Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The aim of this review was to examine the literature regarding younger individuals without classical risk factors for atherosclerosis who develop coronary artery disease (CAD) prematurely at an early age. An extensive literature review was undertaken in Pubmed, Scopus, and Google Scholar regarding early-onset or premature atherosclerosis, CAD, its diagnosis, management, and prophylaxis. There are individuals of both genders, particularly in the younger age group of 20-40 years of age, who lack the traditional/classical risk factors and still develop CAD and other manifestations of atherosclerosis. Even the 10-year age gap in manifesting CAD that is noted between women and men ascribable to a cardioprotective effect of sex hormones may not be noted under these circumstances. This indicates that the risk profile differs in young patients with non-classical atherosclerotic risk factors, and factors such as genetics, inflammation, thrombosis, psychosocial, environmental, and other parameters play an important role in atherosclerosis and other mechanisms that lead to CAD in younger individuals. These patients are at risk of major adverse cardiac events, which determine their prognosis. Unfortunately, current major guidelines do not acknowledge that many patients who manifest premature CAD are at high risk, and as a consequence, many of these patients may not be receiving guideline-directed hypolipidemic and other therapies before they present with symptoms of CAD. Caretakers need to be more vigilant in offering efficacious screening and strategies of prevention for early-onset or premature CAD to younger individuals.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673303891240528114755
2024-06-04
2025-07-10
Loading full text...

Full text loading...

References

  1. TsaoC.W. AdayA.W. AlmarzooqZ.I. AndersonC.A.M. AroraP. AveryC.L. SmithB.C.M. BeatonA.Z. BoehmeA.K. BuxtonA.E. MensahC.Y. ElkindM.S.V. EvensonK.R. NliamE.C. FugarS. GenerosoG. HeardD.G. HiremathS. HoJ.E. KalaniR. KaziD.S. KoD. LevineD.A. LiuJ. MaJ. MagnaniJ.W. MichosE.D. MussolinoM.E. NavaneethanS.D. ParikhN.I. PoudelR. HannaR.M. RothG.A. ShahN.S. OngeS.M.P. ThackerE.L. ViraniS.S. VoeksJ.H. WangN.Y. WongN.D. WongS.S. YaffeK. MartinS.S. Heart disease and stroke statistics-2023 update: A report from the american heart association.Circulation20231478e93e62110.1161/CIR.000000000000112336695182
    [Google Scholar]
  2. MartinS.S. AdayA.W. AlmarzooqZ.I. AndersonC.A.M. AroraP. AveryC.L. SmithB.C.M. GibbsB.B. BeatonA.Z. BoehmeA.K. MensahC.Y. CurrieM.E. ElkindM.S.V. EvensonK.R. GenerosoG. HeardD.G. HiremathS. JohansenM.C. KalaniR. KaziD.S. KoD. LiuJ. MagnaniJ.W. MichosE.D. MussolinoM.E. NavaneethanS.D. ParikhN.I. PermanS.M. PoudelR. HannaR.M. RothG.A. ShahN.S. OngeS.M.P. ThackerE.L. TsaoC.W. UrbutS.M. Van SpallH.G.C. VoeksJ.H. WangN.Y. WongN.D. WongS.S. YaffeK. PalaniappanL.P. 2024 Heart disease and stroke statistics: a report of US and global data from the american heart association.Circulation20241498e347e91310.1161/CIR.000000000000120938264914
    [Google Scholar]
  3. KryczkaK.E. KrukM. DemkowM. LubiszewskaB. Fibrinogen and a triad of thrombosis, inflammation, and the renin-angiotensin system in premature coronary artery disease in women: a new insight into sx-related differences in the pathogenesis of the disease.Biomolecules2021117103610.3390/biom1107103634356659
    [Google Scholar]
  4. FallahzadehA. MehrabanS. MahmoodiT. SheikhyA. NaderianM. AeinA.P. RafieeH. MehraniM. TajdiniM. Masoud-KabirF. Risk factor profile and outcomes of premature acute coronary syndrome after percutaneous coronary intervention: A 1-year prospective design.Clin. Cardiol.2023471e2417010.1002/clc.2417037818995
    [Google Scholar]
  5. OleaG.A. ElorriagaA. ArreguiA. MendozaP. AndrésA. SáezR. Premature acute myocardial infarction with ST segment elevation: A cohort study in the 2012-2022 decade.Arch. Cardiol. Mex.202393444245010.24875/ACM.2200027837972359
    [Google Scholar]
  6. VikulovaD.N. SkorniakovI.S. BitoiuB. BrownC. ThebergeE. FordyceC.B. FrancisG.A. HumphriesK.H. ManciniG.B.J. PimstoneS.N. BrunhamL.R. Lipid-lowering therapy for primary prevention of premature atherosclerotic coronary artery disease: Eligibility, utilization, target achievement, and predictors of initiation.Am. J. Preven. Cardiol.2020210003610.1016/j.ajpc.2020.10003634327459
    [Google Scholar]
  7. Menezes FernandesR. MotaT. CostaH. BispoJ. AzevedoP. BentoD. GuedesJ. CarvalhoD. MarquesN. SantosW. MimosoJ. de JesusI. Portuguese Registry of Acute Coronary Syndromes (ProACS) investigators Premature acute coronary syndrome: understanding the early onset.Coron. Artery Dis.202233645646410.1097/MCA.000000000000114135190516
    [Google Scholar]
  8. ShahN.S. NingH. PetitoL.C. KershawK.N. BancksM.P. ReisJ.P. RanaJ.S. SidneyS. JacobsD.R.Jr KiefeC.I. CarnethonM.R. Lloyd-JonesD.M. AllenN.B. KhanS.S. Associations of clinical and social risk factors with racial differences in premature cardiovascular disease.Circulation2022146320121010.1161/CIRCULATIONAHA.121.05831135607988
    [Google Scholar]
  9. KianoushS. RifaiM.A. JainV. SamadZ. RanaJ. DodaniS. JiaX. LeeM. KhanS.U. GuptaK. LavieC.J. WongS.S. PallaA.H. ViraniS. Prevalence and predictors of premature coronary heart disease among asians in the united states: a national health interview survey study.Curr. Probl. Cardiol.202348710115210.1016/j.cpcardiol.2022.10115235231531
    [Google Scholar]
  10. BugiardiniR. CenkoE. YoonJ. BergamiM. VasiljevicZ. MendietaG. ZdravkovicM. VavlukisM. KedevS. MiličićD. BadimonL. ManfriniO. Traditional risk factors and premature acute coronary syndromes in South Eastern Europe: a multinational cohort study.Lancet Reg. Health Eur.20243810082410.1016/j.lanepe.2023.10082438476741
    [Google Scholar]
  11. DobrowolskiP. KabatM. KępkaC. JanuszewiczA. PrejbiszA. Atherosclerotic cardiovascular disease burden in patients with familial hypercholesterolemia: Interpretation of data on involvement of different vascular beds.Polish Arch. Inter. Med.202213241624810.20452/pamw.1624835485652
    [Google Scholar]
  12. CuchelM. LeeP.C. HudginsL.C. DuellP.B. AhmadZ. BaumS.J. LintonM.F. de FerrantiS.D. BallantyneC.M. LarryJ.A. HemphillL.C. KindtI. GiddingS.S. MartinS.S. MoriartyP.M. ThompsonP.P. UnderbergJ.A. GuytonJ.R. AndersenR.L. WhellanD.J. BenuckI. KaneJ.P. MyersK. HowardW. StaszakD. JamisonA. CardM.C. BourbonM. ChoraJ.R. RaderD.J. KnowlesJ.W. WilemonK. McGowanM.P. Contemporary homozygous familial hypercholesterolemia in the united states: insights from the CASCADE FH registry.J. Am. Heart Assoc.2023129e02917510.1161/JAHA.122.02917537119068
    [Google Scholar]
  13. KolovouG. MikhailidisD. AnagnostopoulouK. DaskalopoulouS. CokkinosD. Tangier disease four decades of research: A reflection of the importance of HDL.Curr. Med. Chem.200613777178210.2174/09298670677605558016611066
    [Google Scholar]
  14. BonilhaI. LuchiariB. NadruzW. SpositoA.C. Very low HDL levels: Clinical assessment and management.Arch. Endocrinol. Metab.202367131810.20945/2359‑399700000058536651718
    [Google Scholar]
  15. SchaeferE.J. AnthanontP. DiffenderferM.R. PoliseckiE. AsztalosB.F. Diagnosis and treatment of high density lipoprotein deficiency.Prog. Cardiovasc. Dis.20165929710610.1016/j.pcad.2016.08.00627565770
    [Google Scholar]
  16. KawK. ChattopadhyayA. GuanP. ChenJ. MajumderS. DuanX. MaS. ZhangC. KwartlerC.S. MilewiczD.M. Smooth muscle α-actin missense variant promotes atherosclerosis through modulation of intracellular cholesterol in smooth muscle cells.Eur. Heart J.202344292713272610.1093/eurheartj/ehad37337377039
    [Google Scholar]
  17. WuT.T. ZhengY.Y. MaX. XiuW.J. YangH.T. HouX.G. YangY. ChenY. MaY.T. XieX. Mutated CYP17A1 promotes atherosclerosis and early-onset coronary artery disease.Cell Commun. Signal.202321115510.1186/s12964‑023‑01061‑z37370070
    [Google Scholar]
  18. LaliR. CuiE. AnsarikaleibariA. PigeyreM. ParéG. Genetics of early-onset coronary artery disease.Curr. Opin. Cardiol.201934670671310.1097/HCO.000000000000067631436558
    [Google Scholar]
  19. KryczkaK.E. PłoskiR. KsiężyckaE. KrukM. KostrzewaG. KowalikI. DemkowM. LubiszewskaB. The association between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and the plasma fibrinogen level in women and men with premature coronary artery atherosclerosis.Polish Arch. Inter. Med.2020130974875610.20452/pamw.1546132584014
    [Google Scholar]
  20. ColeC.B. NikpayM. StewartA.F.R. McPhersonR. Increased genetic risk for obesity in premature coronary artery disease.Eur. J. Hum. Genet.201624458759110.1038/ejhg.2015.16226220701
    [Google Scholar]
  21. RayganiV.A. GhaneialvarH. RahimiZ. NomaniH. SaidiM. BahrehmandF. RayganiV.A. TavilaniH. PourmotabbedT. The angiotensin converting enzyme D allele is an independent risk factor for early onset coronary artery disease.Clin. Biochem.201043151189119410.1016/j.clinbiochem.2010.07.01020655894
    [Google Scholar]
  22. RiadM. AdhikariP. BhattaraiS. GuptaA. AliE. AliM. MostafaJ.A. Risk assessment using the association between renin-angiotensin genes polymorphisms and coronary artery disease.Cureus2021133e1408310.7759/cureus.1408333907634
    [Google Scholar]
  23. ZintzarasE. RamanG. KitsiosG. LauJ. Angiotensin-converting enzyme insertion/deletion gene polymorphic variant as a marker of coronary artery disease: A meta-analysis.Arch. Intern. Med.2008168101077108910.1001/archinte.168.10.107718504336
    [Google Scholar]
  24. NiemiecP. ZakI. WitaK. The D allele of angiotensin I-converting enzyme gene insertion/deletion polymorphism is associated with the severity of atherosclerosis.Clin. Chem. Lab. Med.200846444645210.1515/CCLM.2008.10118298340
    [Google Scholar]
  25. ManolisA.S. ManolisA.A. ManolisT.A. MelitaH. Acute coronary syndromes in patients with angiographically normal or near normal (non-obstructive) coronary arteries.Trends Cardiovasc. Med.201828854155110.1016/j.tcm.2018.05.00629859655
    [Google Scholar]
  26. SmirnovaA. AlibertiF. CavaliereC. GattiI. VilardoV. GiorgianniC. CassaniC. RepettoA. NarulaN. GiulianiL. UrtisM. OzakiY. PratiF. ArbustiniE. FerrariM. Spontaneous coronary artery dissection: An unpredictable event.Eur. Heart J. Suppl.202325S BB7B1110.1093/eurheartjsupp/suad05937091648
    [Google Scholar]
  27. NangraharyM. GrahamD.F. PangJ. BarnettW. WattsG.F. Familial hypercholesterolaemia in pregnancy: Australian case series and review.Aust. N. Z. J. Obstet. Gynaecol.202363340240810.1111/ajo.1365736883608
    [Google Scholar]
  28. KhojaA. AndraweeraP.H. TavellaR. GillT.K. DekkerG.A. RobertsC.T. EdwardsS. ArstallM.A. Pregnancy complications are associated with premature coronary artery disease: linking three cohorts.J. Womens Health202332111208121810.1089/jwh.2023.023937815882
    [Google Scholar]
  29. CountourisM.E. KoczoA. ReynoldsH.R. HausvaterA. MannH. WangY. SharbaughD. ThomaF.W. MulukutlaS.R. CatovJ.M. Characteristics of premature myocardial infarction among women with prior adverse pregnancy outcomes.JACC: Advances20232510041110.1016/j.jacadv.2023.10041137694271
    [Google Scholar]
  30. TudurachiB.S. AnghelL. TudurachiA. SascăuR.A. StătescuC. Assessment of inflammatory hematological ratios (NLR, PLR, MLR, LMR and monocyte/HDL-cholesterol ratio) in acute myocardial infarction and particularities in young patients.Int. J. Mol. Sci.202324181437810.3390/ijms24181437837762680
    [Google Scholar]
  31. MahttaD. GuptaA. RamseyD.J. RifaiM.A. MehtaA. KrittanawongC. LeeM.T. NasirK. SamadZ. BlumenthalR.S. JneidH. BallantyneC.M. PetersenL.A. ViraniS.S. Autoimmune rheumatic diseases and premature atherosclerotic cardiovascular disease: an analysis from the VITAL registry.Am. J. Med.20201331214241432.e110.1016/j.amjmed.2020.05.02632598903
    [Google Scholar]
  32. BlachutD. ChowaniecP.B. TomasikA. KukulskiT. MorawiecB. Update of potential biomarkers in risk prediction and monitoring of atherosclerosis in systemic lupus erythematosus to prevent cardiovascular disease.Biomedicines20231110281410.3390/biomedicines1110281437893187
    [Google Scholar]
  33. RajR. ThomasS. GorantlaV. Accelerated atherosclerosis in rheumatoid arthritis: A systematic review.F1000 Res.20221146610.12688/f1000research.112921.136249997
    [Google Scholar]
  34. SchattnerA. The cardiovascular burden of rheumatoid arthritis – implications for treatment.Am. J. Med.2023136121143114610.1016/j.amjmed.2023.09.00437742851
    [Google Scholar]
  35. SoH. LamT.O. MengH. LamS.H.M. TamL.S. Time and dose-dependent effect of systemic glucocorticoids on major adverse cardiovascular event in patients with rheumatoid arthritis: A population-based study.Ann. Rheum. Dis.202382111387139310.1136/ard‑2023‑22418537487608
    [Google Scholar]
  36. SchmidtM. HallasJ. ErnstM.T. PottegårdA. Cardiovascular risks of continuing vs. initiating NSAIDs after first-time myocardial infarction or heart failure: A nationwide cohort study.Eur. Heart J. Cardiovasc. Pharmacother.20239656256910.1093/ehjcvp/pvad04737385823
    [Google Scholar]
  37. SchmidtM. SørensenH.T. PedersenL. Cardiovascular risks of diclofenac versus other older COX-2 inhibitors (meloxicam and etodolac) and newer COX-2 inhibitors (celecoxib and etoricoxib): A series of nationwide emulated trials.Drug Saf.202245998399410.1007/s40264‑022‑01211‑135909207
    [Google Scholar]
  38. BaakB.N. JickS.S. Non-steroidal anti-inflammatory drugs and risk of myocardial infarction adjusting for use of proton pump-inhibitors in patients with no major risk factors: A nested case-control study in the UK Clinical Practice Research Datalink.Eur. Heart J. Cardiovasc. Pharmacother.202291587510.1093/ehjcvp/pvac04135876661
    [Google Scholar]
  39. ManolisA. A. ManolisT. A. MelitaH. KatsikiN. ManolisA. S. Proton pump inhibitors and cardiovascular adverse effects: Real or surreal worries?Eur. J. Intern. Med.202072152610.1016/j.ejim.2019.11.017
    [Google Scholar]
  40. MourouzisI.S. ManolisA.S. PantosC. Cardiovascular risk of synthetic, non-biologic disease-modifying antirheumatic drugs (DMARDs).Curr. Vasc. Pharmacol.202018545546210.2174/157016111766619093011383731566134
    [Google Scholar]
  41. NairS. KahlonS.S. SikandarR. PeddemulA. TejovathS. HassanD. PatelK.K. MostafaJ.A. Tumor necrosis factor-alpha inhibitors and cardiovascular risk in rheumatoid arthritis: a systematic review.Cureus2022146e2643010.7759/cureus.2643035915691
    [Google Scholar]
  42. PieringerH. PichlerM. PohankaE. HoppeU. Will antirheumatic treatment improve cardiovascular outcomes in patients with rheumatoid arthritis?Curr. Pharm. Des.201420448649510.2174/1381612811319999071223565635
    [Google Scholar]
  43. HuangY. AgarwalS.K. ChatterjeeS. ChenH. JohnsonM.L. AparasuR.R. Risk of incident cardiovascular events with disease-modifying anti-rheumatic drugs among adults with rheumatoid arthritis: A nested case-control study.Clin. Rheumatol.202343110311610.1007/s10067‑023‑06709‑237540382
    [Google Scholar]
  44. LiZ. LinC. CaiX. HuS. LvF. YangW. ZhuX. JiL. Anti-inflammatory therapies were associated with reduced risk of myocardial infarction in patients with established cardiovascular disease or high cardiovascular risks: A systematic review and meta-analysis of randomized controlled trials.Atherosclerosis202337911718110.1016/j.atherosclerosis.2023.06.97237527612
    [Google Scholar]
  45. NewburgerJ.W. Kawasaki disease: State of the art.Congenit. Heart Dis.201712563363510.1111/chd.1249828580712
    [Google Scholar]
  46. KuoH.C. Diagnosis, progress, and treatment update of kawasaki disease.Int. J. Mol. Sci.202324181394810.3390/ijms24181394837762250
    [Google Scholar]
  47. LianzaA.C. DinizF.R.D.M. SawamuraK.S.S. MenezesC.R.B. SilvaI.S.L. LealG.N. Kawasaki disease: A never-ending story?Eur. Cardiol.202318e4710.15420/ecr.2023.1537546182
    [Google Scholar]
  48. ManolisA.S. ManolisA.A. ManolisT.A. MelitaH. COVID-19 and acute myocardial injury and infarction: related mechanisms and emerging challenges.J. Cardiovasc. Pharmacol. Ther.202126539941410.1177/1074248421101102633949887
    [Google Scholar]
  49. ManolisA.S. ManolisT.A. ManolisA.A. MelitaH. Cardiovascular implications and complications of the coronavirus disease-2019 pandemic: A world upside down.Curr. Opin. Cardiol.202136224125110.1097/HCO.000000000000083833395080
    [Google Scholar]
  50. ManolisA.S. ManolisT.A. ManolisA.A. PapatheouD. MelitaH. COVID-19 infection: viral macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management.J. Cardiovasc. Pharmacol. Ther.2021261122410.1177/107424842095897332924567
    [Google Scholar]
  51. GaoY.P. ZhouW. HuangP.N. LiuH.Y. BiX.J. ZhuY. SunJ. TangQ.Y. LiL. ZhangJ. ZhuW.H. ChengX.Q. LiuY.N. DengY.B. Persistent endothelial dysfunction in coronavirus disease-2019 survivors late after recovery.Front. Med.2022980903310.3389/fmed.2022.80903335237624
    [Google Scholar]
  52. MahmoudE.O. ElsabaghY.A. GhaffarA.E.N. FawzyM.W. HusseinM.A. Atherosclerosis associated with COVID-19: acute, tends to severely involve peripheral arteries, and may be reversible.Angiology2025761778410.1177/0003319723119825337611951
    [Google Scholar]
  53. WarhadpandeM. SainzK. JacobsonM.S. Effects of the COVID-19 pandemic on pediatric and adolescent ASCVD risk factors.Curr. Atheroscler. Rep.202325959159610.1007/s11883‑023‑01130‑137470956
    [Google Scholar]
  54. TangorraS.M. AnhaltH. TenS. Growth hormone and premature atherosclerosis in childhood obesity.J. Pediatr. Endocrinol. Metab.200619445546610.1515/jpem‑2006‑19040216759030
    [Google Scholar]
  55. ParolinM. DassieF. MartiniC. MioniR. RussoL. FalloF. RossatoM. VettorR. MaffeiP. PaganoC. Preclinical markers of atherosclerosis in acromegaly: A systematic review and meta-analysis.Pituitary201821665366210.1007/s11102‑018‑0911‑530225826
    [Google Scholar]
  56. WoltersT.L.C. NeteaM.G. RiksenN.P. HermusA.R.M.M. MaierN.R.T. Acromegaly, inflammation and cardiovascular disease: A review.Rev. Endocr. Metab. Disord.202021454756810.1007/s11154‑020‑09560‑x32458292
    [Google Scholar]
  57. HepprichM. EbrahimiF. ChristE. Dyslipidaemia and growth hormone deficiency–A comprehensive review.Best Pract. Res. Clin. Endocrinol. Metab.202337610182110.1016/j.beem.2023.10182137821339
    [Google Scholar]
  58. LvS. LiuW. ZhouY. LiuY. ShiD. ZhaoY. LiuX. Hyperuricemia and smoking in young adults suspected of coronary artery disease ≤ 35 years of age: A hospital-based observational study.BMC Cardiovasc. Disord.201818117810.1186/s12872‑018‑0910‑530170547
    [Google Scholar]
  59. ZiaeeS. HosseindokhtM. CheraghiS. PourgholiL. AhmadiA. SadeghianS. AbbasiS.H. DavarpasandT. BoroumandM. Predictive inflammation-related microRNAs for cardiovascular events following early-onset coronary artery disease.Arch. Med. Res.2021521697510.1016/j.arcmed.2020.10.00433261889
    [Google Scholar]
  60. CrooijmansJ. SinghS. NaqshbandM. BruikmanC.S. SietsmaP.S.J. Premature atherosclerosis: An analysis over 39 years in the Netherlands. Implications for young individuals in high-risk families.Atherosclerosis202338411726710.1016/j.atherosclerosis.2023.11726737758605
    [Google Scholar]
  61. AchiricaC.M. AcquahI. DardariZ. MszarR. GreenlandP. BlanksteinR. BittencourtM. RajagopalanS. Al-KindiS.G. PolakJ.F. BlumenthalR.S. BlahaM.J. NasirK. Long-term prognostic implications and role of further testing in adults aged ≤55 years with a coronary calcium score of zero (from the multi-ethnic study of atherosclerosis).Am. J. Cardiol.2021161263510.1016/j.amjcard.2021.08.06734794615
    [Google Scholar]
  62. GiudiceD.E. DililloA. TrombaL. La TorreG. BlasiS. ContiF. ViolaF. CucchiaraS. DuseM. Aortic, carotid intima-media thickness and flow-mediated dilation as markers of early atherosclerosis in a cohort of pediatric patients with rheumatic diseases.Clin. Rheumatol.20183761675168210.1007/s10067‑017‑3705‑729022136
    [Google Scholar]
  63. SouzaE.G. De LorenzoA. HugueninG. OliveiraG.M.M. TibiriçáE. Impairment of systemic microvascular endothelial and smooth muscle function in individuals with early-onset coronary artery disease.Coron. Artery Dis.2014251232810.1097/MCA.000000000000005524172594
    [Google Scholar]
  64. ShukorM.F.A. MusthafaQ.A. Mohd YusofY.A. Wan NgahW.Z. IsmailN.A.S. Biomarkers for premature coronary artery disease (PCAD): a case control study.Diagnostics202313218810.3390/diagnostics1302018836672997
    [Google Scholar]
  65. ZhaoX. ZhangH.W. XuR.X. GuoY.L. ZhuC.G. WuN.Q. GaoY. LiJ.J. Oxidized-LDL is a useful marker for predicting the very early coronary artery disease and cardiovascular outcomes.Per. Med.201815652152910.2217/pme‑2018‑004630362886
    [Google Scholar]
  66. AghajaniH.M. TolouiA. AhmadzadehK. NeishabooriM.A. YousefifardM. Premature coronary artery disease and plasma levels of interleukins; a systematic scoping review and meta-analysis.Arch. Acad. Emerg. Med.2022101e5110.22037/aaem.v10i1.160536033992
    [Google Scholar]
  67. GaoJ. YangY.N. CuiZ. FengS.Y. MaJ. LiC.P. LiuY. Pcsk9 is associated with severity of coronary artery lesions in male patients with premature myocardial infarction.Lipids Health Dis.20212015610.1186/s12944‑021‑01478‑w34044829
    [Google Scholar]
  68. DergunovaL.V. VinogradinaM.A. FilippenkovI.B. LimborskaS.A. DergunovA.D. Circular RNAs variously participate in coronary atherogenesis.Curr. Issues Mol. Biol.20234586682670010.3390/cimb4508042237623241
    [Google Scholar]
  69. SurmaS. BanachM. Fibrinogen and atherosclerotic cardiovascular diseases-review of the literature and clinical studies.Int. J. Mol. Sci.202123119310.3390/ijms2301019335008616
    [Google Scholar]
  70. PeyronnelC. TotosonP. MartinH. DemougeotC. Relevance of circulating markers of endothelial activation for cardiovascular risk assessment in rheumatoid arthritis: A narrative review.Life Sci.202331412126410.1016/j.lfs.2022.12126436470540
    [Google Scholar]
  71. KaranchiH. WyneK. Familial Hypercholesterolemia, Type 2A. StatPearls, StatPearls Publishing CopyrightStatPearls Publishing LLC202319(3), 59-61.
    [Google Scholar]
  72. PangJ. PoulterE.B. BellD.A. BatesT.R. JeffersonV.L. HillisG.S. SchultzC.J. WattsG.F. Frequency of familial hypercholesterolemia in patients with early-onset coronary artery disease admitted to a coronary care unit.J. Clin. Lipidol.20159570370810.1016/j.jacl.2015.07.00526350818
    [Google Scholar]
  73. NazliS.A. ChuaY.A. KasimM.N.A. IsmailZ. RadziM.A.B. IbrahimK.S. KasimS.S. RosmanA. NawawiH. Familial hypercholesterolaemia and coronary risk factors among patients with angiogram-proven premature coronary artery disease in an Asian cohort.PLoS One2022179e027389610.1371/journal.pone.027389636054188
    [Google Scholar]
  74. PederivaC. CapraM.E. ViggianoC. RovelliV. BanderaliG. BiasucciG. Early prevention of atherosclerosis: detection and management of hypercholesterolaemia in children and adolescents.Life202111434510.3390/life1104034533919973
    [Google Scholar]
  75. MelitaH. ManolisA.A. ManolisT.A. ManolisA.S. Lipoprotein(a) and cardiovascular disease: a missing link for premature atherosclerotic heart disease and/or residual risk.J. Cardiovasc. Pharmacol.2022791e18e3510.1097/FJC.000000000000116034694242
    [Google Scholar]
  76. StătescuC. AnghelL. BencheaL.C. TudurachiB.S. LeonteA. ZăvoiA. ZotaI.M. PrisacariuC. RaduR. ȘerbanI.L. SascăuR.A. A systematic review on the risk modulators of myocardial infarction in the “young”-implications of lipoprotein (a).Int. J. Mol. Sci.2023246592710.3390/ijms2406592736983001
    [Google Scholar]
  77. PapathanasiouK.A. KazantzisD. RallidisL.S. Lipoprotein(a) is associated with premature coronary artery disease: A meta-analysis.Coron. Artery Dis.202334422723510.1097/MCA.000000000000123337102228
    [Google Scholar]
  78. KozuchowskaP.E. KrawiecP. GrywalskaE. Selected risk factors for atherosclerosis in children and their parents with positive family history of premature cardiovascular diseases: A prospective study.BMC Pediatr.201818112310.1186/s12887‑018‑1102‑229615006
    [Google Scholar]
  79. MusthafaQ.A. ShukorA.M.F. IsmailN.A.S. GhaziM.A. AliM.R. NorM.I.F. DimonM.Z. NgahW.W.Z. Oxidative status and reduced glutathione levels in premature coronary artery disease and coronary artery disease.Free Radic. Res.2017519-1078779810.1080/10715762.2017.137960228899235
    [Google Scholar]
  80. TianR. ZhangL.N. ZhangT.T. PangH.Y. ChenL.F. ShenZ.J. LiuZ. FangQ. ZhangS.Y. Association between oxidative stress and peripheral leukocyte telomere length in patients with premature coronary artery disease.Med. Sci. Monit.2017234382439010.12659/MSM.90210628892468
    [Google Scholar]
  81. LawS.H. ChanH.C. KeG.M. KamatamS. MaratheG.K. PonnusamyV.K. KeL.Y. Untargeted lipidomic profiling reveals lysophosphatidylcholine and ceramide as atherosclerotic risk factors in apolipoprotein E knockout mice.Int. J. Mol. Sci.2023248695610.3390/ijms2408695637108120
    [Google Scholar]
  82. IribarrenC. GoA.S. HussonG. SidneyS. FairJ.M. QuertermousT. HlatkyM.A. FortmannS.P. Metabolic syndrome and early-onset coronary artery disease: Is the whole greater than its parts?J. Am. Coll. Cardiol.20064891800180710.1016/j.jacc.2006.03.07017084253
    [Google Scholar]
  83. DallongevilleJ. GrupposoM.C. CottelD. FerrièresJ. ArveilerD. BinghamA. RuidavetsJ.B. HaasB. DucimetièreP. AmouyelP. Association between the metabolic syndrome and parental history of premature cardiovascular disease.Eur. Heart J.200627672272810.1093/eurheartj/ehi71716401673
    [Google Scholar]
  84. TurhanH. YasarA.S. BasarN. BicerA. ErbayA.R. YetkinE. High prevalence of metabolic syndrome among young women with premature coronary artery disease.Coron. Artery Dis.2005161374010.1097/00019501‑200502000‑0000715654198
    [Google Scholar]
  85. DasopoulouC. MetaxaS. TsagouV. MichaelidesJ. KoulourisS. ManolisA.S. Sleep apnea syndrome: More than benign snoring, implications for the cardiovascular system.Hosp. Chron.201164155173
    [Google Scholar]
  86. RajachandranM. NickelN. LangeR.A. Sleep apnea and cardiovascular risk.Curr. Opin. Cardiol.202338545646110.1097/HCO.000000000000106537382140
    [Google Scholar]
  87. BautersF. RietzschelE.R. HertegonneK.B.C. ChirinosJ.A. The link between obstructive sleep apnea and cardiovascular disease.Curr. Atheroscler. Rep.2016181110.1007/s11883‑015‑0556‑z26710793
    [Google Scholar]
  88. MandalS. KentB.D. Obstructive sleep apnoea and coronary artery disease.J. Thorac. Dis.201810S34S4212S422010.21037/jtd.2018.12.7530687537
    [Google Scholar]
  89. McEvoyR.D. AnticN.A. HeeleyE. LuoY. OuQ. ZhangX. MedianoO. ChenR. DragerL.F. LiuZ. ChenG. DuB. McArdleN. MukherjeeS. TripathiM. BillotL. LiQ. FilhoL.G. BarbeF. RedlineS. WangJ. ArimaH. NealB. WhiteD.P. GrunsteinR.R. ZhongN. AndersonC.S. CPAP for prevention of cardiovascular events in obstructive sleep apnea.N. Engl. J. Med.20163751091993110.1056/NEJMoa160659927571048
    [Google Scholar]
  90. VazirA. KapeliosC.J. Sleep-disordered breathing and cardiovascular disease: Who and why to test and how to intervene?Heart2023109241864187010.1136/heartjnl‑2019‑31637537607811
    [Google Scholar]
  91. ZhangY. HaoW. FanJ. GuoR. AiH. QueB. WangX. DongJ. NieS. Association between obstructive sleep apnea and cardiovascular events in acute coronary syndrome patients with or without revascularization - a prospective cohort study.Circ. J.202387101369137910.1253/circj.CJ‑23‑016437612051
    [Google Scholar]
  92. WangB. ZhangY. HaoW. FanJ. YanY. GongW. ZhengW. QueB. AiH. WangX. NieS. Effect of obstructive sleep apnea on prognosis in patients with acute coronary syndromes with varying numbers of standard modifiable risk factors: Insight from the OSA-ACS study.J. Thromb. Thrombolysis2023561657410.1007/s11239‑023‑02830‑w37243941
    [Google Scholar]
  93. YangD. LiL. DongJ. YangW. LiuZ. Effects of continuous positive airway pressure on cardiac events and metabolic components in patients with moderate to severe obstructive sleep apnea and coronary artery disease: A meta-analysis.J. Clin. Sleep Med.202319122015202510.5664/jcsm.1074037497624
    [Google Scholar]
  94. ManolisT.A. ManolisA.A. ApostolopoulosE.J. MelitaH. ManolisA.S. Cardiovascular complications of sleep disorders: a better night’s sleep for a healthier heart / from bench to bedside.Curr. Vasc. Pharmacol.202019221023210.2174/157016111866620032510241132209044
    [Google Scholar]
  95. MasoudkabirF. MohammadiZ. AlirezaeiM. CheraghianB. RahimiZ. RoayaeiP. NaderianM.R. DanehchinL. ParidarY. AbolnezhadianF. FarahaniV.A. NooriM. MardS.A. MasoudiS. ShayestehA.A. PoustchiH. Premature coronary artery disease is more prevalent in people who go to bed late.Arch. Iran Med.2021241287688010.34172/aim.2021.13135014234
    [Google Scholar]
  96. LoprinziP.D. JoynerC. Meeting sleep guidelines is associated with better health-related quality of life and reduced premature all-cause mortality risk.Am. J. Health Promot.2018321687110.1177/089011711668745929214822
    [Google Scholar]
  97. PiccioniA. NiccolaiE. RozziG. SpazianiG. ZanzaC. CandelliM. CovinoM. GasbarriniA. FranceschiF. AmedeiA. Familial hypercholesterolemia and acute coronary syndromes: the microbiota-immunity axis in the new diagnostic and prognostic frontiers.Pathogens202312462710.3390/pathogens1204062737111513
    [Google Scholar]
  98. MainoA. SadeghianS. ManciniI. AbbasiS.H. PoorhosseiniH. BoroumandM.A. TokaldanyL.M. JalaliA. PagliariM.T. RosendaalF.R. PeyvandiF. Opium as a risk factor for early-onset coronary artery disease: Results from the Milano-Iran (MIran) study.PLoS One2023184e028370710.1371/journal.pone.028370737074987
    [Google Scholar]
  99. AbdiardekaniA. SalimiM. SarejlooS. BazrafshanM. AskarinejadA. SalimiA. BazrafshanH. KhanzadehS. JavanshirS. AttarA. EsmaeiliM. DrissiB.H. Impacts of opium addiction on patterns of angiographic findings in patients with acute coronary syndrome.Sci. Rep.20221211520910.1038/s41598‑022‑19683‑736076021
    [Google Scholar]
  100. MahttaD. RamseyD. KrittanawongC. Al RifaiM. KhurramN. SamadZ. JneidH. BallantyneC. PetersenL.A. ViraniS.S. Recreational substance use among patients with premature atherosclerotic cardiovascular disease.Heart2021107865065610.1136/heartjnl‑2020‑31811933589427
    [Google Scholar]
  101. PatelA.A. BudoffM.J. Coronary artery disease in patients with HIV infection: an update.Am. J. Cardiovasc. Drugs202121441141710.1007/s40256‑020‑00451‑933184766
    [Google Scholar]
  102. MavroudisC.A. MajumderB. LoizidesS. ChristophidesT. JohnsonM. RakhitR.D. Coronary artery disease and HIV; getting to the HAART of the matter.Int. J. Cardiol.201316741147115310.1016/j.ijcard.2012.09.04323041017
    [Google Scholar]
  103. WangS. PascaS. PostW.S. LanganS. PallavajjalaA. HaleyL. GockeC.D. BudoffM. HaberlenS. BrownT.T. AmbinderR.F. MargolickJ.B. GondekL.P. Clonal hematopoiesis in men living with HIV and association with subclinical atherosclerosis.AIDS202236111521153110.1097/QAD.000000000000328035730391
    [Google Scholar]
  104. MondalP. AljizeeriA. SmallG. MalhotraS. HarikrishnanP. AffandiJ.S. BuechelR.R. DwivediG. Al- MallahM.H. JainD. Coronary artery disease in patients with human immunodeficiency virus infection.J. Nucl. Cardiol.202128251053010.1007/s12350‑020‑02280‑432820424
    [Google Scholar]
  105. van DalenE.C. MulderR.L. SuhE. EhrhardtM.J. AuneG.J. BardiE. BensonB.J. KleinB.J. ChenM.H. FreyE. HennewigU. LockwoodL. MartinssonU. MuracaM. van der PalH. PlummerC. ScheinemannK. SchinderaC. TonorezosE.S. WallaceW.H. ConstineL.S. SkinnerR. HudsonM.M. KremerL.C.M. LevittG. MulrooneyD.A. Coronary artery disease surveillance among childhood, adolescent and young adult cancer survivors: A systematic review and recommendations from the international late effects of childhood cancer guideline harmonization group.Eur. J. Cancer202115612713710.1016/j.ejca.2021.06.02134450551
    [Google Scholar]
  106. LaiE.C.C. HuangY.C. LiaoT.C. WengM.Y. Premature coronary artery disease in patients with immune-mediated inflammatory disease: A population-based study.RMD Open202281e00199310.1136/rmdopen‑2021‑00199335064093
    [Google Scholar]
  107. LiuY. YuX. ZhangW. ZhangX. WangM. JiF. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus.J. Autoimmun.202213210286310.1016/j.jaut.2022.10286335853760
    [Google Scholar]
  108. ManolisA.A. ManolisT.A. MelitaH. ManolisA.S. Psoriasis and cardiovascular disease: The elusive link.Int. Rev. Immunol.2019381335410.1080/08830185.2018.153908430457023
    [Google Scholar]
  109. ManolisA.S. TzioufasA.G. Cardio-rheumatology: cardiovascular complications in systemic autoimmune rheumatic diseases / is inflammation the common link and target?Curr. Vasc. Pharmacol.202018542543010.2174/157016111866620051422223632410564
    [Google Scholar]
  110. ManolisA.S. TzioufasA.G. Cardio-rheumatology: two collaborating disciplines to deal with the enhanced cardiovascular risk in autoimmune rheumatic diseases.Curr. Vasc. Pharmacol.202018653353710.2174/157016111866620072114571832693768
    [Google Scholar]
  111. KhojaA. AndraweeraP.H. LassiZ.S. AliA. ZhengM. PathiranaM.M. AldridgeE. WittwerM.R. ChaudhuriD.D. TavellaR. ArstallM.A. Risk factors for premature coronary heart disease in women compared to men: systematic review and meta-analysis.J. Womens Health202332990892010.1089/jwh.2022.051737184900
    [Google Scholar]
  112. UllahW. MalikR. BashirF. KhanM. KhanS. AlamM. SamadZ. AchiricaM.C. ViraniS.S. HanifB. Comparison of premature, extremely premature, and older adults with coronary artery disease in pakistan.JACC: Asia20233116416510.1016/j.jacasi.2022.10.00236873748
    [Google Scholar]
  113. MalickW.A. SchaeferE.J. HegeleR.A. RosensonR.S. ABCA1 deficiency.JACC. Case Rep.20231810190410.1016/j.jaccas.2023.10190437545679
    [Google Scholar]
  114. OsadnikT. PawlasN. OsadnikK. BujakK. GóralM. LejawaM. FronczekM. RegułaR. CzarneckaH. GawlitaM. StrzelczykJ.K. GoneraM. GierlotkaM. PolońskiL. GąsiorM. High progesterone levels are associated with family history of premature coronary artery disease in young healthy adult men.PLoS One2019144e021530210.1371/journal.pone.021530230986240
    [Google Scholar]
  115. RahoualG. ZeitouniM. CharpentierE. RitvoP.G. RouanetS. ProcopiN. BoukhelifaS. CharleuxP. GuedeneyP. KerneisM. Phenotyping coronary plaque by computed tomography in premature coronary artery disease.Eur. Heart J. Cardiovasc. Imaging202325225726610.1093/ehjci/jead21237597177
    [Google Scholar]
  116. VikulovaD.N. GrubisicM. ZhaoY. LynchK. HumphriesK.H. PimstoneS.N. BrunhamL.R. Premature atherosclerotic cardiovascular disease: trends in incidence, risk factors, and sex-related differences, 2000 to 2016.J. Am. Heart Assoc.2019814e01217810.1161/JAHA.119.01217831280642
    [Google Scholar]
  117. StoneN.J. SmithS.C.Jr OrringerC.E. RigottiN.A. NavarA.M. KhanS.S. JonesD.W. GoldbergR. MoraS. BlahaM. PencinaM.J. GrundyS.M. Managing atherosclerotic cardiovascular risk in young adults.J. Am. Coll. Cardiol.202279881983610.1016/j.jacc.2021.12.01635210038
    [Google Scholar]
  118. PinxterhuisT.H. PloumenE.H. DoggenC.J.M. HartmannM. SchotborghC.E. AnthonioR.L. RoguinA. DanseP.W. BenitE. AminianA. LinssenG.C.M. von BirgelenC. First myocardial infarction in patients with premature coronary artery disease: Insights into patient characteristics and outcome after treatment with contemporary stents.Eur. Heart J. Acute Cardiovasc. Care2023121177478110.1093/ehjacc/zuad09837619976
    [Google Scholar]
  119. PinxterhuisT.H. PloumenE.H. ZoccaP. DoggenC.J.M. SchotborghC.E. AnthonioR.L. RoguinA. DanseP.W. BenitE. AminianA. HartmannM. LinssenG.C.M. von BirgelenC. Impact of premature coronary artery disease on adverse event risk following first percutaneous coronary intervention.Front. Cardiovasc. Med.202310116020110.3389/fcvm.2023.116020137745109
    [Google Scholar]
  120. JiangX. LewisC.E. AllenN.B. SidneyS. YaffeK. Premature cardiovascular disease and brain health in midlife.Neurology202310014e1454e146310.1212/WNL.000000000020682536697246
    [Google Scholar]
  121. MakM.C.E. GurungR. FooR.S.Y. Applications of genome editing technologies in CAD research and therapy with a focus on atherosclerosis.Int. J. Mol. Sci.202324181405710.3390/ijms24181405737762360
    [Google Scholar]
  122. AbouleisaR.R.E. TangX.L. OuQ. SalamaA.B.M. WoolardA. HammouriD. AbdelhafezH. CaytonS. AbdulwaliS.K. AraiM. SithuI.D. ConklinD.J. BolliR. MohamedT.M.A. Gene therapy encoding cell cycle factors to treat chronic ischemic heart failure in rats.Cardiovasc. Res.2024120215216310.1093/cvr/cvae00238175760
    [Google Scholar]
  123. BansalA. HiwaleK. Updates in the management of coronary artery disease: a review article.Cureus20231512e5064410.7759/cureus.5064438229816
    [Google Scholar]
  124. DuaP. SethS. PrasherB. MukerjiM. MaulikS.K. ReetaK.H. Pharmacogenomic biomarkers in coronary artery disease: A narrative review.Biomark. Med.202418519120210.2217/bmm‑2023‑0476
    [Google Scholar]
  125. O’SullivanJ.W. RaghavanS. LunaM.C. LuzumJ.A. DamrauerS.M. AshleyE.A. O’DonnellC.J. WillerC.J. NatarajanP. Polygenic risk scores for cardiovascular disease: a scientific statement from the american heart association.Circulation20221468e93e11810.1161/CIR.000000000000107735862132
    [Google Scholar]
  126. PirilloA. TokgözoğluL. CatapanoA.L. European lipid guidelines and cardiovascular risk estimation: current status and future challenges.Curr. Atheroscler. Rep.Springer20242613313710.1007/s11883‑024‑01194‑738430340
    [Google Scholar]
  127. MachF. BaigentC. CatapanoA.L. KoskinasK.C. CasulaM. BadimonL. ChapmanM.J. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM.R. TokgozogluL. WiklundO. MuellerC. DrexelH. AboyansV. CorsiniA. DoehnerW. FarnierM. GiganteB. KayikciogluM. KrstacicG. LambrinouE. LewisB.S. MasipJ. MoulinP. PetersenS. PetronioA.S. PiepoliM.F. PintóX. RäberL. RayK.K. ReinerŽ. RiesenW.F. RoffiM. SchmidJ-P. ShlyakhtoE. SimpsonI.A. StroesE. SudanoI. TselepisA.D. ViigimaaM. VindisC. VonbankA. VrablikM. VrsalovicM. ZamoranoJ.L. ColletJ-P. KoskinasK.C. CasulaM. BadimonL. ChapmanJ.M. De BackerG.G. DelgadoV. FerenceB.A. GrahamI.M. HallidayA. LandmesserU. MihaylovaB. PedersenT.R. RiccardiG. RichterD.J. SabatineM.S. TaskinenM-R. TokgozogluL. WiklundO. WindeckerS. AboyansV. BaigentC. ColletJ-P. DeanV. DelgadoV. FitzsimonsD. GaleC.P. GrobbeeD. HalvorsenS. HindricksG. IungB. JüniP. KatusH.A. LandmesserU. LeclercqC. LettinoM. LewisB.S. MerkelyB. MuellerC. PetersenS. PetronioA.S. RichterD.J. RoffiM. ShlyakhtoE. SimpsonI.A. Sousa-UvaM. TouyzR.M. NiboucheD. ZelveianP.H. SiostrzonekP. NajafovR. van de BorneP. PojskicB. PostadzhiyanA. KyprisL. ŠpinarJ. LarsenM.L. EldinH.S. ViigimaaM. StrandbergT.E. FerrièresJ. AgladzeR. LaufsU. RallidisL. BajnokL. GudjónssonT. MaherV. HenkinY. GuliziaM.M. MussagaliyevaA. BajraktariG. KerimkulovaA. LatkovskisG. HamouiO. SlapikasR. VisserL. DingliP. IvanovV. BoskovicA. NazziM. VisserenF. MitevskaI. RetterstølK. JankowskiP. CarvalhoF.R. GaitaD. EzhovM. FoscoliM. GigaV. PellaD. FrasZ. de IslaL.P. HagströmE. LehmannR. AbidL. OzdoganO. MitchenkoO. PatelR.S. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk.Eur. Heart J.202041111118810.1093/eurheartj/ehz45531504418
    [Google Scholar]
  128. KistJ.M. VosR.C. MairuhuA.T.A. StruijsJ.N. van PeetP.G. VosH.M.M. van OsH.J.A. BeishuizenE.D. SijpkensY.W.J. FaiqM.A. NumansM.E. GroenwoldR.H.H. SCORE2 cardiovascular risk prediction models in an ethnic and socioeconomic diverse population in the Netherlands: An external validation study.EClinicalMedicine20235710186210.1016/j.eclinm.2023.10186236864978
    [Google Scholar]
  129. DzayeO. DudumR. BrennanR.C. KianoushS. MaharajT.R. AchiricaC. BlahaM.J. Coronary artery calcium scoring for individualized cardiovascular risk estimation in important patient subpopulations after the 2019 AHA/ACC primary prevention guidelines.Prog. Cardiovasc. Dis.201962542343010.1016/j.pcad.2019.10.00731715194
    [Google Scholar]
  130. WattsG.F. JonesL.K. SarkiesM.N. PangJ. GiddingS.S. LibbyP. SantosR.D. International atherosclerosis society roadmap for familial hypercholesterolaemia.Glob. Heart20241911210.5334/gh.129138273993
    [Google Scholar]
  131. GaberM.A. OmarO.H.M. MekiA.R.M.A. NassarA.Y. HassanA.K.M. MahmoudM.S. The significance of PCSK-9′s level and polymorphism in premature coronary artery disease: Relation to risk and severity.Clin. Biochem.202412511072910.1016/j.clinbiochem.2024.11072938342398
    [Google Scholar]
  132. DikilitasO. SherafatiA. SaadatagahS. SatterfieldB.A. KochanD.C. AndersonK.C. ChungW.K. HebbringS.J. SalvatiZ.M. SharpR.R. SturmA.C. GibbsR.A. RowleyR. VennerE. LinderJ.E. JonesL.K. PerezE.F. PetersonJ.F. JarvikG.P. RehmH.L. ZoukH. RodenD.M. WilliamsM.S. ManolioT.A. KulloI.J. Familial hypercholesterolemia in the electronic medical records and genomics network: prevalence, penetrance, cardiovascular risk, and outcomes after return of results.Circ. Genom. Precis. Med.2023162e00381610.1161/CIRCGEN.122.00381637071725
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673303891240528114755
Loading
/content/journals/cmc/10.2174/0109298673303891240528114755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test