Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Thrombotic disorders are among the leading causes of morbidity and mortality worldwide. Drugs used in the prevention and treatment of atherothrombosis have pharmacokinetic limitations and adverse effects such as hemorrhagic conditions, highlighting the importance of developing more effective antiplatelet agents.

Methods

In this work, we synthesized ,'-disubstituted ureas and evaluated their antiplatelet profiles through , , and studies.

Results

The synthesized derivatives exhibited a selective inhibitory profile against platelet aggregation induced by arachidonic acid (AA) , without significantly affecting other aspects of primary hemostasis and blood coagulation. The compounds that showed inhibition greater than 85% were submitted to the analysis of their potency by calculating the concentration required to inhibit 50% of platelet aggregation induced by AA (IC). Urea derivative was the most potent with IC of 1.45 µM. Interestingly, this derivative inhibited more than 90% of platelet aggregation induced by AA , with a similar effect to acetylsalicylic acid. In the hemolysis assay, most of the urea derivatives presented values below 10% suggesting good hemocompatibility. Additionally, the compounds tested at 100 µM also showed no cytotoxic effects in HepG2 and Vero cells. The results suggested that compound may bind to the key residue of COX-1 similar to AA and known COX-1 inhibitors, and the results are also in agreement with our SAR, which suggests that the inhibition of this enzyme is the most likely mechanism of antiplatelet activity.

Conclusion

Therefore, these results demonstrated that ,'-disubstituted ureas are promising candidates for the development of novel antiplatelet agents.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673262854231215065541
2024-01-17
2025-06-26
Loading full text...

Full text loading...

References

  1. ScridonA. Platelets and their role in hemostasis and thrombosis-from physiology to pathophysiology and therapeutic implications.Int. J. Mol. Sci.202223211277210.3390/ijms23211277236361561
    [Google Scholar]
  2. CaiD. WengW. Development potential of extracellular matrix hydrogels as hemostatic materials.Front. Bioeng. Biotechnol.202311118747410.3389/fbioe.2023.118747437383519
    [Google Scholar]
  3. DuJ. WangJ. XuT. YaoH. YuL. HuangD. Hemostasis strategies and recent advances in nanomaterials for hemostasis.Molecules2023285264
    [Google Scholar]
  4. RodgersG.M. MahajerinA. Antithrombin therapy: Current state and future outlook.Clin. Appl. Thromb. Hemost.2023291076029623120527910.1177/1076029623120527937822179
    [Google Scholar]
  5. GulatiD. NovakA. StanworthS.J. Common haemostasis issues in major bleeding and critical illness.Clin. Med.201818432032310.7861/clinmedicine.18‑4‑32030072558
    [Google Scholar]
  6. KeyN.S. MakrisM. LillicrapD. Practical Hemostasis and Thrombosis.John Wiley & Sons201710.1002/9781118344729
    [Google Scholar]
  7. HuseynovA. ReinhardtJ. ChandraL. DürschmiedD. LangerH.F. Novel aspects targeting platelets in atherosclerotic cardiovascular disease-a translational Perspective.Int. J. Mol. Sci.2023246280
    [Google Scholar]
  8. WHOCardiovascular diseases.Available from: https://www.who.int/health-topics/cardiovascular-diseases/ (Accessed Sep 10, 2023).
  9. VersteegH.H. HeemskerkJ.W.M. LeviM. ReitsmaP.H. New fundamentals in hemostasis.Physiol. Rev.201393132735810.1152/physrev.00016.201123303912
    [Google Scholar]
  10. JohnstonS.C. EastonJ.D. FarrantM. BarsanW. ConwitR.A. ElmJ.J. KimA.S. LindbladA.S. PaleschY.Y. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA.N. Engl. J. Med.2018379321522510.1056/NEJMoa180041029766750
    [Google Scholar]
  11. McNeilJ.J. WolfeR. WoodsR.L. TonkinA.M. DonnanG.A. NelsonM.R. ReidC.M. LockeryJ.E. KirpachB. StoreyE. ShahR.C. WilliamsonJ.D. MargolisK.L. ErnstM.E. AbhayaratnaW.P. StocksN. FitzgeraldS.M. OrchardS.G. TrevaksR.E. BeilinL.J. JohnstonC.I. RyanJ. RadziszewskaB. JelinekM. MalikM. EatonC.B. BrauerD. CloudG. WoodE.M. MahadyS.E. SatterfieldS. GrimmR. MurrayA.M. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly.N. Engl. J. Med.2018379161509151810.1056/NEJMoa180581930221597
    [Google Scholar]
  12. PasalaT. HooJ.S. LockhartM.K. WaheedR. SengodanP. AlexanderJ. GandhiS. Aspirin resistance predicts adverse cardiovascular events in patients with symptomatic peripheral artery disease.Tex. Heart Inst. J.201643648248710.14503/THIJ‑14‑498628100965
    [Google Scholar]
  13. GuirgisM. ThompsonP. JansenS. Review of aspirin and clopidogrel resistance in peripheral arterial disease.J. Vasc. Surg.20176651576158610.1016/j.jvs.2017.07.06528893489
    [Google Scholar]
  14. SaitoM.S. LourençoA.L. DiasL.R.S. FreitasA.C.C. VitorinoM.I. AlbuquerqueM.G. RodriguesC.R. CabralL.M. DiasE.P. CastroH.C. SatlherP.C. Antiplatelet pyrazolopyridines derivatives: Pharmacological, biochemical and toxicological characterization.J. Enzyme Inhib. Med. Chem.20163161591160110.3109/14756366.2016.115871227000933
    [Google Scholar]
  15. LourençoA. SaitoM. DornelesL. vianaG. SathlerP. AguiarL. de PádulaM. DomingosT. FragaA. RodriguesC. de SousaV. CastroH. CabralL. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: Biological and structure-activity relationship studies.Molecules20152047174720010.3390/molecules2004717425903367
    [Google Scholar]
  16. ListroR. RossinoG. PiaggiF. SonekanF.F. RossiD. LincianoP. CollinaS. Urea-based anticancer agents. Exploring 100-years of research with an eye to the future.Front Chem.20221099535110.3389/fchem.2022.99535136186578
    [Google Scholar]
  17. CherukumalliP.K.R. TadiboinaB.R. GulipalliK.C. BodigeS. BadavathV.N. SridharG. GangarapuK. Design and synthesis of novel urea derivatives of pyrimidine-pyrazoles as anticancer agents.J. Mol. Struct.2022125113193710.1016/j.molstruc.2021.131937
    [Google Scholar]
  18. TokF. İlhanR. GünalS. Ballar-kırmızıbayrakP. Koçyiğit-kaymakçıoğluB. Design, synthesis and evaluation of biological activities of some new carbohydrazide and urea derivatives.Turk. J. Pharmaceut. Sci.201815330430810.4274/tjps.6493532454674
    [Google Scholar]
  19. PatilM. Noonikara-PoyilA. JoshiS.D. PatilS.A. PatilS.A. BugarinA. New urea derivatives as potential antimicrobial agents: Synthesis, biological evaluation, and molecular docking studies.Antibiotics20198178
    [Google Scholar]
  20. GündüzM.G. UğurS.B. GüneyF. ÖzkulC. KrishnaV.S. KayaS. SriramD. DoğanŞ.D. 1,3-Disubstituted urea derivatives: Synthesis, antimicrobial activity evaluation and in silico studies.Bioorg. Chem.202010210410410.1016/j.bioorg.2020.10410432736149
    [Google Scholar]
  21. VartakA. GoinsC. de MouraV.C.N. SchreidahC.M. LandgrafA.D. LinB. DuJ. JacksonM. RonningD.R. SucheckS.J. Biochemical and microbiological evaluation of N -aryl urea derivatives against mycobacteria and mycobacterial hydrolases.Med. Chem. Comm20191071197120410.1039/C9MD00122K31741730
    [Google Scholar]
  22. SomakalaK. AmirM. Synthesis, characterization and pharmacological evaluation of pyrazolyl urea derivatives as potential anti-inflammatory agents.Acta Pharm. Sin. B20177223024010.1016/j.apsb.2016.08.00628303231
    [Google Scholar]
  23. DevineniS.R. GollaM. ChamarthiN.R. MerigaB. SaddalaM.S. AsupathriU.R. 2-Amino-2,3-dihydro-1H-2λ5-[1,3,2]diazaphospholo[4,5-b]pyridin-2-one-based urea and thiourea derivatives: Synthesis, molecular docking study and evaluation of anti-inflammatory and antimicrobial activities.Med. Chem. Res.201625475176810.1007/s00044‑016‑1518‑x
    [Google Scholar]
  24. PengJ. ZhaoL. WangL. ChenH. QiuY. WangJ. YangH. LiuJ. LiuH. Design, synthesis, and biological evaluation of 2-(phenoxyaryl)-3-urea derivatives as novel P2Y1 receptor antagonists.Eur. J. Med. Chem.201815830231010.1016/j.ejmech.2018.09.01430223118
    [Google Scholar]
  25. KimJ. JungS.H. YunE. ChoS.H. YuseokO. KimJ.E. KimY.H. MyungC.S. SongG.Y. Synthesis of Novel 3- N -substituted carbazole derivatives and evaluation of their abilities to inhibit platelet aggregation.Bull. Korean Chem. Soc.201839672672810.1002/bkcs.11462
    [Google Scholar]
  26. de AguiarL. de MattosM. SanabriaC. CostaB. vianaG. Efficient direct halogenation of unsymmetrical N-benzyl- and N-phenylureas with trihaloisocyanuric acids.Synthesis20185061359136710.1055/s‑0036‑1589149
    [Google Scholar]
  27. RanX. LongY. YangS. PengC. ZhangY. QianS. JiangZ. ZhangX. YangL. WangZ. YuX. A novel route to unsymmetrical disubstituted ureas and thioureas by HMPA catalyzed reductive alkylation with trichlorosilane.Org. Chem. Front.20207347248110.1039/C9QO01321K
    [Google Scholar]
  28. MalviyaB.K. JaiswalP.K. VermaV.P. BadsaraS.S. SharmaS. Electrochemical synthesis of carbodiimides via metal/oxidant-free oxidative cross-coupling of amines and isocyanides.Org. Lett.20202262323232710.1021/acs.orglett.0c0051032142299
    [Google Scholar]
  29. PothupitiyaJ.U. HewawasamR.S. KiesewetterM.K. Urea and thiourea h-bond donating catalysts for ring-opening polymerization: Mechanistic insights via (Non)linear free energy relationships.Macromolecules20185183203321110.1021/acs.macromol.8b00321
    [Google Scholar]
  30. GuoJ.Y. ZhongC.H. HeZ.Y. TianS.K. Benzyne-Promoted curtius-type rearrangement of acyl hydrazides in the presence of nucleophiles.Asian J. Org. Chem.20187111912210.1002/ajoc.201700598
    [Google Scholar]
  31. SpyropoulosC. KokotosC.G. One-pot synthesis of ureas from Boc-protected amines.J. Org. Chem.201479104477448310.1021/jo500492x24750028
    [Google Scholar]
  32. PawarG.G. RobertF. GrauE. CramailH. LandaisY. Visible-light photocatalyzed oxidative decarboxylation of oxamic acids: A green route to urethanes and ureas.Chem. Commun.201854679337934010.1039/C8CC05462B30073222
    [Google Scholar]
  33. VasconcelosA. SucupiraI. GuedesA. QueirozI. FrattaniF. FonsecaR. PominV. Anticoagulant and antithrombotic properties of three structurally correlated sea urchin sulfated glycans and their low-molecular-weight derivatives.Mar. Drugs201816930410.3390/md1609030430200211
    [Google Scholar]
  34. CuiJ. HuL.A. ShiW. CuiG. ZhangX. ZhangQ.W. Design, synthesis and anti-platelet aggregation activity study of ginkgolide-1,2,3-triazole derivatives.Molecules20192411215610.3390/molecules2411215631181694
    [Google Scholar]
  35. SathlerP.C. LourençoA.L. RodriguesC.R. da SilvaL.C.R.P. CabralL.M. JordãoA.K. CunhaA.C. VieiraM.C.B. FerreiraV.F. Carvalho-PintoC.E. KangH.C. CastroH.C. In vitro and in vivo analysis of the antithrombotic and toxicological profile of new antiplatelets N-acylhydrazone derivatives and development of nanosystems.Thromb. Res.2014134237638310.1016/j.thromres.2014.05.00924877647
    [Google Scholar]
  36. Martinichen-HerreroJ.C. CarboneroE.R. SassakiG.L. GorinP.A.J. IacominiM. Anticoagulant and antithrombotic activities of a chemically sulfated galactoglucomannan obtained from the lichen Cladonia ibitipocae.Int. J. Biol. Macromol.2005351-29710210.1016/j.ijbiomac.2004.12.00215769521
    [Google Scholar]
  37. SucupiraI.D. OliveiraS.N.M.C.G. SantosG.R.C. MourãoP.A.S. FonsecaR. Improved anticoagulant effect of fucosylated chondroitin sulfate orally administered as gastroresistant tablets.Thromb. Haemost.2017117466267010.1160/TH16‑09‑069428102426
    [Google Scholar]
  38. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑46606682
    [Google Scholar]
  39. Molinspiration CheminformaticsMolinspiration.2010Available from:http://www.molinspiration.com/cgi-bin/properties (Cited 2011 Mar 26).
  40. ŠaliA. BlundellT.L. Comparative protein modelling by satisfaction of spatial restraints.J. Mol. Biol.1993234377981510.1006/jmbi.1993.16268254673
    [Google Scholar]
  41. WebbB. SaliA. Comparative protein structure modeling using MODELLER.Curr. Protoc. Bioinformatics20165416.1, 3710.1002/cpbi.327322406
    [Google Scholar]
  42. GuexN. PeitschM.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling.Electrophoresis199718152714272310.1002/elps.11501815059504803
    [Google Scholar]
  43. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: a program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  44. BowieJ.U. LüthyR. EisenbergD. A method to identify protein sequences that fold into a known three-dimensional structure.Science1991253501616417010.1126/science.18532011853201
    [Google Scholar]
  45. LüthyR. BowieJ.U. EisenbergD. Assessment of protein models with three-dimensional profiles.Nature19923566364838510.1038/356083a01538787
    [Google Scholar]
  46. SipplM.J. Recognition of errors in three-dimensional structures of proteins.Proteins199317435536210.1002/prot.3401704048108378
    [Google Scholar]
  47. WiedersteinM. SipplM.J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res.200735Web ServerW407W41010.1093/nar/gkm29017517781
    [Google Scholar]
  48. KoesD.R. BaumgartnerM.P. CamachoC.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.J. Chem. Inf. Model.20135381893190410.1021/ci300604z23379370
    [Google Scholar]
  49. HirakuS. TaniguchiK. WakitaniK. OmawariN. KtRAH. MiyamotoT. OkegawaT. KawasakiA. UjiieA. Pharmacological studies on the TXA2 synthetase inhibitor (E)-3-[p-(1H-imidazol-1-ylmethyl)phenyl]-2- propenoic acid (OKY-046).Jpn. J. Pharmacol.198641339340110.1254/jjp.41.3933093741
    [Google Scholar]
  50. Van HaeringenN.J. Van SorgeA.A. Coré-BodelierV.M.W.C. Constitutive cyclooxygenase-1 and induced cyclooxygenase-2 in isolated human iris inhibited by S(+) flurbiprofen.J. Ocul. Pharmacol. Ther.200016435336110.1089/jop.2000.16.35310977131
    [Google Scholar]
  51. QuirogaR. VillarrealM.A. Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening.PLoS One2016115e015518310.1371/journal.pone.015518327171006
    [Google Scholar]
  52. ChengF. LiW. ZhouY. ShenJ. WuZ. LiuG. LeeP.W. TangY. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model201252113099310510.1021/ci300367a
    [Google Scholar]
  53. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  54. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑011259830
    [Google Scholar]
  55. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n12036371
    [Google Scholar]
  56. GleesonM.P. Generation of a set of simple, interpretable ADMET rules of thumb.J. Med. Chem.200851481783410.1021/jm701122q18232648
    [Google Scholar]
  57. HughesJ.D. BlaggJ. PriceD.A. BaileyS. DeCrescenzoG.A. DevrajR.V. EllsworthE. FobianY.M. GibbsM.E. GillesR.W. GreeneN. HuangE. Krieger-BurkeT. LoeselJ. WagerT. WhiteleyL. ZhangY. Physiochemical drug properties associated with in vivo toxicological outcomes.Bioorg. Med. Chem. Lett.200818174872487510.1016/j.bmcl.2008.07.07118691886
    [Google Scholar]
  58. BrunsR.F. WatsonI.A. Rules for identifying potentially reactive or promiscuous compounds.J. Med. Chem.201255229763977210.1021/jm301008n23061697
    [Google Scholar]
  59. LagorceD. BouslamaL. BecotJ. MitevaM.A. VilloutreixB.O. FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery.Bioinformatics201733223658366010.1093/bioinformatics/btx49128961788
    [Google Scholar]
  60. KocharJ. GazianoJ.M. Aspirin in primary and secondary prevention of cardiovascular disease.Antithrombotic Drug Therapy in Cardiovascular Disease.Springer201011712910.1007/978‑1‑60327‑235‑3_5
    [Google Scholar]
  61. SashidharaK.V. PalnatiG.R. AvulaS.R. SinghS. JainM. DikshitM. Synthesis and evaluation of anti-thrombotic activity of benzocoumarin amide derivatives.Bioorg. Med. Chem. Lett.20122293115312110.1016/j.bmcl.2012.03.05922483393
    [Google Scholar]
  62. FischerD. LiY. AhlemeyerB. KrieglsteinJ. KisselT. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis.Biomaterials20032471121113110.1016/S0142‑9612(02)00445‑312527253
    [Google Scholar]
  63. International Organization for Standardization (ISO)Biological Evaluation of Medical Devices-Part 5: In vitro Cytotoxicity Testing.Geneva, Switzerland200934
    [Google Scholar]
  64. SathlerP.C. SantanaM. LourençoA.L. RodriguesC.R. AbreuP. CabralL.M. CastroH.C. Human thromboxane synthase: Comparative modeling and docking evaluation with the competitive inhibitors Dazoxiben and Ozagrel.J. Enzyme Inhib. Med. Chem.201429452753110.3109/14756366.2013.81740323914925
    [Google Scholar]
  65. ChaoW.C. LuJ.F. WangJ.S. YangH.C. PanT.A. ChouS.C.W. WangL.H. ChouP.T. Probing ligand binding to thromboxane synthase.Biochemistry20135261113112110.1021/bi301400t23327333
    [Google Scholar]
  66. OhshimaE. TakamiH. SatoH. MohriS. ObaseH. MikiI. IshiiA. ShirakuraS. KarasawaA. KuboK. Non-prostanoid thromboxane A2 receptor antagonists with a dibenzoxepin ring system. 2.J. Med. Chem.199235183402341310.1021/jm00096a0171388208
    [Google Scholar]
  67. ColeJ.C. MurrayC.W. NissinkJ.W.M. TaylorR.D. TaylorR. Comparing protein-ligand docking programs is difficult.Proteins200560332533210.1002/prot.2049715937897
    [Google Scholar]
  68. KontoyianniM. McClellanL.M. SokolG.S. Evaluation of docking performance: Comparative data on docking algorithms.J. Med. Chem.200447355856510.1021/jm030299714736237
    [Google Scholar]
  69. LeachA.R. ShoichetB.K. PeishoffC.E. Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps.J. Med. Chem.200649205851585510.1021/jm060999m17004700
    [Google Scholar]
  70. BhattacharyyaD.K. LecomteM. RiekeC.J. GaravitoR.M. SmithW.L. Involvement of arginine 120, glutamate 524, and tyrosine 355 in the binding of arachidonate and 2-phenylpropionic acid inhibitors to the cyclooxygenase active site of ovine prostaglandin endoperoxide H synthase-1.J. Biol. Chem.199627142179218410.1074/jbc.271.4.21798567676
    [Google Scholar]
  71. ReddyR. MutyalaR. AparoyP. ReddannaP. ReddyM. Computer aided drug design approaches to develop cyclooxygenase based novel anti-inflammatory and anti-cancer drugs.Curr. Pharm. Des.200713343505351710.2174/13816120778279427518220787
    [Google Scholar]
  72. BlobaumA.L. MarnettL.J. Structural and functional basis of cyclooxygenase inhibition.J. Med. Chem.20075071425144110.1021/jm061316617341061
    [Google Scholar]
  73. HarmanC.A. TurmanM.V. KozakK.R. MarnettL.J. SmithW.L. GaravitoR.M. Structural basis of enantioselective inhibition of cyclooxygenase-1 by S-α-substituted indomethacin ethanolamides.J. Biol. Chem.200728238280962810510.1074/jbc.M70133520017656360
    [Google Scholar]
  74. VitaleP. PanellaA. ScilimatiA. PerroneM.G. COX-1 inhibitors: Beyond structure toward therapy.Med. Res. Rev.201636464167110.1002/med.2138927111555
    [Google Scholar]
  75. SiramshettyV.B. NickelJ. OmieczynskiC. GohlkeB.O. DrwalM.N. PreissnerR. WITHDRAWN-a resource for withdrawn and discontinued drugs.Nucleic Acids Res.201644D1D1080D108610.1093/nar/gkv119226553801
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673262854231215065541
Loading
/content/journals/cmc/10.2174/0109298673262854231215065541
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test