Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The discovery of a new class of nitrosamine impurities called nitrosamine drug substance related impurities (NDSRIs) in pharmaceuticals has emerged as a significant challenge for the pharmaceutical sector due to their significant genotoxic and mutagenic effects. Regulatory bodies globally in active collaboration with all the concerned stake holders, are taking effective measures to prevent and control NDSRIs. This comprehensive review on NDSRIs discusses formation pathways, root cause analysis, acceptable intake limits, case studies, control strategies and regulatory responses pertaining to recent NDSRI incidents. This review discusses the novel liquid chromatographic techniques (LC-MS/MS, GC-MS/MS) used to identify and quantify of NDSRIs. This review would aid pharmaceutical professionals, R&D analytical and formulation scientists, and regulatory bodies in gaining deeper insights into the NDSRIs crisis, controlling NDSRIs in drug products, and ensuring their sensitive detection with accurate risk evaluation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673322023240829081220
2024-09-12
2025-04-16
Loading full text...

Full text loading...

References

  1. Control of nitrosamine impurities in human drugs guidance for industry.2020Available from: https://www.fda.gov/media/141720/download (Accessed on: 28-9-2024).
  2. BartschH. O’NeillI. Schulte-HermannR. Relevance of N-nitroso compounds to human cancer: exposures and mechanisms.1987Available from: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/The-Relevance-Of-N-Nitroso-Compounds-To-Human-Cancer-Exposures-And-Mechanisms-1987 (Accessed on: 28-9-2024).
  3. SedloI. KolonićT. TomićS. Presence of nitrosamine impurities in medicinal products.Arch. Indust. Hygiene Toxicol.20217211510.2478/aiht‑2021‑72‑349133787187
    [Google Scholar]
  4. AldawsariF.S. AlshehriY.M. AlghamdiT.S. N-nitrosodimethylamine (NDMA) contamination of ranitidine products: A review of recent findings.Yao Wu Shi Pin Fen Xi2021291394510.38212/2224‑6614.113335696227
    [Google Scholar]
  5. WhiteC.M. Ranitidine’s N-nitrosodimethylamine problem may be tip of the iceberg.JAMA Netw. Open202141e203515810.1001/jamanetworkopen.2020.3515833512513
    [Google Scholar]
  6. ByrdJ.B. ChertowG.M. BhallaV. Hypertension hot potato-anatomy of the angiotensin-receptor blocker recalls.N. Engl. J. Med.2019380171589159110.1056/NEJMp190165730865819
    [Google Scholar]
  7. ElderD. Nitrosamine drug substance-related impurities (NDSRIs).Euro. Pharmaceut. Rev.202227355
    [Google Scholar]
  8. VikramH.P. KumarT.P. KumarG. BeerakaN.M. DekaR. SuhailS.M. JatS. BannimathN. PadmanabhanG. ChandanR.S. Nitrosamines crisis in pharmaceuticals-insights on toxicological implications, root causes and risk assessment: A systematic review.J. Pharm. Anal.202314510091938799236
    [Google Scholar]
  9. PaglialungaS. van HaarstA. The impact of N-nitrosamine impurities on clinical drug development.J. Pharm. Sci.202311251183119110.1016/j.xphs.2023.01.01736706834
    [Google Scholar]
  10. CHAMPIX (varenicline) - lots to be recalled due to presence of impurity N-nitroso-varenicline above the Pfizer acceptable daily intake limit. Available from: https://www.ema.europa.eu/en/documents/dhpc/direct-healthcare-professional-communication-dhpc-champix-varenicline-lots-be-recalled-due-presence_en.pdf (Accessed on: 28-9-2024).
  11. Pfizer expands voluntary nationwide recall to include all lots of CHANTIX® (varenicline) tablets due to n-nitroso varenicline content.Available from: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/pfizer-expands-voluntary-nationwide-recall-include-all-lots-chantixr-varenicline-tablets-due-n (Accessed on: 28-9- 2024).
  12. GolobN. GrahekR. RossM. RoškarR. Nitrocellulose blister material as a source of N-nitrosamine contamination of pharmaceutical drug products.Int. J. Pharm.202261812168710.1016/j.ijpharm.2022.12168735314277
    [Google Scholar]
  13. Pfizer recalls Inderal-LA (propranolol hydrochloride) capsules due to a nitrosamine impurity.Available from: https://recalls-rappels.canada.ca/en/alert-recall/pfizer-recalls-inderal-propranolol-hydrochloride-capsules-due-nitrosamine-impurity (Accessed on: 28-9-2024).
  14. Pfizer voluntary nationwide recall of lots of ACCUPRIL® (Quinapril HCl) due to n-nitroso-quinapril content.Available from: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/pfizer-voluntary-nationwide-recall-lots-accuprilr-quinapril-hcl-due-n-nitroso-quinapril-content (Accessed on: 28-9-2024).2022
  15. Issues nationwide recall of 13 lots of orphenadrine citrate 100 mg extended release tablets due to presence of a nitrosamine impurity.Available from: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/sandoz-inc-issues-nationwide-recall-13-lots-orphenadrine-citrate-100-mg-extended-release-tablets (Accessed on: 28-9-2024).
  16. Lupin pharmaceuticals, inc. issues voluntarily nationwide recall of all irbesartan tablets and irbesartan and hydrochlorothiazide tablets due to potential presence of n-nitrosoirbesartan impurity.Available from: https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/lupin-pharmaceuticals-inc-issues-voluntarily-nationwide-recall-all-irbesartan-tablets-and-irbesartan?_ga=2.14247927.1101167088.1672214710-1462517841.1672214710 (Accessed on: 28-9-2024).
  17. Zeitung.Available from: zeitung.de/news/artikel/2022/05/16/rueckruf-wegen-nitroso-rasagilinTagedEnd (Accessed on: 28-9-2024).
  18. AdachiM. SaitoH. KobayashiH. HorieY. KatoS. YoshiokaM. IshiiH. Hepatic injury in 12 patients taking the herbal weight loss AIDS chaso or onshido.Ann. Intern. Med.2003139648849210.7326/0003‑4819‑139‑6‑200309160‑0001213679326
    [Google Scholar]
  19. BoetzelR. SchlingemannJ. HickertS. KornC. KocksG. LuckB. BlomG. HarrisonM. FrancoisM. AllainL. A nitrite excipient database: A useful tool to support N-nitrosamine risk assessments for drug products.J. Pharm. Sci.202311261615162410.1016/j.xphs.2022.04.01635500671
    [Google Scholar]
  20. JirešJ. DoušaM. GibalaP. KubelkaT. N-Nitrosation in the absence of nitrosating agents in pharmaceuticals?J. Pharm. Biomed. Anal.202221811487210.1016/j.jpba.2022.11487235696937
    [Google Scholar]
  21. HolzgrabeU. Nitrosated active pharmaceutical ingredients–lessons learned?J. Pharm. Sci.202311251210121510.1016/j.xphs.2023.01.02136720391
    [Google Scholar]
  22. LiY. HechtS.S. Metabolic activation and DNA interactions of carcinogenic N-nitrosamines to which humans are commonly exposed.Int. J. Mol. Sci.2022239455910.3390/ijms2309455935562949
    [Google Scholar]
  23. SchmidtsdorffS. NeumannJ. SchmidtA.H. ParrM.K. Prevalence of nitrosamine contaminants in drug samples: Has the crisis been overcome?Arch. Pharm.20233562220048410.1002/ardp.20220048436461687
    [Google Scholar]
  24. TuesuwanB. VongsutilersV. Nitrosamine contamination in pharmaceuticals: Threat, impact, and control.J. Pharm. Sci.202111093118312810.1016/j.xphs.2021.04.02133989680
    [Google Scholar]
  25. MaundrellN. Nitrosamine impurities: From raw materials to final drug product.Bioanalysis2022142636610.4155/bio‑2021‑023834743592
    [Google Scholar]
  26. TuesuwanB. VongsutilersV. Current threat of nitrosamines in pharmaceuticals and scientific strategies for risk mitigation.J. Pharm. Sci.202311251192120910.1016/j.xphs.2023.01.02836739905
    [Google Scholar]
  27. Science-based solutions for controlling nitrosamine impurities in medicines.Available from:https://www.usp.org/small-molecules/nitrosamine-impurities (Accessed on: 28-9-2024).
  28. European directorate for the quality of medicines & healthcare.Available from: https://www.edqm.eu/en/news/ph-eurcommission-adopts-new- general-chapter-analysis-n-nitrosamine-impurities (Accessed on: 28-9-2024).
  29. AlabaP.A. SaniY.M. OlupinlaS.F. DaudW.M.W. MohammedI.Y. EnweremaduC.C. AyodeleO.O. Toward N-nitrosamines free water: Formation, prevention, and removal.Crit. Rev. Environ. Sci. Technol.201747242448248910.1080/10643389.2018.1430438
    [Google Scholar]
  30. SmithP.A.S. LoeppkyR.N. Nitrosative cleavage of tertiary amines.J. Am. Chem. Soc.19678951147115710.1021/ja00981a021
    [Google Scholar]
  31. European Pharmacopoeia.2010Available from: https://www.edqm.eu/en/european-pharmacopoeia (Accessed on: 28-9-2024).
  32. SchlingemannJ. BoucleyC. HickertS. BourasseauL. WalkerM. CeldranC. ChemarinT. PeguesC. FritzscheM. KeitelJ. GoettscheA. SeegelM. LeichtS. GuessregenB. ReifenbergP. WetzelS. MüllerT. SchoorenF. SchusterT. LiebholdM. KirschA. KruegerP. SaalC. MoutonB. MasanesS. Avoiding N-nitrosodimethylamine formation in metformin pharmaceuticals by limiting dimethylamine and nitrite.Int. J. Pharm.202262012174010.1016/j.ijpharm.2022.12174035421534
    [Google Scholar]
  33. WichitnithadW. NantapholS. NoppakhunsomboonK. RojsitthisakP. An update on the current status and prospects of nitrosation pathways and possible root causes of nitrosamine formation in various pharmaceuticals.Saudi Pharm. J.202231229531136942272
    [Google Scholar]
  34. CrossK.P. PontingD.J. Developing structure-activity relationships for N-nitrosamine activity.Comput. Toxicol.20212010018610.1016/j.comtox.2021.10018634901581
    [Google Scholar]
  35. ThomasR. ThresherA. PontingD.J. Utilisation of parametric methods to improve percentile-based estimates for the carcinogenic potency of nitrosamines.Regul. Toxicol. Pharmacol.202112110487510.1016/j.yrtph.2021.10487533556416
    [Google Scholar]
  36. ThomasR. TennantR.E. OliveiraA.A.F. PontingD.J. What makes a potent nitrosamine? Statistical validation of expert-derived structure–activity relationships.Chem. Res. Toxicol.202235111997201310.1021/acs.chemrestox.2c0019936302501
    [Google Scholar]
  37. SchlingemannJ. BurnsM.J. PontingD.J. Martins AvilaC. RomeroN.E. JaywantM.A. SmithG.F. AshworthI.W. SimonS. SaalC. WilkA. The landscape of potential small and drug substance related nitrosamines in pharmaceuticals.J. Pharm. Sci.202311251287130410.1016/j.xphs.2022.11.01336402198
    [Google Scholar]
  38. ThresherA. FosterR. PontingD.J. StalfordS.A. TennantR.E. ThomasR. Are all nitrosamines concerning? A review of mutagenicity and carcinogenicity data.Regul. Toxicol. Pharmacol.202011610474910.1016/j.yrtph.2020.10474932777431
    [Google Scholar]
  39. Nitrosamine impurities in human medicinal products.Available from: https://www.ema.europa.eu/en/documents/referral/nitrosamines-emea-h-a53-1490-assessment-report_en.pdf (Accessed on: 28-9-2024).
  40. Structurally complex and API-like nitrosamine data added to the complex nitrosamines database.Available from: https://www.lhasalimited.org/news/structurally-complex-and-api-like-nitrosamine-data-added-to-the-complex-nitrosamines-database/ (Accessed on: 28-9-2024).
  41. Questions and answers for marketing authorisation holders/applicants on the CHMP Opinion for the Article 5(3) of Regulation (EC) No 726/2004 referral on nitrosamine impurities in human medicinal products.2004Available from: https://www.ema.europa.eu/en/documents/referral/nitrosamines-emea-h-a53-1490-questions-answers-marketing-authorisation-holders/applicants-chmp-opinion-article-53-regulation-ec-no-726/2004-referral-nitrosamine-impurities-human-medicinal-products_en.pdf (Accessed on: 28-9-2024).
  42. Updates on possible mitigation strategies to reduce the risk of nitrosamine drug substance-related impurities in drug products.Available from: https://www.fda.gov/drugs/drug-safety-and-availability/updates-possible-mitigation-strategies-reduce-risk-nitrosamine-drug-substance-related-impurities (Accessed on: 28-9-2024).
  43. PontingD.J. DoboK.L. KenyonM.O. KalgutkarA.S. Strategies for assessing acceptable intakes for novel N-nitrosamines derived from active pharmaceutical ingredients.J. Med. Chem.20226523155841560710.1021/acs.jmedchem.2c0149836441966
    [Google Scholar]
  44. NandaK.K. TignorS. ClancyJ. MarotaM.J. AllainL.R. D’AddioS.M. Inhibition of N-nitrosamine formation in drug products: A model study.J. Pharm. Sci.2021110123773377510.1016/j.xphs.2021.08.01034400183
    [Google Scholar]
  45. LeistnerA. HaerlingS. KreherJ.D. BeckerI. JungD. HolzgrabeU. Risk assessment report of potential impurities in cetirizine dihydrochloride.J. Pharm. Biomed. Anal.202018911342510.1016/j.jpba.2020.11342532599488
    [Google Scholar]
  46. WohlfartJ. JäckelE. Scherf-ClavelO. JungD. KinzigM. SörgelF. HolzgrabeU. Impurity profiling of bisoprolol fumarate by liquid chromatography-high-resolution mass spectrometry: A combination of targeted and untargeted approaches using a synthesis reaction matrix and general unknown comparative screening.J. Chromatog. Open2021110001210.1016/j.jcoa.2021.100012
    [Google Scholar]
  47. European Medicines Regulatory Network approach for the implementation of the CHMP Opinion pursuant to Article 5(3) of Regulation (EC) No 726/2004 for nitrosamine impurities in human medicines.2004Available from: https://www.ema.europa.eu/en/documents/referral/european-medicines-regulatory-network-approach-implementation-chmp-opinion-pursuant-article-53/2004-nitrosamine-impurities-human-medicines_en.pdf (Accessed on: 15-8-2024).
  48. KeeperL.K. RollerP.P. N-nitrosation by nitrite ion in neutral and basic medium.Science197318141061245124710.1126/science.181.4106.12454726444
    [Google Scholar]
  49. HomšakM. TrampužM. NaveršnikK. KitanovskiZ. ŽnidaričM. KieferM. ČasarZ. Assessment of a diverse array of nitrite scavengers in solution and solid state: A study of inhibitory effect on the formation of alkyl-aryl and dialkyl n-nitrosamine derivatives.Processes20221011242810.3390/pr10112428
    [Google Scholar]
  50. MirvishS.S. WallcaveL. EagenM. ShubikP. Ascorbate-nitrite reaction: possible means of blocking the formation of carcinogenic N-nitroso compounds.Science19721774043656810.1126/science.177.4043.655041776
    [Google Scholar]
  51. MergensW.J. Efficacy of vitamin E to prevent nitrosamine formation.Ann. N. Y. Acad. Sci.19823931616910.1111/j.1749‑6632.1982.tb31232.x6959571
    [Google Scholar]
  52. ChoiJ.S. ParkS.H. ChoiJ.H. Nitrite scavenging effect by flavonoids and its structure-effect relationship.Arch. Pharm. Res.1989121263310.1007/BF02855742
    [Google Scholar]
  53. DelmasD. LançonA. ColinD. JanninB. LatruffeN. Resveratrol as a chemopreventive agent: A promising molecule for fighting cancer.Curr. Drug Targets20067442344210.2174/13894500677635933116611030
    [Google Scholar]
  54. MahalH.S. MukherjeeT. Scavenging of reactive oxygen radicals by resveratrol: Antioxidant effect.Res. Chem. Intermed.2006321597110.1163/156856706775012941
    [Google Scholar]
  55. BotterweckA.A.M. VerhagenH. GoldbohmR.A. KleinjansJ. van den BrandtP.A. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands Cohort Study.Food Chem. Toxicol.200038759960510.1016/S0278‑6915(00)00042‑910942321
    [Google Scholar]
  56. KakoY. ToyodaY. HatanakaY. SuwaY. NukayaH. NagaoM. Inhibition of mutagenesis by p-aminobenzoic acid as a nitrite scavenger.Mutat. Mutat. Res. Lett.1992282211912510.1016/0165‑7992(92)90084‑U1377350
    [Google Scholar]
  57. MergensW.J. NewmarkH.L. Antioxidants as blocking agents against nitrosamine formation.Autoxidation in Food and Biological SystemsSpringer198038740310.1007/978‑1‑4757‑9351‑2_21
    [Google Scholar]
  58. SenN.P. DonaldsonB. SeamanS. IyengarJ.R. MilesW.F. Inhibition of nitrosamine formation in fried bacon by propyl gallate and L-ascorbyl palmitate.J. Agric. Food Chem.197624239740110.1021/jf60204a061943433
    [Google Scholar]
  59. BayneA.C.V. MisicZ. StemmlerR.T. WittnerM. FrerichsM. BirdJ.K. BesheerA. N-nitrosamine mitigation with nitrite scavengers in oral pharmaceutical drug products.J. Pharm. Sci.202311271794180010.1016/j.xphs.2023.03.02237023856
    [Google Scholar]
  60. HarmonP. Trace aldehydes in solid oral dosage forms as catalysts for nitrosating secondary amines.J. Pharm. Sci.202311251216121910.1016/j.xphs.2022.10.03336336102
    [Google Scholar]
  61. WyttenbachN. BirringerC. AlsenzJ. KuentzM. Drug-excipient compatibility testing using a high-throughput approach and statistical design.Pharm. Dev. Technol.200510449950510.1080/1083745050029987516370179
    [Google Scholar]
  62. TodaF. Solid state organic chemistry: Efficient reactions, remarkable yields, and stereoselectivity.Acc. Chem. Res.1995281248048610.1021/ar00060a003
    [Google Scholar]
  63. BrownM.E. DollimoreD. GalweyA.K. Reactions in the Solid StateElsevier198022
    [Google Scholar]
  64. EisenbrandG. SpiegelhalderB. KannJ. KleinR. PreussmannR. Carcinogenic N-nitrosodimethylamine as a contamination in drugs containing 4-dimethylamino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (amidopyrine, aminophenazone).Arzneimittelforschung1979296867869582774
    [Google Scholar]
  65. SharmaN. PatelR. BotharaT. JainS. ShahR.P. Modified NAP test: A simple and responsive nitrosating methodology for risk evaluation of NDSRIs.J. Pharm. Sci.202311251333134010.1016/j.xphs.2023.02.02436871894
    [Google Scholar]
  66. SchmidtsdorffS. NeumannJ. SchmidtA.H. ParrM.K. Risk assessment for nitrosated pharmaceuticals: A future perspective in drug development.Arch. Pharm.20223554210043510.1002/ardp.20210043535088435
    [Google Scholar]
  67. TsujiG. KuroharaT. ShodaT. YokooH. ItoT. MasadaS. UchiyamaN. YamamotoE. DemizuY. In silico prediction of N-N-nitrosamine formation pathways of pharmaceutical products.Chem. Pharm. Bull.202472216617210.1248/cpb.c23‑0055038296559
    [Google Scholar]
  68. MurphyN.S. O’ConnorD.C. GavinsG.C. JamesL. LockettJ.P. McManusJ.A. PackerG. Lopez-RodríguezR. WebbS.J. BurnsM.J. Identifying the risk of formation of nitrosamines and other potentially mutagenic impurities during API manufacture using in silico risk assessment.Org. Process Res. Dev.202327101812181910.1021/acs.oprd.3c00118
    [Google Scholar]
  69. CiocR.C. JoyceC. MayrM. BreamR.N. Formation of N-nitrosamine drug substance related impurities in medicines: A regulatory perspective on risk factors and mitigation strategies.Org. Process Res. Dev.202327101736175010.1021/acs.oprd.3c00153
    [Google Scholar]
  70. BeardJ.C. SwagerT.M. An organic chemist’s guide to N-nitrosamines: Their structure, reactivity, and role as contaminants.J. Org. Chem.20218632037205710.1021/acs.joc.0c0277433474939
    [Google Scholar]
  71. KostalJ. Voutchkova-KostalA. A quantum-mechanical approach to predicting carcinogenic potency of N-nitrosamine impurities in pharmaceuticals.Chem. Res. Toxicol.202236229130410.26434/chemrxiv‑2022‑hnzwn
    [Google Scholar]
  72. ZhuJ. QuY. YeN. An automated carcinogenic potency categorization approach for nitrosamine drug substance-related impurities.Green Chem.2023263717372110.26434/chemrxiv‑2023‑3rw6d
    [Google Scholar]
  73. KaoY.T. WangS.F. WuM.H. HerS.H. YangY.H. LeeC.H. LeeH.F. LeeA.R. ChangL.C. PaoL.H. A substructure-based screening approach to uncover N-nitrosamines in drug substances.Yao Wu Shi Pin Fen Xi202230115016210.38212/2224‑6614.340035647726
    [Google Scholar]
  74. ChakravartiS. Computational prediction of metabolic α- carbon hydroxylation potential of N-nitrosamines: Overcoming data limitations for carcinogenicity assessment.Chem. Res. Toxicol.202336695997010.1021/acs.chemrestox.3c0008337267457
    [Google Scholar]
  75. Instem. Discover. Accelerate. AdvanceAvailable from: https://www.instem.com/industries/video/introducing-the-ema-mutamind-project.php (Accessed on: 15-8-2024).
  76. AnandP. KoletoM. KandulaD.R. XiongL. MacNeillR. Novel hydrophilic-phase extraction, HILIC and high-resolution MS quantification of an RNA oligonucleotide in plasma.Bioanalysis2022141476210.4155/bio‑2021‑021634779651
    [Google Scholar]
  77. AmbreA. BulbuleM. ShirsatV. KandulaD.R. SinghA. PillaiM. TLC bioautography and LCMS-MS analysis for identification of compounds having inhibitory activity against Staphylococcus aureus in Abies webbiana leaves extract.Int. J. Pharm. Sci. Res.20191046854693
    [Google Scholar]
  78. GuntaU. VadlaG.P. KadiyalaG. KandulaD.R. MastanM. Identification of potential insulinotropic cytotoxins from indian cobra snake venom using high-resolution mass spectrometry and analyzing their possible interactions with potassium channel receptors by in silico studies.Appl. Biochem. Biotechnol.2024196116018110.1007/s12010‑023‑04523‑937103736
    [Google Scholar]
  79. BeerakaN.M. UPLC-MS-based method development, validation, and optimization of dissolution using quality by design approach for low dose digoxin: A novel strategy.Curr. Pharm. Anal.202218984185110.2174/1573412918666220530100529
    [Google Scholar]
  80. FeiziN. Hashemi-NasabF.S. GolpelichiF. SaburouhN. ParastarH. Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies.Trends Analyt. Chem.202113811623910.1016/j.trac.2021.116239
    [Google Scholar]
  81. GowthamiM. GC-MS analysis of Croton scabious Bedd. extracts & their molecular docking studies for anti-cancer activity against breast & lung cancer factors.Int. J. Res. Pharm. Sci.201910437963804
    [Google Scholar]
  82. HernándezF. CerveraM.I. PortolésT. BeltránJ. PitarchE. The role of GC-MS/MS with triple quadrupole in pesticide residue analysis in food and the environment.Anal. Methods20135215875589410.1039/c3ay41104d
    [Google Scholar]
  83. GilbertJ.R. Comprehensive Analytical Chemistry.Elsevier201361403429
    [Google Scholar]
  84. AlshehriY.M. AlghamdiT.S. AldawsariF.S. HS-SPME-GC-MS as an alternative method for NDMA analysis in ranitidine products.J. Pharm. Biomed. Anal.202019111358210.1016/j.jpba.2020.11358232889348
    [Google Scholar]
  85. LeeD.H. HwangS.H. ParkS. LeeJ. OhH.B. HanS.B. LiuK.H. LeeY.M. PyoH.S. HongJ. A solvent-free headspace GC/MS method for sensitive screening of N-nitrosodimethylamine in drug products.Anal. Methods202113303402340910.1039/D1AY01036K34250988
    [Google Scholar]
  86. ChangS.H. HoH.Y. ZangC.Z. HsuY.H. LinM.C. TsengS.H. WangD.Y. Screening of nitrosamine impurities in sartan pharmaceuticals by GC-MS/MS.Mass Spectrom. Lett.20211223140
    [Google Scholar]
  87. LimH.H. OhY.S. ShinH.S. Determination of N-nitrosodimethylamine and N-nitrosomethylethylamine in drug substances and products of sartans, metformin and ranitidine by precipitation and solid phase extraction and gas chromatography–tandem mass spectrometry.J. Pharm. Biomed. Anal.202018911346010.1016/j.jpba.2020.11346032663759
    [Google Scholar]
  88. Giménez-CampilloC. Pastor-BeldaM. CampilloN. Hernández-CórdobaM. ViñasP. Development of a new methodology for the determination of N-nitrosamines impurities in ranitidine pharmaceuticals using microextraction and gas chromatography-mass spectrometry.Talanta2021223Pt 212165910.1016/j.talanta.2020.12165933298254
    [Google Scholar]
  89. TakatsukiK. KikuchiT. Determination of N-nitrosodimethylamine in fish products using gas chromatography with nitrogen-phosphorus detection.J. Chromatogr. A1990508235736210.1016/S0021‑9673(00)91278‑02164519
    [Google Scholar]
  90. YamamotoE. Kan-noH. TomitaN. AndoD. MiyazakiT. IzutsuK. Isolation of N-nitrosodimethylamine from drug substances using solid-phase extraction-liquid chromatography–tandem mass spectrometry.J. Pharm. Biomed. Anal.202221011456110.1016/j.jpba.2021.11456134974238
    [Google Scholar]
  91. ChidellaK.S. DasariV.B. AnireddyJ. Ultra-sensitive LC-MS/MS method for the trace level quantification of six potential genotoxic nitrosamine impurities in telmisartan.Am. J. Anal. Chem.202112622724010.4236/ajac.2021.126014
    [Google Scholar]
  92. PatelR. PurohitS. SolankiR. KhuntD. PatelC. PatelR. ParikhS. Development and validation of an analytical method for trace-level quantification of genotoxic nitrosamine impurities in losartan and hydrochlorothiazide fixed-dose combination tablets using ultra performance liquid chromatography triple quadrupole mass spectrometry.Rapid Commun. Mass Spectrom.2023378e948810.1002/rcm.948836740827
    [Google Scholar]
  93. SolankiR. WadhwanaP. PatelR. GayakvadB. KothariC. PatelC. Analytical method capable of quantifying eight nitrosamine impurities from five different commercially available metformin formulations with glipizide, glibenclamide, gliclazide, evogliptin, and glimepiride by ultra high performance liquid chromatography tripple quadrupole mass spectrometry.J. Pharm. Sci.202311251268127610.1016/j.xphs.2023.02.01636822274
    [Google Scholar]
  94. AliH.M. AlsohaimiI.H. Rizwan KhanM. NaguibI.A. BusquetsR. AlamP. AinousahB.E. GamalM. Selective and sensitive GC-MS analysis of carcinogenic N-nitrosodimethylamine in pharmaceuticals using a magnetic coconut carbon composite as a solid-phase extraction sorbent.J. Taibah Univ. Sci.2023171225435210.1080/16583655.2023.2254352
    [Google Scholar]
  95. BodiwalaK.B. PanchalB.G. SavaleS.S. DaveJ.B. SurejaD.K. DhameliyaT.M. ChhabriaM.T. Simultaneous estimation of six nitrosamine impurities in valsartan using liquid chromatographic method.J. AOAC Int.2022105111010.1093/jaoacint/qsab10034338773
    [Google Scholar]
  96. LiuJ. XieB. MaiB. CaiQ. HeR. GuoD. ZhangZ. FanJ. ZhangW. Development of a sensitive and stable GC-MS/MS method for simultaneous determination of four N-nitrosamine genotoxic impurities in sartan substances.J. Anal. Sci. Technol.2021121310.1186/s40543‑020‑00254‑2
    [Google Scholar]
  97. WichitnithadW. SudtanonO. SrisunakP. CheewatanakornkoolK. NantapholS. RojsitthisakP. Development of a sensitive headspace gas chromatography–mass spectrometry method for the simultaneous determination of nitrosamines in losartan active pharmaceutical ingredients.ACS Omega2021616110481105810.1021/acsomega.1c0098234056258
    [Google Scholar]
  98. Planinšek ParfantT. SkubeT. RoškarR. A robust analytical method for simultaneous quantification of 13 low- molecular-weight N-Nitrosamines in various pharmaceuticals based on solid phase extraction and liquid chromatography coupled to high-resolution mass spectrometry.Eur. J. Pharm. Sci.202419210663310.1016/j.ejps.2023.10663337951317
    [Google Scholar]
  99. WitkowskaA.B. GiebułtowiczJ. DąbrowskaM. StolarczykE.U. Development of a sensitive screening method for simultaneous determination of nine genotoxic nitrosamines in active pharmaceutical ingredients by GC-MS.Int. J. Mol. Sci.202223201212510.3390/ijms23201212536292981
    [Google Scholar]
  100. NakkaS. MuchakayalaS.K. Manabolu SuryaS.B. A novel and eco-friendly UPLC-ESI-MS method for the quantification of Aceclofenac-NDSRI (Nitroso Drug Substance Related Impurity) from Aceclofenac drug substance and combination formulations.Sustain. Chem. Pharm.20243810149510.1016/j.scp.2024.101495
    [Google Scholar]
  101. AshworthI.W. BlanazsA. ByrneJ.J. DiratO. FennellJ.W. KuhlN. WellsS.L. WhitingM.P. Approaches and considerations for the investigation and synthesis of N-nitrosamine drug substance-related impurities (NDSRIs).Org. Process Res. Dev.202327101784179110.1021/acs.oprd.3c00084
    [Google Scholar]
  102. FDA.2023Available from: https://www.fda.gov/ (Accessed on: 12-8-2024).
  103. BerkesselA. ShinkaiI. AlbertiM. Category 5, Compounds with One Saturated Carbon Heteroatom Bond - PeroxidesThieme E-Books200938582
    [Google Scholar]
  104. Highly sensitive quantification of mutagenic ndsri n-nitroso propranolol in propranolol API and 40 mg tablets using LC/MS/MS.Available from: https://www.agilent.com/cs/library/applications/an-nitrosamine-impurity-quantification-6470-infinitylab-5994-5161en-agilent.pdf (Accessed on: 28-9-2024).
  105. HSA Determination of N-Nitroso salbutamol in sulbutamol products by LC-MS/MS.Available from: https://www.hsa.gov.sg/docs/default-source/announcements/safety-alerts/determination-of-n-nitroso-salbutamol-in-salbutamol-products-by-lcmsms.pdf (Accessed on: 28-9-2024).
  106. PartaniP. ChoudharyS. BharataiyaP. GuntaU. PonnamaneniR.K. PillaiM. BaghlaR. NanditaE. Sensitive and reproducible quantification of N-nitroso propranolol in a propranolol drug substance and product.Sciex202316Available from: https://sciex.com/content/dam/SCIEX/pdf/tech-notes/pharma/qaqc/MKT-25212-A_N-Nitroso_Propranolol_Kapost_Final.pdf(Accessed on: 28-9-2024).
    [Google Scholar]
  107. Nitish SuryawanshiR.D. Determination of Epichlorohydrin from Sevelamer carbonate as per proposed USP monograph GC method.202212Available from: https://www.shimadzu.com/an/sites/shimadzu.com.an/files/pim/pim_document_file/applications/application_note/16994/an_06-SAIP-GC-035-en.pdf (Accessed on: 28-9-2024).
  108. LC-MS Analysis of Chantix® Varenicline NDSRI using HALO® Biphenyl.Available from: https://halocolumns.com/wp-content/uploads/2021/08/279_LCMS-Analysis-of-Varenicline-NDSRI-using-HALO-Biphenyl.pdf (Accessed on: 28-9-2024).
  109. Liquid chromatography-high resolution.Available from: https://www.fda.gov/media/151470/download (Accessed on: 28-9-2024).
  110. LiS. DongL. TangK. LanZ. LiuR. WangY. WangR. LinH. Simultaneous and trace level quantification of two potential genotoxic impurities in valsartan drug substance using UPLC-MS/MS.J. Pharm. Biomed. Anal.202221211463010.1016/j.jpba.2022.11463035158183
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673322023240829081220
Loading
/content/journals/cmc/10.2174/0109298673322023240829081220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test