Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is a rare autoimmune disease, which is caused by antibodies attacking NMDA receptors in the brain. Previous studies revealed that this disorder might be induced by vaccination. Vaccination is the most useful strategy to prevent human or animal infectious diseases. Although vaccines can produce immunity against diseases, at low risk, they may trigger serious adverse events. Anti-NMDA receptor encephalitis has been studied to be related to the H1N1 (influenza A virus subtype H1N1), tetanus/diphtheria/pertussis and polio vaccine, Japanese encephalitis, yellow fever, and coronavirus disease 2019 (COVID-19) vaccination. Several cases have been reported that anti-NMDA receptor encephalitis could also be triggered by the human papillomavirus (HPV) vaccine. However, there is a lack of studies to investigate the underlying mechanism.

Methods

In this paper, the association between anti-NMDA receptor encephalitis and HPV vaccination is discussed in terms of their microRNA (miRNA) biomarkers. Phylogenetic tree and distance similarity analyses are used to explore the relationship between their miRNA biomarkers.

Results

The results show a higher degree of similarity between miRNA biomarkers associated with HPV and anti-NMDA receptor encephalitis or related vaccines when compared to the overall miRNAs. It indicates that while the risk of HPV triggering anti-NMDA receptor encephalitis is low, a connection between anti-NMDA receptor encephalitis and HPV vaccination cannot be ruled out.

Conclusion

This finding suggests that in cases where individuals receiving HPV vaccination experience psychiatric or neurological symptoms, it should be considered to diagnose anti-NMDA receptor encephalitis, given the exclusion of other possible complications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673264615231124072130
2024-02-16
2025-04-22
Loading full text...

Full text loading...

References

  1. DalmauJ. GleichmanA.J. HughesE.G. RossiJ.E. PengX. LaiM. DessainS.K. RosenfeldM.R. Balice-GordonR. LynchD.R. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies.Lancet Neurol.20087121091109810.1016/S1474‑4422(08)70224‑218851928
    [Google Scholar]
  2. SébireG. In search of lost time from “Demonic Possession” to anti-N-methyl-D-aspartate receptor encephalitis.Ann. Neurol.201067114114210.1002/ana.2192820186949
    [Google Scholar]
  3. TamJ. ZandiM.S. The witchcraft of encephalitis in Salem.J. Neurol.201726471529153110.1007/s00415‑017‑8546‑428631128
    [Google Scholar]
  4. WangH. Efficacies of treatments for anti-NMDA receptor encephalitis.Front. Biosci.201621365166310.2741/441226709797
    [Google Scholar]
  5. WangH. Anti-NMDA receptor encephalitis: Efficacy of treatment for male patients and miRNA biomarker.Curr. Med. Chem.201829473497
    [Google Scholar]
  6. TurnbullM.T. SiegelJ.L. BeckerT.L. StephensA.J. Lopez-ChiribogaA.S. FreemanW.D. Early bortezomib therapy for refractory anti-NMDA receptor encephalitis.Front. Neurol.20201118810.3389/fneur.2020.0018832292386
    [Google Scholar]
  7. TüzünE. ZhouL. BaehringJ.M. BannykhS. RosenfeldM.R. DalmauJ. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma.Acta Neuropathol.2009118673774310.1007/s00401‑009‑0582‑419680671
    [Google Scholar]
  8. SanmaneechaiO. SongJ.L. NevadunskyN. MoshéS.L. OverbyP.J. Anti-N-methyl-d-aspartate encephalitis with ovarian cystadenofibroma.Pediatr. Neurol.201348323223510.1016/j.pediatrneurol.2012.10.01323419475
    [Google Scholar]
  9. SekiM. SuzukiS. IizukaT. ShimizuT. NiheiY. SuzukiN. DalmauJ. Neurological response to early removal of ovarian teratoma in anti-NMDAR encephalitis.J. Neurol. Neurosurg. Psychiatry200879332432610.1136/jnnp.2007.13647318032452
    [Google Scholar]
  10. LimE.W. YipC.W. Anti-N-methyl-D-aspartate receptor encephalitis associated with hepatic neuroendocrine carcinoma: A case report.J. Clin. Neurosci.201741707210.1016/j.jocn.2017.02.03828262407
    [Google Scholar]
  11. EkerA. SakaE. DalmauJ. KurneA. BilenC. OzenH. ErtoyD. OguzK.K. ElibolB. Testicular teratoma and anti-N-methyl-D-aspartate receptor-associated encephalitis.J. Neurol. Neurosurg. Psychiatry20087991082108310.1136/jnnp.2008.14761118708569
    [Google Scholar]
  12. JeraibyM. Depincé-BergerA. BossyV. AntoineJ.C. PaulS. A case of anti-NMDA receptor encephalitis in a woman with a NMDA-R+ small cell lung carcinoma (SCLC).Clin. Immunol.2016166-167969910.1016/j.clim.2016.03.01127019996
    [Google Scholar]
  13. WangH. Phylogenetic analysis to explore the association between anti-NMDA receptor encephalitis and tumors based on microrna biomarkers.Biomolecules201991057210.3390/biom910057231590348
    [Google Scholar]
  14. MaJ. ZhangT. JiangL. Japanese encephalitis can trigger anti-N-methyl-d-aspartate receptor encephalitis.J. Neurol.201726461127113110.1007/s00415‑017‑8501‑428470592
    [Google Scholar]
  15. EwidaA. LaxtonK. LouA. SuryadevaraN. SandersA. An unusual late presentation of anti-NMDA receptor (NMDA-R) autoimmune encephalitis following Herpes Simplex Virus (HSV) encephalitis (P2.2-014).Neurol.2019921510.1212/WNL.92.15_supplement.P2.2‑014
    [Google Scholar]
  16. SteinmanL. Multiple sclerosis: A two-stage disease.Nat. Immunol.20012976276410.1038/ni0901‑76211526378
    [Google Scholar]
  17. WangH. Anti-NMDA receptor encephalitis and vaccination.Int. J. Mol. Sci.201718119310.3390/ijms1801019328106787
    [Google Scholar]
  18. HofmannC. BaurM.O. SchrotenH. Anti-NMDA receptor encephalitis after TdaP-IPV booster vaccination: Cause or coincidence?J. Neurol.2011258350050110.1007/s00415‑010‑5757‑320878418
    [Google Scholar]
  19. DalmauJ. LancasterE. Martinez-HernandezE. RosenfeldM.R. Balice-GordonR. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis.Lancet Neurol.2011101637410.1016/S1474‑4422(10)70253‑221163445
    [Google Scholar]
  20. EndresD. RauerS. KernW. VenhoffN. MaierS.J. RungeK. SüßP. FeigeB. NickelK. HeidtT. DomschkeK. EggerK. PrüssH. MeyerP.T. Tebartz van ElstL. Psychiatric presentation of Anti-NMDA receptor encephalitis.Front. Neurol.201910108610.3389/fneur.2019.0108631749755
    [Google Scholar]
  21. ObiC.A. Baylor University Medical Center Proceedings.Taylor & Francis2019
    [Google Scholar]
  22. KonenF.F. SchwenkenbecherP. JendretzkyK.F. HümmertM.W. WegnerF. StangelM. SühsK.W. SkripuletzT. Severe Anti-N-methyl-D-aspartate receptor encephalitis under immunosuppression after liver transplantation.Front. Neurol.20191098710.3389/fneur.2019.0098731608003
    [Google Scholar]
  23. ChenY.H. WangH. Exploring diversity of COVID-19 based on substitution distance.Infect. Drug Resist.2020133887389410.2147/IDR.S27762033149633
    [Google Scholar]
  24. WangH. Tolerance limits for mixture-of-normal distributions with application to COVID-19 data.Wiley Interdiscip. Rev. Comput. Stat.2023156
    [Google Scholar]
  25. WangH. COVID−19, anti-NMDA receptor encephalitis and microRNA.Front. Immunol.20221382510310.3389/fimmu.2022.82510335392089
    [Google Scholar]
  26. SarigeciliE. ArslanI. UcarH.K. CelikU. Pediatric anti-NMDA receptor encephalitis associated with COVID-19.Childs Nerv. Syst.202137123919392210.1007/s00381‑021‑05155‑233852058
    [Google Scholar]
  27. LeeH. JeonJ.H. ChoiH. KohS.H. LeeK.Y. LeeY.J. KwonH.S. Anti-N-methyl-D-aspartate receptor encephalitis after coronavirus disease 2019: A case report and literature review.Medicine202210135e3046410.1097/MD.000000000003046436107550
    [Google Scholar]
  28. McHattieA.W. CoeberghJ. KhanF. MorganteF. Palilalia as a prominent feature of anti-NMDA receptor encephalitis in a woman with COVID-19.J. Neurol.2021268113995399710.1007/s00415‑021‑10542‑533830334
    [Google Scholar]
  29. NazA. MohamedH. NohaS. AbdallahA. SzolicsM.J.S.N. Acute anti-N-Methyl D-Aspartate receptor encephalitis following Covid-19 vaccination.SVOA Neurol.202213
    [Google Scholar]
  30. BlitshteynS. BrookJ. Postural tachycardia syndrome (POTS) with anti-NMDA receptor antibodies after human papillomavirus vaccination.Immunol. Res.201765128228410.1007/s12026‑016‑8855‑127561785
    [Google Scholar]
  31. MartinS. AzzouzB. MorelA. TrenqueT. Anti-NMDA receptor encephalitis and vaccination: A disproportionality analysis.Front. Pharmacol.20221394078010.3389/fphar.2022.94078036059934
    [Google Scholar]
  32. CohenP.A. JhingranA. OakninA. DennyL. Cervical cancer.Lancet20193931016716918210.1016/S0140‑6736(18)32470‑X30638582
    [Google Scholar]
  33. WangR. PanW. JinL. HuangW. LiY. WuD. GaoC. MaD. LiaoS. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge.Cancer Lett.20204718810210.1016/j.canlet.2019.11.03931812696
    [Google Scholar]
  34. SundaramN. VooT.C. TamC.C. Adolescent HPV vaccination: Empowerment, equity and ethics.Hum. Vaccin. Immunother.20201681835184010.1080/21645515.2019.169759631860406
    [Google Scholar]
  35. AranaJ. Mba-JonasA. JankoskyC. LewisP. MoroP.L. ShimabukuroT.T. CanoM. Reports of postural orthostatic tachycardia syndrome after human papillomavirus vaccination in the vaccine adverse event reporting system.J. Adolesc. Health201761557758210.1016/j.jadohealth.2017.08.00429061232
    [Google Scholar]
  36. BlitshteynS. BrinthL. HendricksonJ.E. Martinez-LavinM. Autonomic dysfunction and HPV immunization: an overview.Immunol. Res.201866674475410.1007/s12026‑018‑9036‑130478703
    [Google Scholar]
  37. HuangJ. DuJ. DuanR. ZhangX. TaoC. ChenY. Characterization of the differential adverse event rates by race/ethnicity groups for HPV vaccine by integrating data from different sources.Front. Pharmacol.2018953910.3389/fphar.2018.0053929896103
    [Google Scholar]
  38. WardD. ThorsenN.M. FrischM. Valentiner-BranthP. MølbakK. HviidA. A cluster analysis of serious adverse event reports after human papillomavirus (HPV) vaccination in Danish girls and young women, September 2009 to August 2017.Euro Surveill.20192419180038010.2807/1560‑7917.ES.2019.24.19.180038031088598
    [Google Scholar]
  39. HwangH-W. MendellJ.T. MicroRNAs in cell proliferation, cell death, and tumorigenesis.Br. J. Cancer200694677678010.1038/sj.bjc.660302316495913
    [Google Scholar]
  40. PengY. CroceC.M. The role of microRNAs in human cancer.Signal Transduct. Target. Ther.2016111500410.1038/sigtrans.2015.429263891
    [Google Scholar]
  41. KarthikeyanA. PatnalaR. JadhavS.P. Eng-AngL. DheenS.T. MicroRNAs: Key players in microglia and astrocyte mediated inflammation in CNS pathologies.Curr. Med. Chem.201623303528354610.2174/092986732366616081400104027528056
    [Google Scholar]
  42. TaguchiY.H. WangH. Exploring microRNA biomarker for amyotrophic lateral sclerosis.Int. J. Mol. Sci.2018195131810.3390/ijms1905131829710810
    [Google Scholar]
  43. TaguchiY. WangH. Exploring MicroRNA biomarkers for Parkinson’s disease from mRNA expression profiles.Cells201871224510.3390/cells712024530563060
    [Google Scholar]
  44. TakuseY. WatanabeM. InoueN. OzakiR. OhtsuH. SaekiM. KatsumataY. HidakaY. IwataniY. Association of il-10-regulating microRNAs in peripheral blood mononuclear cells with the pathogenesis of autoimmune thyroid disease.Immunol. Invest.201746659060210.1080/08820139.2017.132297528742402
    [Google Scholar]
  45. PanebiancoV. PaciP. PecoraroM. ConteF. CarnicelliG. BesharatZ. CatanzaroG. SplendianiE. SciarraA. FarinaL. CatalanoC. FerrettiE. Network analysis integrating microRNA expression profiling with mri biomarkers and clinical data for prostate cancer early detection: A proof of concept study.Biomedicines2021910147010.3390/biomedicines910147034680592
    [Google Scholar]
  46. WangH. MicroRNAs, multiple sclerosis, and depression.Int. J. Mol. Sci.20212215780210.3390/ijms2215780234360568
    [Google Scholar]
  47. NiwaldM. Migdalska-SękM. Brzeziańska-LasotaE. MillerE. Evaluation of selected MicroRNAs expression in remission phase of multiple sclerosis and their potential link to cognition, depression, and disability.J. Mol. Neurosci.2017633-427528210.1007/s12031‑017‑0977‑y29043654
    [Google Scholar]
  48. WangH. MicroRNAs, Parkinson’s disease, and diabetes mellitus.Int. J. Mol. Sci.2021226295310.3390/ijms2206295333799467
    [Google Scholar]
  49. ChenY.H. WangH. The association between migraine and depression based on mirna biomarkers and cohort studies.Curr. Med. Chem.202128275648565610.2174/092986732766620111710002633208058
    [Google Scholar]
  50. ChenY.H. WangH. The association between depression and gastroesophageal reflux based on phylogenetic analysis of miRNA biomarkers.Curr. Med. Chem.202027386536654710.2174/092986732766620042521490632334497
    [Google Scholar]
  51. ZhangJ. XuX. ZhaoS. GongZ. LiuP. GuanW. HeX. WangT. PengT. TengJ. JiaY. The expression and significance of the plasma Let-7 Family in Anti-N-methyl-d-aspartate receptor encephalitis.J. Mol. Neurosci.201556353153910.1007/s12031‑015‑0489‑625603816
    [Google Scholar]
  52. WangH. Anti-NMDA receptor encephalitis, vaccination and virus.Curr. Pharm. Des.201931820697
    [Google Scholar]
  53. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: From microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky114130423142
    [Google Scholar]
  54. FrommB. BillippT. PeckL.E. JohansenM. TarverJ.E. KingB.L. NewcombJ.M. SempereL.F. FlatmarkK. HovigE. PetersonK.J. A Uniform System for the annotation of vertebrate microrna genes and the evolution of the human micrornaome.Annu. Rev. Genet.201549121324210.1146/annurev‑genet‑120213‑09202326473382
    [Google Scholar]
  55. FrommB. DomanskaD. HøyeE. OvchinnikovV. KangW. Aparicio-PuertaE. JohansenM. FlatmarkK. MathelierA. HovigE. HackenbergM. FriedländerM.R. PetersonK.J. MirGeneDB 2.0: The metazoan microRNA complement.Nucleic Acids Res.202048D1D132D14110.1093/nar/gkz88531598695
    [Google Scholar]
  56. LiY. WangF. XuJ. YeF. ShenY. ZhouJ. LuW. WanX. MaD. XieX. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29.J. Pathol.2011224448449510.1002/path.287321503900
    [Google Scholar]
  57. ZamaniS. HosseiniS.M. SohrabiA. miR-21 and miR29-a: Potential molecular biomarkers for HPV genotypes and cervical cancer detection.MicroRNA20219427127510.2174/221153660966619111511001531733640
    [Google Scholar]
  58. JayamohanS. KannanM. MoorthyR.K. RajasekaranN. JungH.S. ShinY.K. ArockiamA.J.V. Dysregulation of miR-375/AEG-1 Axis by human papillomavirus 16/18-E6/E7 promotes cellular proliferation, migration, and invasion in cervical cancer.Front. Oncol.2019984710.3389/fonc.2019.0084731552174
    [Google Scholar]
  59. WuS. ChenH. Anti-Condyloma acuminata mechanism of microRNAs-375 modulates HPV in cervical cancer cells via the UBE3A and IGF-1R pathway.Oncol. Lett.20181633241324710.3892/ol.2018.898330127920
    [Google Scholar]
  60. TianQ.F. LiY. WangF.F. LiY. XuJ.F. ShenY.M. YeF. WangX.Y. ChengX.D. ChenY.X. WanX.Y. LuW.G. XieX. MicroRNA detection in cervical exfoliated cells as a triage for human papillomavirus-positive women.Jnci-J. Natl. Cancer I20149106
    [Google Scholar]
  61. LajerC.B. GarnæsE. Friis-HansenL. NorrildB. TherkildsenM.H. GludM. RossingM. LajerH. SvaneD. SkotteL. SpechtL. BuchwaldC. NielsenF.C. The role of miRNAs in human papilloma virus (HPV)-associated cancers: Bridging between HPV-related head and neck cancer and cervical cancer.Br. J. Cancer201210691526153410.1038/bjc.2012.10922472886
    [Google Scholar]
  62. ZhangQ. ChenY. HuS.Q. PuY.M. ZhangK. WangY.X. A HPV16-related prognostic indicator for head and neck squamous cell carcinoma.Ann. Transl. Med.2020822149210.21037/atm‑20‑633833313237
    [Google Scholar]
  63. ChenY.Z. WangJ.W. MengF.C. YangP. ZhangX.G. WuH.Z. LncRNATCF7 up-regulates DNMT1 mediated by HPV-18 E6 and regulates biological behavior of cervical cancer cells by inhibiting miR-155.Eur. Rev. Med. Pharmacol. Sci.201923208779878731696464
    [Google Scholar]
  64. WangX. WangH.K. LiY. HafnerM. BanerjeeN.S. TangS. BriskinD. MeyersC. ChowL.T. XieX. TuschlT. ZhengZ.M. microRNAs are biomarkers of oncogenic human papillomavirus infections.Proc. Natl. Acad. Sci.2014111114262426710.1073/pnas.140143011124591631
    [Google Scholar]
  65. HardenM.E. PrasadN. GriffithsA. MungerK. Modulation of microRNA-mRNA target pairs by human papillomavirus 16 oncoproteins.MBio201781e02170-1610.1128/mBio.02170‑1628049151
    [Google Scholar]
  66. Ocadiz-DelgadoR. Cruz-ColinJ.L. Alvarez-RiosE. Torres-CarrilloA. Hernandez-MendozaK. Conde-PérezprinaJ.C. Dominguez-GomezG.I. Garcia-VillaE. LambertP.F. GariglioP. Expression of miR-34a and miR-15b during the progression of cervical cancer in a murine model expressing the HPV16 E7 oncoprotein.J. Physiol. Biochem.202177454755510.1007/s13105‑021‑00818‑933937961
    [Google Scholar]
  67. Zubillaga-guerreroM. Illades-aguiarB. Flores-alfaroE. Castro-coronelY. Jiménez-wencesH. López-bayghen PatiñoE. García PérezK. Alarcón-romeroL.D.C. An increase of microRNA-16-1 is associated with the high proliferation of squamous intraepithelial lesions in the presence of the integrated state of HR-HPV in liquid cytology samples.Oncol. Lett.2020204110.3892/ol.2020.1196532831923
    [Google Scholar]
  68. XuM. HuseinovicA. JaspersA. YuanL. SteenbergenR.D.M. Downregulation of miR-193a/b-3p during HPV-induced cervical carcinogenesis contributes to anchorage-independent growth through PI3K-AKT pathway regulators.J. Med. Virol.2023953e2858910.1002/jmv.2858936799263
    [Google Scholar]
  69. WangY. XuB. ShenX. SunL. Diagnostic value of miR-153 and miR-203 in patients with cervical cancer and their correlation with human papillomavirus infection.Am. J. Transl. Res.20211389736974234540103
    [Google Scholar]
  70. MarthalerA.M. PodgorskaM. FeldP. FingerleA. Knerr-RuppK. GrässerF. SmolaH. RoemerK. EbertE. KimY.J. BohleR.M. MüllerC.S.L. ReichrathJ. VogtT. MalejczykM. MajewskiS. SmolaS. Identification of C/EBPα as a novel target of the HPV8 E6 protein regulating miR-203 in human keratinocytes.PLoS Pathog.2017136e100640610.1371/journal.ppat.100640628640877
    [Google Scholar]
  71. LuoM. ShenD. ZhouX. ChenX. WangW. MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor.Surgery2013153683684710.1016/j.surg.2012.12.00423453369
    [Google Scholar]
  72. ChapmanB.V. WaldA.I. AkhtarP. MunkoA.C. XuJ. GibsonS.P. GrandisJ.R. FerrisR.L. KhanS.A. MicroRNA-363 targets myosin 1B to reduce cellular migration in head and neck cancer.BMC Cancer201515186110.1186/s12885‑015‑1888‑326545583
    [Google Scholar]
  73. LiuX. ZhangY. WangS. LiuG. RuanL. Loss of miR-143 and miR-145 in condyloma acuminatum promotes cellular proliferation and inhibits apoptosis by targeting NRAS.R. Soc. Open Sci.20185817237610.1098/rsos.17237630225000
    [Google Scholar]
  74. HongS. ChengS. SongockW. BodilyJ. LaiminsL.A. Suppression of microRNA 424 levels by human papillomaviruses is necessary for differentiation-dependent genome amplification.J. Virol.20179124e01712-1710.1128/JVI.01712‑1728978708
    [Google Scholar]
  75. SannigrahiM.K. SharmaR. SinghV. PandaN.K. RattanV. KhullarM. Role of host miRNA hsa-mir-139-3p in hpv-16-induced carcinomas.Clin. Cancer Res.201723143884389510.1158/1078‑0432.CCR‑16‑293628143871
    [Google Scholar]
  76. GraurD. LiW-H. Fundamentals of molecular evolution.2nd edSunderland, Ma.Sinauer2000
    [Google Scholar]
  77. MaY.J. YangJ. FanX.L. ZhaoH.B. HuW. LiZ.P. YuG.C. DingX.R. WangJ.Z. BoX.C. ZhengX.F. ZhouZ. WangS.Q. Cellular micro RNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells.J. Cell. Mol. Med.201216102539254610.1111/j.1582‑4934.2012.01572.x22452878
    [Google Scholar]
  78. YinH. FanZ. LiX. WangJ. LiuW. WuB. YingZ. LiuL. LiuZ. LiJ. Phylogenetic tree-informed microRNAome analysis uncovers conserved and lineage-specific miRNAs in Camellia during floral organ development.J. Exp. Bot.20166792641265310.1093/jxb/erw09526951373
    [Google Scholar]
  79. TarverJ.E. SperlingE.A. NailorA. HeimbergA.M. RobinsonJ.M. KingB.L. PisaniD. DonoghueP.C.J. PetersonK.J. miRNAs: Small genes with big potential in metazoan phylogenetics.Mol. Biol. Evol.201330112369238210.1093/molbev/mst13323913097
    [Google Scholar]
  80. PatelV.D. CapraJ.A. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs.BMC Genomics201718167210.1186/s12864‑017‑4073‑z28859623
    [Google Scholar]
  81. WangH. A protocol for investigating the association of vaccination and anti-NMDA receptor encephalitis.Front. Biosci.201810122923710.2741/s51128930529
    [Google Scholar]
  82. WangH. The distance distribution of human microRNAs in MirGeneDB database.Sci. Rep.20221211769610.1038/s41598‑022‑22253‑636271017
    [Google Scholar]
  83. WangH. HoC. The human Pre-miRNA distance distribution for exploring disease association.Int. J. Mol. Sci.2023242100910.3390/ijms2402100936674554
    [Google Scholar]
  84. EliassonL. The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function.Mol. Cell. Endocrinol.20174569510110.1016/j.mce.2017.02.04328254488
    [Google Scholar]
  85. PoyM.N. HausserJ. TrajkovskiM. BraunM. CollinsS. RorsmanP. ZavolanM. StoffelM. miR-375 maintains normal pancreatic α- and β-cell mass.Proc. Natl. Acad. Sci.2009106145813581810.1073/pnas.081055010619289822
    [Google Scholar]
  86. WangH. MicroR.N.A. MicroRNA, diabetes mellitus and colorectal cancer.Biomedicines202081253010.3390/biomedicines812053033255227
    [Google Scholar]
  87. KellerD.M. PerezI.G. Dual regulation of miR-375 and CREM genes in pancreatic beta cells.Islets202214113914810.1080/19382014.2022.206068835377267
    [Google Scholar]
  88. PashangzadehS. MotallebnezhadM. VafashoarF. KhalvandiA. MojtabaviN. Implications the role of miR-155 in the pathogenesis of autoimmune diseases.Front. Immunol.20211266938210.3389/fimmu.2021.66938234025671
    [Google Scholar]
  89. KalkusovaK. TaborskaP. StakheevD. SmrzD. The role of miR-155 in antitumor immunity.Cancers20221421541410.3390/cancers1421541436358832
    [Google Scholar]
  90. JafarzadehA. NaseriA. ShojaieL. NematiM. JafarzadehS. Bannazadeh BaghiH. HamblinM.R. AkhlaghS.A. MirzaeiH. MicroRNA-155 and antiviral immune responses.Int. Immunopharmacol.2021101(PT A)10818810.1016/j.intimp.2021.108188
    [Google Scholar]
  91. KamolratanakulS. PitisuttithumP. Human papillomavirus vaccine efficacy and effectiveness against cancer.Vaccines2021912141310.3390/vaccines912141334960159
    [Google Scholar]
  92. ChungJ.Y. LeeS.J. ShinB.S. KangH.G. Myasthenia gravis following human papillomavirus vaccination: A case report.BMC Neurol.201818122210.1186/s12883‑018‑1233‑y30593270
    [Google Scholar]
  93. HeN. LengX. ZengX. Systemic lupus erythematosus following human papillomavirus vaccination: A case-based review.Int. J. Rheum. Dis.202225101208121210.1111/1756‑185X.1440435948863
    [Google Scholar]
  94. LiW. JiaD. TongL. LunZ. LiH. Anti-N-methyl-d-aspartate receptor encephalitis induced by bilateral ovarian teratomas with distinct histopathologic types.Medicine20199848e1814810.1097/MD.000000000001814831770255
    [Google Scholar]
  95. SenkomagoV. HenleyS.J. ThomasC.C. MixJ.M. MarkowitzL.E. SaraiyaM. Human papillomavirus-attributable cancers - United States, 2012-2016.MMWR Morb. Mortal. Wkly. Rep.2019683372472810.15585/mmwr.mm6833a331437140
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673264615231124072130
Loading
/content/journals/cmc/10.2174/0109298673264615231124072130
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test