Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Gliomas and glioblastomas (GBM) are common primary malignant brain tumors, which are highly malignant and have a poor prognosis. The presence of cancer stem cells with unrestricted proliferative capacity and ability to generate glial neoplastic cells, the diffuse nature of GBM, and other specific factors of GBM contribute to poor results of drug therapy in patients with GBM. Despite the worldwide efforts to improve the treatment, many novel anti-GBM drugs are active just , , and in preclinical trials, and they sometimes demonstrate poor or no activity in clinical trials. In this paper, we have casually selected and analyzed the most promising evidence-based results related to glioblastoma treatment at FDA and ClinicalTrials.gov databases. It was observed that the most prospective trend in the development of anti-GBM drugs is combination therapy monotherapy. Our analysis of clinical trials has allowed us to predict that the most promising combination therapy that has shown the best results in patient’s surveillance should include drugs that block different growth-promoting signals in glioblastoma cells and that are activated by the V600E BRAF mutation. One drug should inhibit signals from the BRAF protein, whereas the second drug in combination should inhibit signals from the MEK protein.

Methods

The content of this review is based on information obtained from PubMed, ClinicalTrials.gov, and the U.S. Food and Drug Administration (https://www.fda.gov/). In ClinicalTrials.gov, we retrieved studies published from January 1, 2015. In the data search, “Glioblastoma” was used as the keyword. A study was deleted if it studied remedies for concomitant tumor diseases, as well as if it did not include descriptions of treatment methods and/or if GBM was not mentioned. The analysis of the effectiveness of treatment was carried out according to the increasing overall survival in GBM patients, compared to the gold standard for this cancer.

Results

GBM patients treated with novel immunotherapy agents and drugs acting on epigenetic factors and receptor tyrosine kinase inhibitors have shown encouraging potential for future development in clinic. However, combinations of drugs have led to more significant improvements in the results and an increase in life expectancy of patients. For example, the combination of nivolumab and ipilimumab showed a 72% increase in life expectancy compared to using nivolumab alone (9.8 16.85).

Conclusion

Combining anti-GBM drugs appears to be a key direction for increasing treatment effectiveness and overall survival. Radiotherapy of GBM can increase the effect of combination drug therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673281283240101053940
2024-01-30
2025-06-23
Loading full text...

Full text loading...

References

  1. TorpS.H. SolheimO. SkjulsvikA.J. The WHO 2021 Classification of central nervous system tumours: A practical update on what neurosurgeons need to know-a minireview.Acta Neurochir.202216492453246410.1007/s00701‑022‑05301‑y35879477
    [Google Scholar]
  2. LouisD.N. PerryA. WesselingP. BratD.J. CreeI.A. Figarella-BrangerD. HawkinsC. NgH.K. PfisterS.M. ReifenbergerG. SoffiettiR. von DeimlingA. EllisonD.W. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab10634185076
    [Google Scholar]
  3. Delle DonneR. IannucciR. RinaldiL. RobertoL. OlivaM.A. SenatoreE. BorzacchielloD. LignittoL. GiuratoG. RizzoF. SellittoA. ChiusoF. CastaldoS. ScalaG. CampaniV. NeleV. De RosaG. D’AmbrosioC. GarbiC. ScaloniA. WeiszA. AmbrosinoC. ArcellaA. FelicielloA. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth.Commun. Biol.20225178010.1038/s42003‑022‑03639‑835918402
    [Google Scholar]
  4. GiambraM. Di CristoforiA. ValtortaS. ManfrellottiR. BigiogeraV. BassoG. MorescoR.M. GiussaniC. BentivegnaA. The peritumoral brain zone in glioblastoma: where we are and where we are going.J. Neurosci. Res.2023101219921610.1002/jnr.2513436300592
    [Google Scholar]
  5. BatashR. AsnaN. SchafferP. FrancisN. SchafferM. Glioblastoma multiforme, diagnosis and treatment: Recent literature review.Curr. Med. Chem.201724273002300928521700
    [Google Scholar]
  6. PadfieldE. EllisH.P. KurianK.M. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma.Front. Oncol.20155510.3389/fonc.2015.0000525688333
    [Google Scholar]
  7. BasheerA.S. AbasF. OthmanI. NaiduR. Role of inflammatory mediators, macrophages, and neutrophils in glioma maintenance and progression: Mechanistic understanding and potential therapeutic applications.Cancers20211316422610.3390/cancers1316422634439380
    [Google Scholar]
  8. NelsonB.E. ReddyN.K. HuseJ.T. AminiB. NardoM. GoudaM. WeathersS.P. SubbiahV. Histological transformation to gliosarcoma with combined BRAF/MEK inhibition in BRAF V600E mutated glioblastoma.NPJ Precis. Oncol.2023714710.1038/s41698‑023‑00398‑537231247
    [Google Scholar]
  9. RamaiahM.J. KumarK.R. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme.Mol. Biol. Rep.20214854813483510.1007/s11033‑021‑06462‑234132942
    [Google Scholar]
  10. PandeyV. BhaskaraV.K. BabuP.P. Implications of mitogen-activated protein kinase signaling in glioma.J. Neurosci. Res.201694211412710.1002/jnr.2368726509338
    [Google Scholar]
  11. WangG. WangJ.J. FuX.L. GuangR. ToS.S.T. Advances in the targeting of HIF-1α and future therapeutic strategies for glioblastoma multiforme.Oncol. Rep.201737265767010.3892/or.2016.530927959421
    [Google Scholar]
  12. AddeoR. ZappavignaS. ParlatoC. CaragliaM. Erlotinib: Early clinical development in brain cancer.Expert Opin. Investig. Drugs20142371027103710.1517/13543784.2014.91895024836441
    [Google Scholar]
  13. ZhuJ.J. WongE.T. Personalized medicine for glioblastoma: Current challenges and future opportunities.Curr. Mol. Med.201313335836723331008
    [Google Scholar]
  14. SchreckK.C. GrossmanS.A. PratilasC.A. BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors.Cancers2019119126210.3390/cancers1109126231466300
    [Google Scholar]
  15. VenkatesanS. LamfersM.L.M. DirvenC.M.F. LeenstraS. Genetic biomarkers of drug response for small- molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma.CNS Oncol.201652779010.2217/cns‑2015‑000526986934
    [Google Scholar]
  16. AngJ.E. PalA. AsadY.J. HenleyA.T. ValentiM. BoxG. de haven BrandonA. RevellV.L. SkeneD.J. VenturiM. RuegerR. MeresseV. EcclesS.A. de BonoJ.S. KayeS.B. WorkmanP. BanerjiU. RaynaudF.I. Modulation of plasma metabolite biomarkers of the MAPK pathway with MEK inhibitor RO4987655: Pharmacodynamic and predictive potential in metastatic melanoma.Mol. Cancer Ther.201716102315232310.1158/1535‑7163.MCT‑16‑088128637716
    [Google Scholar]
  17. BrownN.F. CarterT. KitchenN. MulhollandP. Dabrafenib and trametinib in BRAFV600E mutated glioma.CNS Oncol.20176429129610.2217/cns‑2017‑000628984141
    [Google Scholar]
  18. SzklenerK. MazurekM. WieteskaM. WacławskaM. BilskiM. MańdziukS. New directions in the therapy of glioblastoma.Cancers20221421537710.3390/cancers1421537736358795
    [Google Scholar]
  19. KaleyT. TouatM. SubbiahV. HollebecqueA. RodonJ. LockhartA.C. KeedyV. BielleF. HofheinzR.D. JolyF. BlayJ.Y. ChauI. PuzanovI. RajeN.S. WolfJ. DeAngelisL.M. MakrutzkiM. RiehlT. PitcherB. BaselgaJ. HymanD.M. BRAF inhibition in BRAF V600-mutant gliomas: Results from the VE-BASKET study.J. Clin. Oncol.201836353477348410.1200/JCO.2018.78.999030351999
    [Google Scholar]
  20. SalamaAKS LiS MacraeER ParkJI MitchellEP ZwiebelJA Dabrafenib and trametinib in patients with tumors with BRAFV600E mutations: Results of the NCI- MATCH trial subprotocol H. JCO2020383338953904
    [Google Scholar]
  21. LombardiG. De SalvoG.L. BrandesA.A. EoliM. RudàR. FaediM. LolliI. PaceA. DanieleB. PasqualettiF. RizzatoS. BelluL. PambukuA. FarinaM. MagniG. IndraccoloS. GardimanM.P. SoffiettiR. ZagonelV. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial.Lancet Oncol.201920111011910.1016/S1470‑2045(18)30675‑230522967
    [Google Scholar]
  22. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers2017955210.3390/cancers905005228513565
    [Google Scholar]
  23. BotaD.A. MasonW. KesariS. MaggeR. WinogradB. EliasI. ReichS.D. LevinN. TrikhaM. DesjardinsA. Marizomib alone or in combination with bevacizumab in patients with recurrent glioblastoma: Phase I/II clinical trial data.Neurooncol. Adv.202131vdab14210.1093/noajnl/vdab14234729484
    [Google Scholar]
  24. FlynnJ.P. GerrietsV. Pembrolizumab.StatPearls.Treasure Island, FLStatPearls Publishing2022https://www.ncbi.nlm.nih.gov/books/NBK546616/
    [Google Scholar]
  25. Kadmon Corporation, LLC. A phase 2, multicenter study of tesevatinib monotherapy in patients with recurrent glioblastoma2021Available from: https://clinicaltrials.gov/ct2/show/results/NCT02844439 [cited 2022 Dec 15].
  26. ColardoM. SegattoM. Di BartolomeoS. Targeting RTK-PI3K-mTOR axis in gliomas: An update.Int. J. Mol. Sci.2021229489910.3390/ijms2209489934063168
    [Google Scholar]
  27. OsakiM. OshimuraM. ItoH. PI3K-Akt pathway: Its functions and alterations in human cancer.Apoptosis20049666767610.1023/B:APPT.0000045801.15585.dd15505410
    [Google Scholar]
  28. TutakI. OzdilB. UysalA. Voxtalisib and low intensity pulsed ultrasound combinatorial effect on glioblastoma multiforme cancer stem cells via PI3K/Akt/mTOR.Pathol. Res. Pract.202223915414510.1016/j.prp.2022.15414536240647
    [Google Scholar]
  29. WenP.Y. de GrootJ.F. BattisteJ. GoldlustS.A. GarnerJ.S. FriendJ. SimpsonJ.A. DamekD. OliveroA. CloughesyT.F. Paxalisib in patients with newly diagnosed glioblastoma with unmethylated MGMT promoter status: Final phase 2 study results.J. Clin. Oncol.20224016_supplSuppl.2047204710.1200/JCO.2022.40.16_suppl.2047
    [Google Scholar]
  30. ArdizzoneA. ScuderiS.A. GiuffridaD. ColarossiC. PuglisiC. CampoloM. CuzzocreaS. EspositoE. PaternitiI. Role of fibroblast growth factors receptors (FGFRs) in brain tumors, focus on astrocytoma and glioblastoma.Cancers20201212382510.3390/cancers1212382533352931
    [Google Scholar]
  31. OrnitzD.M. ItohN. The fibroblast growth factor signaling pathway.Wiley Interdiscip. Rev. Dev. Biol.20154321526610.1002/wdev.17625772309
    [Google Scholar]
  32. Incyte Corporation A phase 2, open-label, single-arm, multicenter study to evaluate the efficacy and safety of pemigatinib in participants with previously treated glioblastoma or other primary central nervous system tumors harboring activating FGFR1-3 alterations (FIGHT-209) 2022Available from: https://clinicaltrials.gov/ct2/show/NCT05267106 [cited 2022 Dec 15].
  33. BonelliM. La MonicaS. FumarolaC. AlfieriR. Multiple effects of CDK4/6 inhibition in cancer: From cell cycle arrest to immunomodulation.Biochem. Pharmacol.201917011367610.1016/j.bcp.2019.11367631647925
    [Google Scholar]
  34. MalumbresM. Cyclin-dependent kinases.Genome Biol.201415612210.1186/gb418425180339
    [Google Scholar]
  35. SchettiniF. De SantoI. ReaC.G. De PlacidoP. FormisanoL. GiulianoM. ArpinoG. De LaurentiisM. PuglisiF. De PlacidoS. Del MastroL. CDK 4/6 inhibitors as single agent in advanced solid tumors.Front. Oncol.2018860810.3389/fonc.2018.0060830631751
    [Google Scholar]
  36. YinL. YaoZ. WangY. MazuranicM. Investigational cyclin-dependent kinase 4/6 inhibitor GLR2007 demonstrates activity against isocitrate dehydrogenase wild-type glioblastoma and other solid tumors in mice xenograft models.Front. Oncol.20221291586210.3389/fonc.2022.91586236033522
    [Google Scholar]
  37. BowyerS. LeeR. FusiA. LoriganP. Dabrafenib and its use in the treatment of metastatic melanoma.Melanoma Manag.20152319920810.2217/mmt.15.2130190849
    [Google Scholar]
  38. Gan and Lee Pharmaceuticals An open-label, multicenter, phase 1b/2 study to establish safety, tolerability, and optimal dosing strategy of glr2007 in subjects with advanced solid tumorsReport No.: NCT044444272022Available from: https://clinicaltrials.gov/ct2/show/NCT04444427 [cited 2022 Dec 26].
    [Google Scholar]
  39. ScholzN. KurianK.M. SiebzehnrublF.A. LicchesiJ.D.F. Targeting the ubiquitin system in glioblastoma.Front. Oncol.20201057401110.3389/fonc.2020.57401133324551
    [Google Scholar]
  40. VisintinR. RayS.K. Intersections of ubiquitin-proteosome system and autophagy in promoting growth of glioblastoma multiforme: Challenges and opportunities.Cells20221124406310.3390/cells1124406336552827
    [Google Scholar]
  41. LevinN. SpencerA. HarrisonS.J. ChauhanD. BurrowsF.J. AndersonK.C. ReichS.D. RichardsonP.G. TrikhaM. Marizomib irreversibly inhibits proteasome to overcome compensatory hyperactivation in multiple myeloma and solid tumour patients.Br. J. Haematol.2016174571172010.1111/bjh.1411327161872
    [Google Scholar]
  42. KubiczkovaL. PourL. SedlarikovaL. HajekR. SevcikovaS. Proteasome inhibitors – molecular basis and current perspectives in multiple myeloma.J. Cell. Mol. Med.201418694796110.1111/jcmm.1227924712303
    [Google Scholar]
  43. LasekW. Cancer immunoediting hypothesis: History, clinical implications and controversies.Cent. Eur. J. Immunol.202247216817410.5114/ceji.2022.11737636751395
    [Google Scholar]
  44. DesaiR. CoxonA.T. DunnG.P. Therapeutic applications of the cancer immunoediting hypothesis.Semin. Cancer Biol.202278637710.1016/j.semcancer.2021.03.00233711414
    [Google Scholar]
  45. LuksikA.S. YazigiE. ShahP. JacksonC.M. CAR T cell therapy in glioblastoma: Overcoming challenges related to antigen expression.Cancers2023155141410.3390/cancers1505141436900205
    [Google Scholar]
  46. Vázquez CervantesG.I. González EsquivelD.F. Gómez-ManzoS. PinedaB. Pérez de la CruzV. New immunotherapeutic approaches for glioblastoma.J. Immunol. Res.2021202111910.1155/2021/341290634557553
    [Google Scholar]
  47. CohenM.H. ShenY.L. KeeganP. PazdurR. FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme.Oncologist200914111131113810.1634/theoncologist.2009‑012119897538
    [Google Scholar]
  48. TawbiH.A. ForsythP.A. AlgaziA. HamidO. HodiF.S. MoschosS.J. KhushalaniN.I. LewisK. LaoC.D. PostowM.A. AtkinsM.B. ErnstoffM.S. ReardonD.A. PuzanovI. KudchadkarR.R. ThomasR.P. TarhiniA. PavlickA.C. JiangJ. AvilaA. DemeloS. MargolinK. Combined nivolumab and ipilimumab in melanoma metastatic to the brain.N. Engl. J. Med.2018379872273010.1056/NEJMoa180545330134131
    [Google Scholar]
  49. Merck Sharp & Dohme LLC Phase IB study of pembrolizumab (MK-3475) in subjects with select advanced solid tumors2021Available from: https://clinicaltrials.gov/ct2/show/NCT02054806 [cited 2023 Mar 9].
  50. SchalperK.A. Rodriguez-RuizM.E. Diez-ValleR. López-JaneiroA. PorciunculaA. IdoateM.A. InogésS. de AndreaC. López-Diaz de CerioA. TejadaS. BerraondoP. Villarroel-EspindolaF. ChoiJ. GúrpideA. GiraldezM. GoicoecheaI. Gallego Perez-LarrayaJ. SanmamedM.F. Perez-GraciaJ.L. MeleroI. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma.Nat. Med.201925347047610.1038/s41591‑018‑0339‑530742120
    [Google Scholar]
  51. SpiraA. HansenA.R. HarbW.A. CurtisK.K. Koga-YamakawaE. OriguchiM. LiZ. ErtikB. ShaibW.L. Multicenter, open-label, phase I study of DSP-7888 dosing emulsion in patients with advanced malignancies.Target. Oncol.202116446146910.1007/s11523‑021‑00813‑633939067
    [Google Scholar]
  52. CressD. VBI vaccines receives U.S. FDA orphan drug designation for VBI-1901 for the treatment of glioblastoma2022Available from: https://www.vbivaccines.com/press-releases/fda-orphan-drug-designation-vbi-1901-gbm/ [cited 2022 Dec 19].
  53. VBI-1901 Glioblastoma Cancer Vaccine.Available from: https://www.precisionvaccinations.com/vaccines/vbi-1901-glioblastoma-cancer-vaccine [cited 2023 Mar 11].
  54. SchuesslerA. SmithC. BeagleyL. BoyleG.M. RehanS. MatthewsK. JonesL. CroughT. DasariV. KleinK. SmalleyA. AlexanderH. WalkerD.G. KhannaR. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma.Cancer Res.201474133466347610.1158/0008‑5472.CAN‑14‑029624795429
    [Google Scholar]
  55. Vik-MoE.O. NyakasM. MikkelsenB.V. MoeM.C. Due-TønnesenP. SusoE.M.I. Sæbøe-LarssenS. SandbergC. BrinchmannJ.E. HelsethE. RasmussenA.M. LoteK. AamdalS. GaudernackG. KvalheimG. LangmoenI.A. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma.Cancer Immunol. Immunother.20136291499150910.1007/s00262‑013‑1453‑323817721
    [Google Scholar]
  56. GuarnacciaL. MarfiaG. MasseroliM.M. NavoneS.E. BalsamoM. CaroliM. ValtortaS. MorescoR.M. CampanellaR. GarziaE. RiboniL. LocatelliM. Frontiers in anti-cancer drug discovery: Challenges and perspectives of metformin as anti-angiogenic add-on therapy in glioblastoma.Cancers202114111210.3390/cancers1401011235008275
    [Google Scholar]
  57. SeligerC. GenbruggeE. GorliaT. ChinotO. StuppR. NaborsB. WellerM. HauP. EORTC Brain Tumor Group Use of metformin and outcome of patients with newly diagnosed glioblastoma: Pooled analysis.Int. J. Cancer2020146380380910.1002/ijc.3233730980539
    [Google Scholar]
  58. SaraeiP. AsadiI. KakarM.A. Moradi-KorN. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances.Cancer Manag. Res.2019113295331310.2147/CMAR.S20005931114366
    [Google Scholar]
  59. Szymczak-PajorI. WenclewskaS. ŚliwińskaA. Metabolic action of metformin.Pharmaceuticals202215781010.3390/ph1507081035890109
    [Google Scholar]
  60. SongY. ChenY. LiY. LyuX. CuiJ. ChengY. ZhaoL. ZhaoG. Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via Akt/mTOR/ZEB1 pathway.Oncotarget2018967023703510.18632/oncotarget.2331729467947
    [Google Scholar]
  61. WürthR. PattarozziA. GattiM. BajettoA. CorsaroA. ParodiA. SiritoR. MassolloM. MariniC. ZonaG. FenoglioD. SambucetiG. FilaciG. DagaA. BarbieriF. FlorioT. Metformin selectively affects human glioblastoma tumor-initiating cell viability.Cell Cycle201312114515610.4161/cc.2305023255107
    [Google Scholar]
  62. WangY. XuW. YanZ. ZhaoW. MiJ. LiJ. YanH. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways.J. Exp. Clin. Cancer Res.20183716310.1186/s13046‑018‑0731‑529554968
    [Google Scholar]
  63. BhattacharyaS. YinJ. YangC. WangY. SimsM. PfefferL.M. ChaumE. STAT3 suppresses the AMPKα/ULK1-dependent induction of autophagy in glioblastoma cells.J. Cell. Mol. Med.202226143873389010.1111/jcmm.1742135670018
    [Google Scholar]
  64. ZhangK. WangJ. WangJ. LuhF. LiuX. YangL. LiuY.R. SuL. YangY.S. ChuP. YenY. LKB1 deficiency promotes proliferation and invasion of glioblastoma through activation of mTOR and focal adhesion kinase signaling pathways.Am. J. Cancer Res.2019981650166331497348
    [Google Scholar]
  65. ShenoudaG. Metformin and neo-adjuvant temozolomide and hypofractionated accelerated limited-margin radiotherapy followed by adjuvant temozolomide in patients with glioblastoma multiforme (M-HARTT STUDY) 2022Available from: https://clinicaltrials.gov/ct2/show/NCT02780024 [cited 2022 Dec 15].
  66. CompterI. EekersD.B.P. HoebenA. RouschopK.M.A. ReymenB. AckermansL. BeckervordersantforthJ. BauerN.J.C. AntenM.M. WesselingP. PostmaA.A. De RuysscherD. LambinP. Chloroquine combined with concurrent radiotherapy and temozolomide for newly diagnosed glioblastoma: A phase IB trial.Autophagy20211792604261210.1080/15548627.2020.181634332866424
    [Google Scholar]
  67. DengQ. TaoS. HuangH. LvQ. WangW. Chloroquine supplementation for the treatment of glioblastoma: A meta-analysis of randomized controlled studies.Clin. Neuropharmacol.20234611510.1097/WNF.000000000000053336409625
    [Google Scholar]
  68. WeyerhäuserP. KantelhardtS.R. KimE.L. Re-purposing chloroquine for glioblastoma: Potential merits and confounding variables.Front. Oncol.2018833510.3389/fonc.2018.0033530211116
    [Google Scholar]
  69. MüllerA. WeyerhäuserP. BerteN. JoninF. LyubarskyyB. SprangB. KantelhardtS.R. SalinasG. OpitzL. Schulz-SchaefferW. GieseA. KimE.L. Concurrent activation of both survival-promoting and death-inducing signaling by chloroquine in glioblastoma stem cells: Implications for potential risks and benefits of using chloroquine as radiosensitizer.Cells2023129129010.3390/cells1209129037174691
    [Google Scholar]
  70. RongY. DurdenD.L. Van MeirE.G. BratD.J. ‘Pseudopalisading’ necrosis in glioblastoma: A familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis.J. Neuropathol. Exp. Neurol.200665652953910.1097/00005072‑200606000‑0000116783163
    [Google Scholar]
  71. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor | Scientific Report.Available from: https://www.nature.com/articles/s41598-020-72290-2 [cited 2022 Dec 28].
  72. ZielloJ.E. JovinI.S. HuangY. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia.Yale J. Biol. Med.2007802516018160990
    [Google Scholar]
  73. GabrielyG. WheelerM.A. TakenakaM.C. QuintanaF.J. Role of AHR and HIF-1α in glioblastoma metabolism.Trends Endocrinol. Metab.201728642843610.1016/j.tem.2017.02.00928318896
    [Google Scholar]
  74. LiZ. BaoS. WuQ. WangH. EylerC. SathornsumeteeS. ShiQ. CaoY. LathiaJ. McLendonR.E. HjelmelandA.B. RichJ.N. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells.Cancer Cell200915650151310.1016/j.ccr.2009.03.01819477429
    [Google Scholar]
  75. PerssonC.U. von StedingkK. FredlundE. BexellD. PåhlmanS. WigerupC. MohlinS. ARNT-dependent HIF-2 transcriptional activity is not sufficient to regulate downstream target genes in neuroblastoma.Exp. Cell Res.2020388211184510.1016/j.yexcr.2020.11184531945318
    [Google Scholar]
  76. RouxA. CaireF. GuyotatJ. MeneiP. MetellusP. PalludJ. Neuro-Oncology Club of the French Neurosurgical Society Carmustine wafer implantation for high-grade gliomas: Evidence-based safety efficacy and practical recommendations from the neuro-oncology club of the french society of neurosurgery.Neurochirurgie201763643344310.1016/j.neuchi.2017.07.00329122306
    [Google Scholar]
  77. ChaichanaK.L. ZaidiH. PendletonC. McGirtM.J. GrossmanR. WeingartJ.D. OliviA. Quiñones-HinojosaA. BremH. The efficacy of carmustine wafers for older patients with glioblastoma multiforme: Prolonging survival.Neurol. Res.201133775976410.1179/1743132811Y.000000000621756557
    [Google Scholar]
  78. WellerM. Le RhunE. How did lomustine become standard of care in recurrent glioblastoma?Cancer Treat. Rev.20208710202910.1016/j.ctrv.2020.10202932408220
    [Google Scholar]
  79. WickW. GorliaT. BendszusM. TaphoornM. SahmF. HartingI. BrandesA.A. TaalW. DomontJ. IdbaihA. CamponeM. ClementP.M. StuppR. FabbroM. Le RhunE. DuboisF. WellerM. von DeimlingA. GolfinopoulosV. BrombergJ.C. PlattenM. KleinM. van den BentM.J. Lomustine and bevacizumab in progressive glioblastoma.N. Engl. J. Med.2017377201954196310.1056/NEJMoa170735829141164
    [Google Scholar]
  80. FianiB. CovarrubiasC. OnyedimmaC. JarrahR. Neurocytological advances in the treatment of glioblastoma multiforme.Cureus2021137e1630110.7759/cureus.1630134405064
    [Google Scholar]
  81. Jiménez-AlcázarM. Curiel-GarcíaÁ. NogalesP. Perales-PatónJ. SchuhmacherA.J. Galán-GangaM. ZhuL. LoweS.W. Al-ShahrourF. SquatritoM. Dianhydrogalactitol overcomes multiple temozolomide resistance mechanisms in glioblastoma.Mol. Cancer Ther.20212061029103810.1158/1535‑7163.MCT‑20‑031933846235
    [Google Scholar]
  82. GolebiewskaA. HauA.C. OudinA. StieberD. YaboY.A. BausV. BarthelemyV. KleinE. BougnaudS. KeunenO. WantzM. MichelucciA. NeirinckxV. MullerA. KaomaT. NazarovP.V. AzuajeF. De FalcoA. FliesB. RichartL. PoovathingalS. ArnsT. GrzybK. MockA. Herold-MendeC. SteinoA. BrownD. MayP. MileticH. MaltaT.M. NoushmehrH. KwonY.J. JahnW. KlinkB. TannerG. SteadL.F. MittelbronnM. SkupinA. HertelF. BjerkvigR. NiclouS.P. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology.Acta Neuropathol.2020140691994910.1007/s00401‑020‑02226‑733009951
    [Google Scholar]
  83. LevinV.A. DoveM.A.F. MarotenC.E. Dianhydrogalactitol (NSC-132313): Pharmacokinetics in normal and tumor-bearing rat brain and antitumor activity against three intracerebral rodent tumors.J. Natl. Cancer Inst.197656353553910.1093/jnci/56.3.5351255783
    [Google Scholar]
  84. WangW. HeH. Marín-RamosN.I. ZengS. SwensonS.D. ChoH.Y. FuJ. BeringerP.M. NemanJ. ChenL. SchönthalA.H. ChenT.C. Enhanced brain delivery and therapeutic activity of trastuzumab after blood-brain barrier opening by NEO100 in mouse models of brain-metastatic breast cancer.Neuro-oncol.202123101656166710.1093/neuonc/noab04133659980
    [Google Scholar]
  85. MengL. LiuB. JiR. JiangX. YanX. XinY. Targeting the BDNF/TrkB pathway for the treatment of tumors.Oncol. Lett.20191722031203930675270
    [Google Scholar]
  86. Colucci-D’AmatoL. SperanzaL. VolpicelliF. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer.Int. J. Mol. Sci.20202120777710.3390/ijms2120777733096634
    [Google Scholar]
  87. LawnS. KrishnaN. PisklakovaA. QuX. FenstermacherD.A. FournierM. VrionisF.D. TranN. ChanJ.A. KenchappaR.S. ForsythP.A. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells.J. Biol. Chem.201529063814382410.1074/jbc.M114.59937325538243
    [Google Scholar]
  88. HwangJ.J. ParkM.H. ChoiS.Y. KohJ.Y. Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases.J. Biol. Chem.200528012119951200110.1074/jbc.M40317220015659400
    [Google Scholar]
  89. KojadinovicA. LaderianB. MundiP.S. Targeting TRK: A fast-tracked application of precision oncology and future directions.Crit. Rev. Oncol. Hematol.202116510345110.1016/j.critrevonc.2021.10345134389458
    [Google Scholar]
  90. ArdiniE. MenichincheriM. BanfiP. BosottiR. De PontiC. PulciR. BallinariD. CiomeiM. TexidoG. DegrassiA. AvanziN. AmboldiN. SaccardoM.B. CaseroD. OrsiniP. BandieraT. MologniL. AndersonD. WeiG. HarrisJ. VernierJ.M. LiG. FelderE. DonatiD. IsacchiA. PesentiE. MagnaghiP. GalvaniA. Entrectinib, a Pan–TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications.Mol. Cancer Ther.201615462863910.1158/1535‑7163.MCT‑15‑075826939704
    [Google Scholar]
  91. BurrisH.A. ShawA.T. BauerT.M. FaragoA.F. DoebeleR.C. SmithS. NandaN. CruickshankS. LowJ.A. BroseM.S. Abstract 4529: Pharmacokinetics (PK) of LOXO-101 during the first-in-human Phase I study in patients with advanced solid tumors: Interim update.Cancer Res.20157515_Supplement452910.1158/1538‑7445.AM2015‑4529
    [Google Scholar]
  92. DozF. van TilburgC.M. GeoergerB. HøjgaardM. ØraI. BoniV. CapraM. ChisholmJ. ChungH.C. DuBoisS.G. Gallego-MelconS. GerberN.U. GotoH. Grilley-OlsonJ.E. HansfordJ.R. HongD.S. ItalianoA. KangH.J. NysomK. ThorwarthA. StefanowiczJ. TaharaM. ZieglerD.S. GavrilovicI.T. NorenbergR. DimaL. De La CuestaE. LaetschT.W. DrilonA. PerreaultS. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors.Neuro-oncol.2022246997100710.1093/neuonc/noab27434850167
    [Google Scholar]
  93. AfonsoM. BritoM.A. Therapeutic options in neuro-oncology.Int. J. Mol. Sci.20222310535110.3390/ijms2310535135628161
    [Google Scholar]
  94. PalliniR. Ricci-VitianiL. MontanoN. MollinariC. BiffoniM. CenciT. PiercontiF. MartiniM. De MariaR. LaroccaL.M. Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis.Cancer2011117116217410.1002/cncr.2558120806346
    [Google Scholar]
  95. TalloaD. TriaricoS. AgrestiP. MastrangeloS. AttinàG. RomanoA. MauriziP. RuggieroA. BRAF and MEK targeted therapies in pediatric central nervous system tumors.Cancers20221417426410.3390/cancers1417426436077798
    [Google Scholar]
  96. ChengY. TianH. Current development status of MEK inhibitors.Molecules20172210155110.3390/molecules2210155128954413
    [Google Scholar]
  97. MunizT.P. MasonW.P. BRAF mutations in CNS tumors-prognostic markers and therapeutic targets.CNS Drugs202337758759810.1007/s40263‑023‑01016‑537268805
    [Google Scholar]
  98. BrogowskaK.K. ZajkowskaM. MroczkoB. Vascular endothelial growth factor ligands and receptors in breast cancer.J. Clin. Med.2023126241210.3390/jcm1206241236983412
    [Google Scholar]
  99. MahaseS. RattenniR.N. WesselingP. LeendersW. BaldottoC. JainR. ZagzagD. Hypoxia-mediated mechanisms associated with antiangiogenic treatment resistance in glioblastomas.Am. J. Pathol.2017187594095310.1016/j.ajpath.2017.01.01028284719
    [Google Scholar]
  100. Axitinib. In: LiverTox: Clinical and research information on drug-induced liver injuryBethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases2012Available from: http://www.ncbi.nlm.nih.gov/books/NBK548139/ [cited 2022 Dec 28].
    [Google Scholar]
  101. AwadaG. Ben SalamaL. De CremerJ. SchwarzeJ.K. FischbuchL. SeynaeveL. Du FourS. VanbinstA.M. MichotteA. EveraertH. RogiersA. TheunsP. DuerinckJ. NeynsB. Axitinib plus avelumab in the treatment of recurrent glioblastoma: A stratified, open-label, single-center phase 2 clinical trial (GliAvAx).J. Immunother. Cancer202082e00114610.1136/jitc‑2020‑00114633067319
    [Google Scholar]
  102. ZadehG. DarasM. CloughesyT.F. ColmanH. KumthekarP.U. ChenC.C. AikenR. GrovesM.D. OngS. RamakrishnaR. VogelbaumM.A. KhagiS. KaleyT. MelearJ.M. PeereboomD.M. RodriguezA. YankelevichM. NairS.G. PuduvalliV.K. NassiriF. SonabendA.M. AgenskyL. EwaldB. LevisettiM. LangF.F. LTBK-04. Phase 2 multicenter study of the oncolytic adenovirus dnx-2401 (TASADENOTUREV) in combination with pembrolizumab for recurrent glioblastoma; Captive study (KEYNOTE-192).Neuro-oncol.202022Suppl. 2ii23710.1093/neuonc/noaa215.989
    [Google Scholar]
  103. GhoraiA. MahaddalkarT. ThoratR. DuttS. Sustained inhibition of PARP-1 activity delays glioblastoma recurrence by enhancing radiation-induced senescence.Cancer Lett.2020490445310.1016/j.canlet.2020.06.02332645394
    [Google Scholar]
  104. XiangK. KalthoffC. MünchC. JendrossekV. MatschkeJ. Accumulation of oncometabolite D-2-Hydroxyglutarate by SLC25A1 inhibition: A metabolic strategy for induction of HR-ness and radiosensitivity.Cell Death Dis.202213764110.1038/s41419‑022‑05098‑935869047
    [Google Scholar]
  105. GuebleS.E. VasquezJ.C. BindraR.S. The role of PARP inhibitors in patients with primary malignant central nervous system tumors.Curr. Treat. Options Oncol.202223111566158910.1007/s11864‑022‑01024‑536242713
    [Google Scholar]
  106. MD JM A phase I/II study of pembrolizumab and M032 (NSC 733972), a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma2022Available from: https://clinicaltrials.gov/ct2/show/NCT05084430 [cited 2022 Dec 22].
  107. PengX. WangY. ZhangS. TaoZ. DaiY. ClaretF.X. ElkabetsM. LinH.W. ChenZ.S. KongD. Stellettin B renders glioblastoma vulnerable to poly (ADP-ribose) polymerase inhibitors via suppressing homology-directed repair.Signal Transduct. Target. Ther.20238111910.1038/s41392‑023‑01324‑836944633
    [Google Scholar]
  108. MattooA.R. JounA. JessupJ.M. Repurposing of mTOR complex inhibitors attenuates MCL-1 and sensitizes to PARP inhibition.Mol. Cancer Res.2019171425310.1158/1541‑7786.MCR‑18‑065030201826
    [Google Scholar]
  109. Nerviano Medical Sciences A phase I/II combination study of NMS-03305293 and temozolomide in adult patients with recurrent glioblastoma2022Available from: https://clinicaltrials.gov/ct2/show/NCT04910022 [cited 2023 Jun 6].
  110. WangX. GuoG. GuanH. YuY. LuJ. YuJ. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma.J. Exp. Clin. Cancer Res.20193818710.1186/s13046‑019‑1085‑330777100
    [Google Scholar]
  111. ReardonD.A. BrandesA.A. OmuroA. MulhollandP. LimM. WickA. BaehringJ. AhluwaliaM.S. RothP. BährO. PhuphanichS. SepulvedaJ.M. De SouzaP. SahebjamS. CarletonM. TatsuokaK. TaittC. ZwirtesR. SampsonJ. WellerM. Effect of nivolumab vs. bevacizumab in patients with recurrent glioblastoma.JAMA Oncol.2020671003101010.1001/jamaoncol.2020.102432437507
    [Google Scholar]
  112. NYU Langone Health A phase II, open-label, single arm trial of nivolumab, ipilimumab, and short-course radiotherapy in adults with newly diagnosed, MGMT unmethylated glioblastoma 2022Available from: https://clinicaltrials.gov/ct2/show/NCT03367715 [cited 2022 Dec 22].
  113. The oncolytic adenovirus DNX-2401 has antitumor activity in glioblastoma.Cancer Discov.20188438210.1158/2159‑8290
    [Google Scholar]
  114. LanzJ. Biniaz-HarrisN. KuvaldinaM. JainS. LewisK. FallonB.A. Disulfiram: Mechanisms, applications, and challenges.Antibiotics202312352410.3390/antibiotics1203052436978391
    [Google Scholar]
  115. HuangJ. ChaudharyR. CohenA.L. FinkK. GoldlustS. BoockvarJ. ChinnaiyanP. WanL. MarcusS. CampianJ.L. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma.J. Neurooncol.2019142353754410.1007/s11060‑019‑03125‑y30771200
    [Google Scholar]
  116. LiY. FuS.Y. WangL.H. WangF.Y. WangN.N. CaoQ. WangY.T. YangJ.Y. WuC.F. Copper improves the anti-angiogenic activity of disulfiram through the EGFR/Src/VEGF pathway in gliomas.Cancer Lett.20153691869610.1016/j.canlet.2015.07.02926254539
    [Google Scholar]
  117. WerleniusK. KinhultS. SolheimT.S. MagelssenH. LöfgrenD. MudaisiM. HylinS. BartekJ.Jr StrandéusM. LindskogM. RashidH.B. CarstamL. GulatiS. SolheimO. BartekJ. SalvesenO. JakolaA.S. Effect of disulfiram and copper plus chemotherapy vs. chemotherapy alone on survival in patients with recurrent glioblastoma.JAMA Netw. Open202363e23414910.1001/jamanetworkopen.2023.414937000452
    [Google Scholar]
  118. LunX. WellsJ.C. GrinshteinN. KingJ.C. HaoX. DangN.H. WangX. AmanA. UehlingD. DattiA. WranaJ.L. EasawJ.C. LuchmanA. WeissS. CairncrossJ.G. KaplanD.R. RobbinsS.M. SengerD.L. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma.Clin. Cancer Res.201622153860387510.1158/1078‑0432.CCR‑15‑179827006494
    [Google Scholar]
  119. LiuS. ShiW. ZhaoQ. ZhengZ. LiuZ. MengL. DongL. JiangX. Progress and prospect in tumor treating fields treatment of glioblastoma.Biomed. Pharmacother.202114111181010.1016/j.biopha.2021.11181034214730
    [Google Scholar]
  120. LiuD. YangT. MaW. WangY. Clinical strategies to manage adult glioblastoma patients without MGMT hypermethylation.J. Cancer202213135436310.7150/jca.6359534976195
    [Google Scholar]
  121. StuppR. TaillibertS. KannerA. ReadW. SteinbergD.M. LhermitteB. TomsS. IdbaihA. AhluwaliaM.S. FinkK. Di MecoF. LiebermanF. ZhuJ.J. StragliottoG. TranD.D. BremS. HottingerA.F. KirsonE.D. Lavy-ShahafG. WeinbergU. KimC.Y. PaekS.H. NicholasG. BrunaJ. HirteH. WellerM. PaltiY. HegiM.E. RamZ. Effect of tumor-treating fields plus maintenance temozolomide vs. maintenance temozolomide alone on survival in patients with glioblastoma.JAMA2017318232306231610.1001/jama.2017.1871829260225
    [Google Scholar]
  122. AliA.S. LombardoJ. NiaziM.Z. MillerR.C. AlnahhasI. MartinezN.L. AndrewsD.W. JudyK.D. ShiW. Concurrent chemoradiation and tumor treating fields (TTFields, 200 kHz) for patients with newly diagnosed glioblastoma: Patterns of progression in a single institution pilot study.J. Neurooncol.2022160234535010.1007/s11060‑022‑04146‑w36355259
    [Google Scholar]
  123. KesslerA.F. LinsenmannT. WestermaierT. WolberW. WeilandJ. MonoranuC.M. BreunM. HagemannC. ErnestusR.I. LöhrM. Complete radiological response following subtotal resection in three glioblastoma patients under treatment with tumor treating fields.Oncol. Lett.202019155756131897171
    [Google Scholar]
  124. DingY. WangQ. WangF. WuN. LiJ. HeX. PanH. WangL. TTFields prolonged the PFS of epithelioid glioblastoma patient: A case report.Brain Sci.202313463310.3390/brainsci1304063337190598
    [Google Scholar]
  125. MillerR. NiaziM. RussialO. PoisetS. ShiW. Tumor treating fields with radiation for glioblastoma: A narrative review.Chin. Clin. Oncol.20221154010.21037/cco‑22‑9036336899
    [Google Scholar]
  126. SoteloJ. BriceñoE. López-GonzálezM.A. Adding chloroquine to conventional treatment for glioblastoma multiforme: A randomized, double-blind, placebo-controlled trial.Ann. Intern. Med.2006144533734310.7326/0003‑4819‑144‑5‑200603070‑0000816520474
    [Google Scholar]
  127. Avelumab First Approved Drug for Merkel Cell Carcinoma - NCI2017Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2017/avelumab-fda-merkel-cell [cited 2023 Apr 21].
  128. ReardonD.A. KimT.M. FrenelJ.S. SimonelliM. LopezJ. SubramaniamD.S. SiuL.L. WangH. KrishnanS. SteinK. MassardC. Treatment with pembrolizumab in programmed death ligand 1–positive recurrent glioblastoma: Results from the multicohort phase 1 KEYNOTE-028 trial.Cancer2021127101620162910.1002/cncr.3337833496357
    [Google Scholar]
  129. JacquesF.H. NicholasG. LorimerI.A.J. Sikati FokoV. PrevostJ. DumaisN. MilneK. NelsonB.H. WoulfeJ. JansenG. ApedaileB.E. Avelumab in newly diagnosed glioblastoma.Neurooncol. Adv.202131vdab11810.1093/noajnl/vdab11834604752
    [Google Scholar]
  130. ChenZ. GuoC. SYST-11 phase 2 study of VAL-083 and radiotherapy in newly diagnosed MGMT-unmethylated GBM.Neurooncol. Adv.20224Suppl. 1i2310.1093/noajnl/vdac078.090
    [Google Scholar]
  131. LiJ. LianZ.G. XuY.H. LiuR.Y. WeiZ.Q. LiT. LvH.T. ZhaoY.S. LiuY.J. DongB. FuX. Downregulation of nuclear protein-1 induces cell cycle arrest in G0/G1 phase in glioma cells in vivo and in vitro via P27.Neoplasma202067484385010.4149/neo_2020_190814N75932266819
    [Google Scholar]
  132. LiC. ChenB. ZhangJ. YangJ. GuoM. RenY. ZhouZ. FungK.M. LiM. ZhangL. LiuZ. SEM1 promotes tumor progression of glioblastoma via activating the Akt signaling pathway.Cancer Lett.202357721636810.1016/j.canlet.2023.21636837652287
    [Google Scholar]
  133. LiuA JiangB SongC ZhongQ MoY YangR. Isoliquiritigenin inhibits circ0030018 to suppress glioma tumorigenesis via the miR-1236/HER2 signaling pathwayMedComm 202043e282
    [Google Scholar]
  134. StuppR. MasonW.P. van den BentM.J. WellerM. FisherB. TaphoornM.J.B. BelangerK. BrandesA.A. MarosiC. BogdahnU. CurschmannJ. JanzerR.C. LudwinS.K. GorliaT. AllgeierA. LacombeD. CairncrossJ.G. EisenhauerE. MirimanoffR.O. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups National Cancer Institute of Canada Clinical Trials Group Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N. Engl. J. Med.20053521098799610.1056/NEJMoa04333015758009
    [Google Scholar]
  135. M.D. Anderson Cancer Center Phase I/II study to evaluate the safety and clinical efficacy of atezolizumab (aPDL1) in combination with temozolomide and radiation in patients with newly diagnosed glioblastoma (GBM)2022Available from: https://clinicaltrials.gov/ct2/show/NCT03174197 [cited 2023 Apr 6].
  136. WesolowskiJ.R. RajdevP. MukherjiS.K. Temozolomide (Temodar).AJNR Am. J. Neuroradiol.20103181383138410.3174/ajnr.A217020538821
    [Google Scholar]
  137. Trametinib, Chapter: Recent results cancer research.201420124124810.1007/978‑3‑642‑54490‑3_1524756797
    [Google Scholar]
  138. Aggarwal, S.; Corporation, K. Kadmon Corporation; LLC 450 East 29th Street New York, NY 10016., 2019.
  139. Awada , G.; Ben Salama, L.; De Cremer , J.; Schwarze , JK.; Fischbuch L.; Seynaeve , L,; Du Four , S.; Vanbinst , AM.; Michotte , A.; Everaert , H.; Rogiers , A.; Theuns , P.; Duerinck .; J, Neyns , B.. Axitinib plus avelumab in the treatment of recurrent glioblastoma: a stratified, open-label, single-center phase 2 clinical trial (GliAvAx). J. Immunother. Cancer, 2020, 8(2):e001146.10.1136/jitc‑2020‑00114633067319PMC7570224
  140. YoussefG. DietrichJ. Ipilimumab: An investigational immunotherapy for glioblastoma.Expert Opin. Investig. Drugs202029111187119310.1080/13543784.2020.182643632945231
    [Google Scholar]
  141. Sidney kimmel comprehensive cancer center at johns hopkins. Single-arm, Open-label phase ii efficacy study of first-in-class HIF-2 alpha inhibitor, PT2385, for patients with recurrent glioblastoma2022Available from: https://clinicaltrials.gov/ct2/show/study/NCT03216499 [cited 2022 Dec 15].
    [Google Scholar]
  142. M.D. Anderson Cancer Center A phase I/II clinical trial of autologous CMV-specific cytotoxic T cells for GBM patients2022Available from: https://clinicaltrials.gov/ct2/show/study/NCT02661282 [cited 2022 Dec 15].
  143. SuginobeN. NakamuraM. TakanashiY. BanH. GotohM. Mechanism of action of DSP-7888 (adegramotide/nelatimotide) Emulsion, a peptide-based therapeutic cancer vaccine with the potential to turn up the heat on non-immunoreactive tumors.Clin. Transl. Oncol.202225239640710.1007/s12094‑022‑02946‑036138335
    [Google Scholar]
  144. Inc Dna DNAtrix announces positive data from phase 2 CAPTIVE (KEYNOTE-192) study with DNX-2401 in patients with recurrent glioblastoma highlighted in an oral late-breaking presentation during society for neuro-oncology (SNO) annual 2022. Available from: https://www.prnewswire.com/news-releases/dnatrix-announces-positive-data-from-phase-2-captive-keynote-192-study-with-dnx-2401-in-patients-with-recurrent-glioblastoma-highlighted-in-an-oral-late-breaking-presentation-during-society-for-neuro-oncology-sno-annual-meetin-301178137.html [cited 2022 Dec 18].
  145. SenerU. RuffM.W. CampianJ.L. Immunotherapy in glioblastoma: Current approaches and future perspectives.Int. J. Mol. Sci.20222313704610.3390/ijms2313704635806051
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673281283240101053940
Loading
/content/journals/cmc/10.2174/0109298673281283240101053940
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test