Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

P-glycoprotein, an ATP-dependent efflux transporter, plays a crucial role in eliminating cellular toxins and affects the intracellular concentration and bioavailability of CDK 4/6 inhibitors. Moreover, dietary flavonoids are natural bio-enhancers that can effectively inhibit the efflux function of these transporters. Therefore, this study aimed to assess the impact of dietary polyphenols on the inhibition of P-glycoprotein and the subsequent efflux of CDK inhibitors palbociclib and ribociclib.

Methods

A molecular docking approach was implemented to evaluate the binding interaction characteristics of CDK4/6 inhibitors in the presence of dietary polyphenols at the ATP binding site. Furthermore, the stability of the complexes was evaluated in two conformations of P-glycoprotein, followed by an everted gut sac experiment.

Results

The findings demonstrated that the binding of curcumin and quercetin with high affinity (-51.63 and -47.16 Kcal/mol) to ATP binding sites of P-glycoprotein-palbociclib and ribociclib inward conformation complexes resulted in good stability of complex and minimal fluctuation throughout the course of the simulation. It was evident from the everted gut sac study that the presence of 100 µM of curcumin resulted in an increase of 1.77 and 4.20-fold in the intestinal transit of palbociclib and ribociclib, respectively.

Conclusion

The study emphasizes the significance of curcumin and quercetin as inhibitors of P-glycoprotein, demonstrating their potential to decrease the efflux of palbociclib and ribociclib, consequently contributing to their bioavailability enhancement.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673319832240829164046
2024-09-12
2025-04-09
Loading full text...

Full text loading...

References

  1. NguyenT.T.L. DuongV.A. MaengH.J. Pharmaceutical formulations with p-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability.Pharmaceutics2021137110310.3390/pharmaceutics1307110334371794
    [Google Scholar]
  2. MukhametovA. RaevskyO.A. On the mechanism of substrate/non-substrate recognition by P-glycoprotein.J. Mol. Graph. Model.20177122723210.1016/j.jmgm.2016.12.00827984797
    [Google Scholar]
  3. JaraG.E. VeraD.M.A. PieriniA.B. Binding of modulators to mouse and human multidrug resistance P-glycoprotein. A computational study.J. Mol. Graph. Model.201346102110.1016/j.jmgm.2013.09.00124095875
    [Google Scholar]
  4. AdonT. ShanmugarajanD. KumarH.Y. CDK4/6 inhibitors: A brief overview and prospective research directions.RSC Advances20211147292272924610.1039/D1RA03820F35479560
    [Google Scholar]
  5. FuH. WuZ.X. LeiZ.N. TengQ.X. YangY. AshbyC.R. LeiY. LianY. ChenZ.S. The resistance of cancer cells to palbociclib, a cyclin-dependent kinase 4/6 inhibitor, is mediated by the ABCB1 transporter.Front. Pharmacol.202213March86164210.3389/fphar.2022.86164235350768
    [Google Scholar]
  6. de GooijerM.C. ZhangP. ThotaN. Mayayo-PeraltaI. BuilL.C.M. BeijnenJ.H. van TellingenO. P-glycoprotein and breast cancer resistance protein restrict the brain penetration of the CDK4/6 inhibitor palbociclib.Invest. New Drugs20153351012101910.1007/s10637‑015‑0266‑y26123925
    [Google Scholar]
  7. Martínez-ChávezA. van HoppeS. RosingH. LebreM.C. TibbenM. BeijnenJ.H. SchinkelA.H. P-glycoprotein limits ribociclib brain exposure and CYP3A4 restricts its oral bioavailability.Mol. Pharm.20191693842385210.1021/acs.molpharmaceut.9b0047531329454
    [Google Scholar]
  8. KazemiF. KarimiI. YousofvandN. Molecular docking study of lignanamides from Cannabis sativa against P-glycoprotein.In Silico Pharmacol.202191610.1007/s40203‑020‑00066‑733442533
    [Google Scholar]
  9. DewanjeeS. DuaT. BhattacharjeeN. DasA. GangopadhyayM. KhanraR. JoardarS. RiazM. FeoV. Zia-Ul-HaqM. Natural products as alternative choices for P-glycoprotein (P-gp) inhibition.Molecules201722687110.3390/molecules2206087128587082
    [Google Scholar]
  10. AminM.L. P-glycoprotein inhibition for optimal drug delivery.Drug Target Insights201371DTI.S1251910.4137/DTI.S1251924023511
    [Google Scholar]
  11. SinghD.V. GodboleM.M. MisraK. A plausible explanation for enhanced bioavailability of P-gp substrates in presence of piperine: Simulation for next generation of P-gp inhibitors.J. Mol. Model.201319122723810.1007/s00894‑012‑1535‑822864626
    [Google Scholar]
  12. FerreiraA. PousinhoS. FortunaA. FalcãoA. AlvesG. Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: Biology, chemistry and pharmacology.Phytochem. Rev.201514223327210.1007/s11101‑014‑9358‑0
    [Google Scholar]
  13. PaulD. SurendranS. ChandrakalaP. SatheeshkumarN. An assessment of the impact of green tea extract on palbociclib pharmacokinetics using a validated UHPLC–QTOF–MS method.Biomed. Chromatogr.2019334e446910.1002/bmc.446930549069
    [Google Scholar]
  14. KimY. ChenJ. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation.Science2018359637891591910.1126/science.aar738929371429
    [Google Scholar]
  15. NaveedM. MughalM.S. JabeenK. AzizT. NazS. NazirN. ShahzadM. AlharbiM. AlshammariA. SadhuS.S. Evaluation of the whole proteome to design a novel mRNA-based vaccine against multidrug-resistant Serratia marcescens. Front. Microbiol.20221396028510.3389/fmicb.2022.96028536329838
    [Google Scholar]
  16. GaoT.H. LiaoW. LinL.T. ZhuZ.P. LuM.G. FuC.M. XieT. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications.Phytomedicine2022102February15409010.1016/j.phymed.2022.15409035580439
    [Google Scholar]
  17. Sai Krishna AnandV. SakhareS.D. Navya SreeK.S. NairA.R. Raghava VarmaK. GourishettiK. DengaleS.J. The relevance of co-amorphous formulations to develop supersaturated dosage forms: In-vitro, and ex-vivo investigation of Ritonavir-Lopinavir co-amorphous materials.Eur. J. Pharm. Sci.2018123March12413410.1016/j.ejps.2018.07.04630048798
    [Google Scholar]
  18. PingiliR.B. PawarA.K. ChallaS.R. Systemic exposure of Paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and in vitro model: Risk of liver toxicity.Drug Dev. Ind. Pharm.201541111793180010.3109/03639045.2015.100801225678313
    [Google Scholar]
  19. ConseilG. Baubichon-CortayH. DayanG. JaultJ.M. BarronD. Di PietroA. Flavonoids: A class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein.Proc. Natl. Acad. Sci. USA199895179831983610.1073/pnas.95.17.98319707561
    [Google Scholar]
  20. QianF. WeiD. ZhangQ. YangS. Modulation of P-glycoprotein function and reversal of multidrug resistance by (–)-epigallocatechin gallate in human cancer cells.Biomed. Pharmacother.2005593646910.1016/j.biopha.2005.01.00215795098
    [Google Scholar]
  21. MohanaS. GanesanM. AgilanB. KarthikeyanR. SritharG. Beaulah MaryR. AnanthakrishnanD. VelmuruganD. Rajendra PrasadN. AmbudkarS.V. Screening dietary flavonoids for the reversal of P-glycoprotein- mediated multidrug resistance in cancer.Mol. Biosyst.20161282458247010.1039/C6MB00187D27216424
    [Google Scholar]
  22. BrewerF.K. FollitC.A. VogelP.D. WiseJ.G. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.Mol. Pharmacol.201486671672610.1124/mol.114.09541425270578
    [Google Scholar]
  23. PajevaI.K. GlobischC. WieseM. Comparison of the inward- and outward-open homology models and ligand binding of human P-glycoprotein.FEBS J.2009276237016702610.1111/j.1742‑4658.2009.07415.x19878299
    [Google Scholar]
  24. AllerS.G. YuJ. WardA. WengY. ChittaboinaS. ZhuoR. HarrellP.M. TrinhY.T. ZhangQ. UrbatschI.L. ChangG. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.Science200932359221718172210.1126/science.116875019325113
    [Google Scholar]
  25. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu212123122254006
    [Google Scholar]
  26. AghababaeiF. HadidiM. Recent advances in potential health benefits of quercetin.Pharmaceuticals (Basel)2023167102010.3390/ph1607102037513932
    [Google Scholar]
  27. BorskaS. SopelM. ChmielewskaM. ZabelM. DziegielP. Quercetin as a potential modulator of P-glycoprotein expression and function in cells of human pancreatic carcinoma line resistant to daunorubicin.Molecules201015285787010.3390/molecules1502085720335952
    [Google Scholar]
  28. SinghA. PatelS.K. KumarP. DasK.C. VermaD. SharmaR. TripathiT. GiriR. MartinsN. GargN. Quercetin acts as a P-gp modulator via impeding signal transduction from nucleotide-binding domain to transmembrane domain.J. Biomol. Struct. Dyn.2020001910.1080/07391102.2020.185896633306006
    [Google Scholar]
  29. WongrattanakamonP. NimmanpipugP. SirithunyalugB. ChansakaowS. JiranusornkulS. A significant mechanism of molecular recognition between bioflavonoids and P-glycoprotein leading to herb-drug interactions.Toxicol. Mech. Methods201828111110.1080/15376516.2017.135150628678657
    [Google Scholar]
  30. WongrattanakamonP. LeeV.S. NimmanpipugP. SirithunyalugB. ChansakaowS. JiranusornkulS. Insight into the molecular mechanism of P-glycoprotein mediated drug toxicity induced by bioflavonoids: An integrated computational approach.Toxicol. Mech. Methods201727425327110.1080/15376516.2016.127342827996361
    [Google Scholar]
  31. Lopes-RodriguesV. SousaE. VasconcelosM. Curcumin as a modulator of P-glycoprotein in cancer: Challenges and perspectives.Pharmaceuticals (Basel)2016947110.3390/ph904007127834897
    [Google Scholar]
  32. ShuklaS. ZaherH. HartzA. BauerB. WareJ.A. AmbudkarS.V. Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice.Pharm. Res.200926248048710.1007/s11095‑008‑9735‑818841445
    [Google Scholar]
  33. ChearwaeW. WuC.P. ChuH.Y. LeeT.R. AmbudkarS.V. LimtrakulP. Curcuminoids purified from turmeric powder modulate the function of human multidrug resistance protein 1 (ABCC1).Cancer Chemother. Pharmacol.200657337638810.1007/s00280‑005‑0052‑116021489
    [Google Scholar]
  34. SongY.K. YoonJ.H. WooJ.K. KangJ.H. LeeK.R. OhS.H. ChungS.J. MaengH.J. Quercetin is a flavonoid breast cancer resistance protein inhibitor with an impact on the oral pharmacokinetics of sulfasalazine in rats.Pharmaceutics202012539710.3390/pharmaceutics1205039732357395
    [Google Scholar]
  35. LiX. ChoiJ.S. Effects of quercetin on the pharmacokinetics of Etoposide after oral or intravenous administration of etoposide in rats.Anticancer Res.20092941411141519414395
    [Google Scholar]
  36. BabuP.R. BabuK.N. PeterP.L.H. RajeshK. BabuP.J. Influence of quercetin on the pharmacokinetics of ranolazine in rats and in vitro models.Drug Dev. Ind. Pharm.201339687387910.3109/03639045.2012.70720922817837
    [Google Scholar]
  37. ChoiJ.S. JoB.W. KimY.C. Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin.Eur. J. Pharm. Biopharm.200457231331810.1016/j.ejpb.2003.11.00215018990
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673319832240829164046
Loading
/content/journals/cmc/10.2174/0109298673319832240829164046
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test