic study of novel liguzinediol prodrugs.Molecules20131844561457210.3390/molecules1804456123599014
    [Google Scholar]
  80. ZhangJ. LiW. WenH.M. ZhuH.H. WangT.L. ChengD. YangK.D. ChenY.Q. Synthesis and biological evaluation of liguzinediol mono- and dual ester prodrugs as promising inotropic agents.Molecules20141911180571807210.3390/molecules19111805725379643
    [Google Scholar]
  81. WuY. SunL.P. MaL.X. CheJ. SongM.X. CuiX. PiaoH.R. Synthesis and biological evaluation of [1,2,4]triazolo[3,4-a]phthalazine and tetrazolo[5,1-a]phthalazine derivatives bearing substituted benzylpiperazine moieties as positive inotropic agents.Chem. Biol. Drug Des.201381559159910.1111/cbdd.1210123279930
    [Google Scholar]
  82. MaL.X. CuiB.R. WuY. LiuJ.C. CuiX. LiuL.P. PiaoH.R. Synthesis and positive inotropic evaluation of [1,2,4]triazolo[3,4-a]phthalazine and tetrazolo[5,1-a]phthalazine derivatives bearing substituted piperazine moieties.Bioorg. Med. Chem. Lett.20142471737174110.1016/j.bmcl.2014.02.04024636107
    [Google Scholar]
  83. LiuX.K. MaL.X. WeiZ.Y. CuiX. ZhanS. YinX.M. PiaoH.R. Synthesis and positive inotropic activity of [1,2,4]triazolo[4, 3-a] quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties.Molecules201722227310.3390/molecules2202027328208674
    [Google Scholar]
  84. HumphreyJ.M. MovsesianM. am EndeC.W. BeckerS.L. ChappieT.A. JenkinsonS. LirasJ.L. LirasS. OrozcoC. PanditJ. VajdosF.F. VandeputF. YangE. MennitiF.S. Discovery of potent and selective periphery-restricted quinazoline inhibitors of the cyclic nucleotide phosphodiesterase PDE1.J. Med. Chem.201861104635464010.1021/acs.jmedchem.8b0037429718668
    [Google Scholar]
  85. HashimotoT. KimG.E. TuninR.S. AdesiyunT. HsuS. NakagawaR. ZhuG. O’BrienJ.J. HendrickJ.P. DavisR.E. YaoW. BeardD. HoxieH.R. WennogleL.P. LeeD.I. KassD.A. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition: translational study in the dog and rabbit.Circulation2018138181974198710.1161/CIRCULATIONAHA.117.03049030030415
    [Google Scholar]
  86. MullerG.K. SongJ. JaniV. WuY. LiuT. JeffreysW.P.D. O’RourkeB. AndersonM.E. KassD.A. PDE1 inhibition modulates Cav1. 2 channel to stimulate cardiomyocyte contraction.Circ. Res.2021129987288610.1161/CIRCRESAHA.121.31982834521216
    [Google Scholar]
  87. HumphreyJ.M. YangE. am EndeC.W. ArnoldE.P. HeadJ.L. JenkinsonS. LebelL.A. LirasS. PanditJ. SamasB. VajdosF. SimonsS.P. EvdokimovA. MansouraM. MennitiF.S. Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1.MedChemComm2014591290129610.1039/C4MD00113C
    [Google Scholar]
  88. ClelandJ.G.F. TeerlinkJ.R. SeniorR. NifontovE.M. Mc MurrayJ.J.V. LangC.C. TsyrlinV.A. GreenbergB.H. MayetJ. FrancisD.P. ShaburishviliT. MonaghanM. SaltzbergM. NeysesL. WassermanS.M. LeeJ.H. SaikaliK.G. ClarkeC.P. GoldmanJ.H. WolffA.A. MalikF.I. The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial.Lancet2011378979267668310.1016/S0140‑6736(11)61126‑421856481
    [Google Scholar]
  89. ManickamM. JalaniH.B. PillaiyarT. SharmaN. BogguP.R. VenkateswararaoE. LeeY.J. JeonE.S. JungS.H. Exploration of flexible phenylpropylurea scaffold as novel cardiac myosin activators for the treatment of systolic heart failure.Eur. J. Med. Chem.201713437939110.1016/j.ejmech.2017.04.00528432943
    [Google Scholar]
  90. ManickamM. JalaniH.B. PillaiyarT. BogguP.R. SharmaN. VenkateswararaoE. LeeY.J. JeonE.S. SonM.J. WooS.H. JungS.H. Design and synthesis of sulfonamidophenylethylureas as novel cardiac myosin activator.Eur. J. Med. Chem.20181431869188710.1016/j.ejmech.2017.10.07729224951
    [Google Scholar]
  91. ManickamM. PillaiyarT. NamasivayamV. BogguP.R. SharmaN. JalaniH.B. VenkateswararaoE. LeeY.J. JeonE.S. SonM.J. WooS.H. JungS.H. Design and synthesis of sulfonamidophenylethylamides as novel cardiac myosin activator.Bioorg. Med. Chem.201927184110412310.1016/j.bmc.2019.07.04131378598
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673262360231018193823
Loading
/content/journals/cmc/10.2174/0109298673262360231018193823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test