Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Malaria remains a significant global health threat despite extensive efforts aimed at its eradication. Numerous challenges persist in eliminating the disease, chief among them being the parasite's ability to mutate, resulting in drug resistance. The discovery of antimalarial drugs has relied on both phenotypic and target-based approaches. While phenotypic screening has identified promising candidates, target-based methods offer a more precise approach by leveraging chemically validated targets and computational tools. Analysis of spp. protein structures reveal druggable targets, offering opportunities for screening. Combining compounds from natural and synthetic sources in a target-based approach accelerates the discovery of new antimalarial agents. This review explores previous breakthroughs in antimalarial drug discovery from natural products and synthetic origins, emphasizing their specific target proteins within species.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673312727240527064833
2024-05-30
2025-01-27
Loading full text...

Full text loading...

References

  1. AliF. WaliH. JanS. ZiaA. AslamM. AhmadI. AfridiS.G. ShamsS. KhanA. Analysing the essential proteins set of Plasmodium falciparum PF3D7 for novel drug targets identification against malaria.Malar. J.202120133510.1186/s12936‑021‑03865‑134344361
    [Google Scholar]
  2. (MMV), M.f.M.V. Species of Plasmodium parasites infecting humans with malaria. Available from: https://www.mmv.org/malaria/species-plasmodium-parasites
  3. PradhanS. HoreS. RoyS. MannaS. DamP. MondalR. GhatiA. BiswasT. ShawS. SharmaS. SinghW.S. MajiS.K. RoyS. BasuA. PandeyK.C. SamantaS. VashishtK. DolaiT.K. KunduP.K. MitraS. BiswasD. SadatA. ShokriyanM. MaityA.B. MandalA.K. İnceİ.A. Geo-environmental factors and the effectiveness of mulberry leaf extract in managing malaria.Sci. Rep.20231311480810.1038/s41598‑023‑41668‑337684270
    [Google Scholar]
  4. Ministry of Health Malaysia: Management Guideline of Malaria in Malaysia. Available from: https://www.moh.gov.my/index.php/pages/view/1181
  5. LaiM.Y. RafieqinN. LeeP.Y.L. Amir RawaM.S. DzulS. YahayaN. AbdullahF.H. OthmanN. JelipJ. OoiC.H. IbrahimJ. AungM. AbdullahA.H. LailiZ. LauY.L. High incidence of Plasmodium knowlesi malaria compared to other human malaria species in several hospitals in Malaysia.Trop. Biomed.202138324825310.47665/tb.38.3.06534362867
    [Google Scholar]
  6. WHO World malaria report 2021. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.2021Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
  7. WHO World malaria report 2023. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.2023Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
  8. Malaria symptoms and treatment options.Available from: https://www.mmv.org/malaria/malaria-symptoms-and-treatment-options
  9. HemingwayJ. ShrettaR. WellsT.N.C. BellD. DjimdéA.A. AcheeN. QiG. Tools and strategies for malaria control and elimination: What do we need to achieve a grand convergence in malaria?PLoS Biol.2016143e100238010.1371/journal.pbio.100238026934361
    [Google Scholar]
  10. GachelinG. GarnerP. FerroniE. VerhaveJ.P. OpinelA. Evidence and strategies for malaria prevention and control: A historical analysis.Malar. J.20181719610.1186/s12936‑018‑2244‑229482556
    [Google Scholar]
  11. LoboN.F. AcheeN.L. GreicoJ. CollinsF.H. Modern vector control.Cold Spring Harb. Perspect. Med.201881a02564310.1101/cshperspect.a02564328507198
    [Google Scholar]
  12. TizifaT.A. KabagheA.N. McCannR.S. van den BergH. Van VugtM. PhiriK.S. Prevention efforts for malaria.Curr. Trop. Med. Rep.201851415010.1007/s40475‑018‑0133‑y29629252
    [Google Scholar]
  13. LandierJ. ParkerD.M. ThuA.M. CarraraV.I. LwinK.M. BonningtonC.A. PukrittayakameeS. DelmasG. NostenF.H. The role of early detection and treatment in malaria elimination.Malar. J.201615136310.1186/s12936‑016‑1399‑y27421656
    [Google Scholar]
  14. KambojA. SihagB. BrarD.S. KaurA. SalunkeD.B. Structure activity relationship in β-carboline derived anti-malarial agents.Eur. J. Med. Chem.202122111353610.1016/j.ejmech.2021.11353634058709
    [Google Scholar]
  15. KümpornsinK. KochakarnT. ChookajornT. The resistome and genomic reconnaissance in the age of malaria elimination.Dis. Model. Mech.20191212dmm04071710.1242/dmm.04071731874839
    [Google Scholar]
  16. WarsameM. HassanA.H. HassanA.M. AraleA.M. JibrilA.M. MohamudS.A. BarretteA. MuseA.Y. YusufF.E. NadaR.A. AmranJ.G.H. Efficacy of artesunate + sulphadoxine/pyrimethamine and artemether + lumefantrine and dhfr and dhps mutations in Somalia: Evidence for updating the malaria treatment policy.Trop. Med. Int. Health201722441542210.1111/tmi.1284728151566
    [Google Scholar]
  17. MishraN. KaitholiaK. SrivastavaB. ShahN.K. NarayanJ.P. DevV. PhookanS. AnvikarA.R. RanaR. BhartiR.S. SonalG.S. DhariwalA.C. ValechaN. Declining efficacy of artesunate plus sulphadoxine-pyrimethamine in northeastern India.Malar. J.201413128410.1186/1475‑2875‑13‑28425052385
    [Google Scholar]
  18. PhyoA.P. AshleyE.A. AndersonT.J.C. BozdechZ. CarraraV.I. SriprawatK. NairS. WhiteM.M. DziekanJ. LingC. ProuxS. KonghahongK. JeeyapantA. WoodrowC.J. ImwongM. McGreadyR. LwinK.M. DayN.P.J. WhiteN.J. NostenF. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the thai–myanmar border (2003–2013): The role of parasite genetic factors.Clin. Infect. Dis.201663678479110.1093/cid/ciw38827313266
    [Google Scholar]
  19. van der PluijmR.W. ImwongM. ChauN.H. HoaN.T. Thuy-NhienN.T. ThanhN.V. JittamalaP. HanboonkunupakarnB. ChutasmitK. SaelowC. RunjarernR. KaewmokW. TripuraR. PetoT.J. YokS. SuonS. SrengS. MaoS. OunS. YenS. AmaratungaC. LekD. HuyR. DhordaM. ChotivanichK. AshleyE.A. MukakaM. WaithiraN. CheahP.Y. MaudeR.J. AmatoR. PearsonR.D. GonçalvesS. JacobC.G. HamiltonW.L. FairhurstR.M. TarningJ. WinterbergM. KwiatkowskiD.P. PukrittayakameeS. HienT.T. DayN.P.J. MiottoO. WhiteN.J. DondorpA.M. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: A prospective clinical, pharmacological, and genetic study.Lancet Infect. Dis.201919995296110.1016/S1473‑3099(19)30391‑331345710
    [Google Scholar]
  20. KokoV.S. WarsameM. VonhmB. JeuronlonM.K. MenardD. MaL. TawehF. TehmehL. NyansaiyeP. PrattO.J. ParwonS. KamaraP. AsinyaM. KollieA. RingwaldP. Artesunate–amodiaquine and artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in Liberia: in vivo efficacy and frequency of molecular markers.Malar. J.202221113410.1186/s12936‑022‑04140‑735477399
    [Google Scholar]
  21. RTS,S Clinical Trials Partnership Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial.Lancet20153869988314510.1016/S0140‑6736(15)60721‑825913272
    [Google Scholar]
  22. SyedY.Y. RTS,S/AS01 malaria vaccine (Mosquirix®): A profile of its use.Drugs Ther. Perspect.202238937338110.1007/s40267‑022‑00937‑336093265
    [Google Scholar]
  23. ChaniadP. PhuwajaroanpongA. TecharangT. HorataN. ChukaewA. PunsawadC. Evaluation of the antimalarial activity and toxicity of Mahanil-Tang-Thong formulation and its plant ingredients.BMC Complement. Med. Ther.20222215110.1186/s12906‑022‑03531‑235219319
    [Google Scholar]
  24. MenardD. DondorpA. Antimalarial drug resistance: A threat to malaria elimination.Cold Spring Harb. Perspect. Med.201777a02561910.1101/cshperspect.a02561928289248
    [Google Scholar]
  25. ArendseL.B. WyllieS. ChibaleK. GilbertI.H. Plasmodium kinases as potential drug targets for malaria: Challenges and opportunities.ACS Infect. Dis.20217351853410.1021/acsinfecdis.0c0072433590753
    [Google Scholar]
  26. DucatiR.G. Namanja-MaglianoH.A. HarijanR.K. FajardoJ.E. FiserA. DailyJ.P. SchrammV.L. Genetic resistance to purine nucleoside phosphorylase inhibition in Plasmodium falciparum.Proc. Natl. Acad. Sci. USA201811592114211910.1073/pnas.152567011529440412
    [Google Scholar]
  27. KarthikeyanA. JosephA. NairB.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases.J. Genet. Eng. Biotechnol.20222011410.1186/s43141‑021‑00290‑435080679
    [Google Scholar]
  28. MushtaqS. AbbasiB.H. UzairB. AbbasiR. Natural products as reservoirs of novel therapeutic agents.EXCLI J.20181742045129805348
    [Google Scholar]
  29. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b0128532162523
    [Google Scholar]
  30. MojabF. Antimalarial natural products: A review.Avicenna J. Phytomed.201222526225050231
    [Google Scholar]
  31. WellsT.N.C. Natural products as starting points for future anti-malarial therapies: Going back to our roots?Malar. J.201110S1Suppl. 1S310.1186/1475‑2875‑10‑S1‑S321411014
    [Google Scholar]
  32. NarulaA.K. AzadC.S. NainwalL.M. New dimensions in the field of antimalarial research against malaria resurgence.Eur. J. Med. Chem.201918111135310.1016/j.ejmech.2019.05.04331525705
    [Google Scholar]
  33. TajuddeenN. Van HeerdenF.R. Antiplasmodial natural products: An update.Malar. J.201918140410.1186/s12936‑019‑3026‑131805944
    [Google Scholar]
  34. WangJ. XuC. WongY.K. LiY. LiaoF. JiangT. TuY. Artemisinin, the magic drug discovered from traditional chinese medicine.Engineering201951323910.1016/j.eng.2018.11.011
    [Google Scholar]
  35. HermanJ.D. PepperL.R. CorteseJ.F. EstiuG. GalinskyK. Zuzarte-LuisV. DerbyshireE.R. RibackeU. LukensA.K. SantosS.A. PatelV. ClishC.B. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs.Sci. Transl. Med.20157288288ra77
    [Google Scholar]
  36. RobertA. An antimalarial cyclic pentapeptide from a fungal strain in the herpotrichiellaceae.J. Antibiot.202376642649
    [Google Scholar]
  37. EzenyiI.C. ChirawurahJ.D. ErhunseN. AgrawalP. SahalD. IgoliJ.O. Marmesin isolated from Celtis durandii Engl. root bioactive fraction inhibits β-hematin formation and contributes to antiplasmodial activity.J. Ethnopharmacol.202331711680411680410.1016/j.jep.2023.11680437352945
    [Google Scholar]
  38. PrebbleD.W. HollandD.C. FerrettiF. HaytonJ.B. AveryV.M. MellickG.D. CarrollA.R. α-synuclein aggregation inhibitory and antiplasmodial activity of constituents from the Australian tree Eucalyptus cloeziana.J. Nat. Prod.20238692171218410.1021/acs.jnatprod.3c0045837610242
    [Google Scholar]
  39. ErhunseN. KumariS. Anmol SinghP. OmoregieE.S. SinghA.P. SharmaU. SahalD. Annickia affinis (Exell) Versteegh & Sosef methanol stem bark extract, potent fractions and isolated Berberine alkaloid target both blood and liver stages of malaria parasites.J. Ethnopharmacol.2024319Pt 211726910.1016/j.jep.2023.11726937813288
    [Google Scholar]
  40. DongmoK.J.J. TaliM.B.T. FongangY.S.F. TaguimjeuP.L.K.T. KaghoD.U.K. BitchagnoG.T. LentaB.N. BoyomF.F. SewaldN. NgouelaS.A. In vitro antiplasmodial activity and toxicological profile of extracts, fractions and chemical constituents of leaves and stem bark from Dacryodes edulis (Burseraceae).BMC Complement. Med. Ther.202323121110.1186/s12906‑023‑03957‑237370061
    [Google Scholar]
  41. MiandaS.M. InvernizziL. van der WattM.E. ReaderJ. MoyoP. BirkholtzL.M. MaharajV.J. In vitro dual activity of Aloe marlothii roots and its chemical constituents against Plasmodium falciparum asexual and sexual stage parasites.J. Ethnopharmacol.202229711555110.1016/j.jep.2022.11555135850311
    [Google Scholar]
  42. ThiengsusukA. MuhamadP. ChaijaroenkulW. Na-BangchangK. Antimalarial Activity of Piperine Antimalarial activity of piperine.J. Trop. Med.201820181710.1155/2018/948690530631371
    [Google Scholar]
  43. ElebiyoT.C. OlubaO.M. AdeyemiO.S. Anti-malarial and haematological evaluation of the ethanolic, ethyl acetate and aqueous fractions of Chromolaena odorata.BMC Complement. Med. Ther.202323140210.1186/s12906‑023‑04200‑837946127
    [Google Scholar]
  44. WahyuniD.K. WacharasindhuS. BankeereeW. WahyuningsihS.P.A. EkasariW. PurnobasukiH. PunnapayakH. PrasongsukS. In vitro and in vivo antiplasmodial activities of leaf extracts from Sonchus arvensis L.BMC Complement Med. Ther.202323147
    [Google Scholar]
  45. MogakaS. MoluH. KagasiE. OgilaK. WaihenyaR. OnditiF. OzwaraH. Senna occidentalis (L.) Link root extract inhibits Plasmodium growth in vitro and in mice.BMC Complement. Med. Ther.20232317110.1186/s12906‑023‑03854‑836879244
    [Google Scholar]
  46. ForteB. OttilieS. PlaterA. CampoB. DecheringK.J. GamoF.J. GoldbergD.E. IstvanE.S. LeeM. LukensA.K. McNamaraC.W. NilesJ.C. OkomboJ. PasajeC.F.A. SiegelM.G. WirthD. WyllieS. FidockD.A. BaragañaB. WinzelerE.A. GilbertI.H. Prioritization of molecular targets for antimalarial drug discovery.ACS Infect. Dis.20217102764277610.1021/acsinfecdis.1c0032234523908
    [Google Scholar]
  47. YangT. OttilieS. IstvanE.S. Godinez-MaciasK.P. LukensA.K. BaragañaB. CampoB. WalpoleC. NilesJ.C. ChibaleK. DecheringK.J. LlinásM. LeeM.C.S. KatoN. WyllieS. McNamaraC.W. GamoF.J. BurrowsJ. FidockD.A. GoldbergD.E. GilbertI.H. WirthD.F. WinzelerE.A. Malaria Drug AcceleratorC. MalD.A. Malaria Drug Accelerator Consortium MalDA, accelerating malaria drug discovery.Trends Parasitol.202137649350710.1016/j.pt.2021.01.00933648890
    [Google Scholar]
  48. GuiguemdeW.A. ShelatA.A. Garcia-BustosJ.F. DiaganaT.T. GamoF.J. GuyR.K. Global phenotypic screening for antimalarials.Chem. Biol.201219111612910.1016/j.chembiol.2012.01.00422284359
    [Google Scholar]
  49. TseE.G. AithaniL. AndersonM. Cardoso-SilvaJ. CincillaG. ConduitG.J. GalushkaM. GuanD. HallyburtonI. IrwinB.W.J. KirkK. LehaneA.M. LindblomJ.C.R. LuiR. MatthewsS. McCullochJ. MotionA. NgH.L. ÖerenM. RobertsonM.N. SpadavecchioV. TatsisV.A. van HoornW.P. WadeA.D. WhiteheadT.M. WillisP. ToddM.H. An open drug discovery competition: Experimental validation of predictive models in a series of novel antimalarials.J. Med. Chem.20216422164501646310.1021/acs.jmedchem.1c0031334748707
    [Google Scholar]
  50. VaidyaA.B. MorriseyJ.M. ZhangZ. DasS. DalyT.M. OttoT.D. SpillmanN.J. WyvrattM. SieglP. MarfurtJ. WirjanataG. SebayangB.F. PriceR.N. ChatterjeeA. NagleA. StasiakM. CharmanS.A. Angulo-BarturenI. FerrerS. Belén Jiménez-DíazM. MartínezM.S. GamoF.J. AveryV.M. RueckerA. DelvesM. KirkK. BerrimanM. KortagereS. BurrowsJ. FanE. BergmanL.W. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum.Nat. Commun.201451552110.1038/ncomms652125422853
    [Google Scholar]
  51. FloydD.M. SteinP. WangZ. LiuJ. CastroS. ClarkJ.A. ConnellyM. ZhuF. HolbrookG. MathenyA. SigalM.S. MinJ. DhinakaranR. KrishnanS. BashyumS. KnappS. GuyR.K. Hit-to-lead studies for the antimalarial tetrahydroisoquinolone carboxanilides.J. Med. Chem.201659177950796210.1021/acs.jmedchem.6b0075227505686
    [Google Scholar]
  52. SheelaNairA. RomanczukA.S. AogoR.A. HaldarR.N. LansinkL.I.M. CromerD. SalinasY.G. GuyR.K. McCarthyJ.S. DavenportM.P. HaqueA. KhouryD.S. Similarly efficacious anti-malarial drugs SJ733 and pyronaridine differ in their ability to remove circulating parasites in mice.Malar. J.20222114910.1186/s12936‑022‑04075‑z35172826
    [Google Scholar]
  53. BouwmanS.A.M. Zoleko-ManegoR. RennerK.C. SchmittE.K. Mombo-NgomaG. GrobuschM.P. The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound.Travel Med. Infect. Dis.20203610176510.1016/j.tmaid.2020.10176532561392
    [Google Scholar]
  54. DanaD. DasT. ChoiA. BhuiyanA.I. DasT.K. TaleleT.T. PathakS.K. Nek2 kinase signaling in malaria, bone, immune and kidney disorders to metastatic cancers and drug resistance: Progress on Nek2 inhibitor development.Molecules202227234710.3390/molecules2702034735056661
    [Google Scholar]
  55. LaurentD. JullianV. ParentyA. KnibiehlerM. DorinD. SchmittS. LozachO. LebouvierN. FrostinM. AlbyF. MaurelS. DoerigC. MeijerL. SauvainM. Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp. Bioorg. Med. Chem.200614134477448210.1016/j.bmc.2006.02.02616513357
    [Google Scholar]
  56. DesoubzdanneD. MarcourtL. RauxR. ChevalleyS. DorinD. DoerigC. ValentinA. AusseilF. DebitusC. Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a new caledonian deep water sponge.J. Nat. Prod.20087171189119210.1021/np800090918512987
    [Google Scholar]
  57. BeleteT.M. Recent progress in the development of new antimalarial drugs with novel targets.Drug Des. Devel. Ther.2020143875388910.2147/DDDT.S26560233061294
    [Google Scholar]
  58. WhiteN.J. DuongT.T. UthaisinC. NostenF. PhyoA.P. HanboonkunupakarnB. PukrittayakameeS. JittamalaP. ChuthasmitK. CheungM.S. FengY. LiR. MagnussonB. SultanM. WieserD. XunX. ZhaoR. DiaganaT.T. PertelP. LeongF.J. Antimalarial Activity of KAF156 in Falciparum and Vivax Malaria Antimalarial activity of KAF156 in Falciparum and Vivax malaria.N. Engl. J. Med.2016375121152116010.1056/NEJMoa160225027653565
    [Google Scholar]
  59. BrunschwigC. LawrenceN. TaylorD. AbayE. NjorogeM. BasarabG.S. ManachC.L. PaquetT. CabreraD.G. NchindaA.T. KockC.d. UCT943, a next-generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria.Antimicrob Agents Chemother. 2018629e00012e00018
    [Google Scholar]
  60. LiangX. JiangZ. HuangZ. LiF. ChenC. HuC. WangW. HuZ. LiuQ. WangB. WangL. QiZ. LiuJ. JiangL. LiuQ. Discovery of 6′-chloro-N-methyl-5′-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium.Eur. J. Med. Chem.202018811201210.1016/j.ejmech.2019.11201231911293
    [Google Scholar]
  61. FienbergS. EyermannC.J. ArendseL.B. BasarabG.S. McPhailJ.A. BurkeJ.E. ChibaleK. Structural basis for inhibitor potency and selectivity of Plasmodium falciparum phosphatidylinositol 4-kinase inhibitors.ACS Infect. Dis.20206113048306310.1021/acsinfecdis.0c0056632966036
    [Google Scholar]
  62. SinxadiP. DoniniC. JohnstoneH. LangdonG. WiesnerL. AllenE. DuparcS. ChalonS. McCarthyJ.S. LorchU. ChibaleK. MöhrleJ. BarnesK.I. Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048 in healthy volunteers.Antimicrob. Agents Chemother.2020644e01896-1910.1128/AAC.01896‑1931932368
    [Google Scholar]
  63. DembeleL. AngX. ChavchichM. BonamyG.M.C. SelvaJ.J. LimM.Y.X. BodenreiderC. YeungB.K.S. NostenF. RussellB.M. EdsteinM.D. StraimerJ. FidockD.A. DiaganaT.T. BifaniP. The plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites.Sci. Rep.201771232510.1038/s41598‑017‑02440‑628539634
    [Google Scholar]
  64. ChungZ. LinJ. WirjanataG. DziekanJ.M. El SahiliA. PreiserP.R. BozdechZ. LescarJ. Identification and structural validation of purine nucleoside phosphorylase from Plasmodium falciparum as a target of MMV000848.J. Biol. Chem.2024300110558610.1016/j.jbc.2023.10558638141766
    [Google Scholar]
  65. DziekanJ.M. YuH. ChenD. DaiL. WirjanataG. LarssonA. PrabhuN. SobotaR.M. BozdechZ. NordlundP. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay.Sci. Transl. Med.201911473eaau317410.1126/scitranslmed.aau317430602534
    [Google Scholar]
  66. BaragañaB. HallyburtonI. LeeM.C.S. NorcrossN.R. GrimaldiR. OttoT.D. ProtoW.R. BlagboroughA.M. MeisterS. WirjanataG. RueckerA. UptonL.M. AbrahamT.S. AlmeidaM.J. PradhanA. PorzelleA. MartínezM.S. BolscherJ.M. WoodlandA. LukschT. NorvalS. ZuccottoF. ThomasJ. SimeonsF. StojanovskiL. Osuna-CabelloM. BrockP.M. ChurcherT.S. SalaK.A. ZakutanskyS.E. Jiménez-DíazM.B. SanzL.M. RileyJ. BasakR. CampbellM. AveryV.M. SauerweinR.W. DecheringK.J. NoviyantiR. CampoB. FrearsonJ.A. Angulo-BarturenI. Ferrer-BazagaS. GamoF.J. WyattP.G. LeroyD. SieglP. DelvesM.J. KyleD.E. WittlinS. MarfurtJ. PriceR.N. SindenR.E. WinzelerE.A. CharmanS.A. BebrevskaL. GrayD.W. CampbellS. FairlambA.H. WillisP.A. RaynerJ.C. FidockD.A. ReadK.D. GilbertI.H. GilbertI.H. A novel multiple-stage antimalarial agent that inhibits protein synthesis.Nature2015522755631532010.1038/nature1445126085270
    [Google Scholar]
  67. KhandelwalA. ArezF. AlvesP.M. BadoloL. BritoC. FischliC. FontinhaD. OeuvrayC. PrudêncioM. RottmannM. WilkinsJ. YalkinogluÖ. BagchusW.M. SpangenbergT. Translation of liver stage activity of M5717, a Plasmodium elongation factor 2 inhibitor: From bench to bedside.Malar. J.202221115110.1186/s12936‑022‑04171‑035570264
    [Google Scholar]
  68. McCarthyJ.S. YalkinogluÖ. OdedraA. WebsterR. OeuvrayC. TappertA. BezuidenhoutD. GiddinsM.J. DhingraS.K. FidockD.A. MarquartL. WebbL. YinX. KhandelwalA. BagchusW.M. Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: A first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study.Lancet Infect. Dis.202121121713172410.1016/S1473‑3099(21)00252‑834715032
    [Google Scholar]
  69. FontinhaD. ArezF. GalI.R. NogueiraG. MoitaD. BaeurleT.H.H. BritoC. SpangenbergT. AlvesP.M. PrudêncioM. Pre-erythrocytic activity of M5717 in monotherapy and combination in preclinical Plasmodium infection models.ACS Infect. Dis.20228472172710.1021/acsinfecdis.1c0064035312290
    [Google Scholar]
  70. LaleuB. RubianoK. YeoT. HallyburtonI. AndersonM. Crespo-FernandezB. GamoF.J. Antonova-KochY. Orjuela-SanchezP. WittlinS. JanaG.P. MaityB.C. ChenuE. DuffyJ. SjöP. WatersonD. WinzelerE. GuantaiE. FidockD.A. HanssonT.G. Exploring a tetrahydroquinoline antimalarial hit from the medicines for malaria pathogen box and identification of its mode of resistance as Pf eEF2.ChemMedChem20221722e20220039310.1002/cmdc.20220039336129427
    [Google Scholar]
  71. BoschS.S. LunevS. BatistaF.A. LinzkeM. KronenbergerT. DömlingA.S.S. GrovesM.R. WrengerC. Molecular target validation of aspartate transcarbamoylase from Plasmodium falciparum by Torin 2.ACS Infect. Dis.20206598699910.1021/acsinfecdis.9b0041132129597
    [Google Scholar]
  72. WangC. ZhangB. KrügerA. DuX. VisserL. DömlingA.S.S. WrengerC. GrovesM.R. Discovery of small-molecule allosteric inhibitors of Pf ATC as antimalarials.J. Am. Chem. Soc.202214441190701907710.1021/jacs.2c0812836195578
    [Google Scholar]
  73. PutraA.M.J. ChaidirC. HanafiM. YanuarA. Predicted binding mode of andrographolide and its derivatives bound to Plasmodium falciparum geranylgeranyl pyrophosphate synthase.Int. J. App. Pharm.201799410.22159/ijap.2017.v9s1.54_60
    [Google Scholar]
  74. CarlucciR. Di GresiaG. MediavillaM.G. CriccoJ.A. TekwaniB.L. KhanS.I. LabadieG.R. Expanding the scope of novel 1,2,3-triazole derivatives as new antiparasitic drug candidates.RSC Medicinal Chemistry202314112213410.1039/D2MD00324D36760749
    [Google Scholar]
  75. GisselbergJ.E. HerreraZ. OrchardL.M. LlinásM. YehE. Specific inhibition of the bifunctional farnesyl/geranylgeranyl diphosphate synthase in malaria parasites via a new small-molecule binding site.Cell Chem. Biol.2018252185193.e510.1016/j.chembiol.2017.11.01029276048
    [Google Scholar]
  76. KabecheS. AidaJ. AktherT. IchikawaT. OchidaA. Pulkoski-GrossM.J. SmithM. HumphriesP.S. YehE. Nonbisphosphonate inhibitors of Plasmodium falciparum FPPS/GGPPS.Bioorg. Med. Chem. Lett.20214112797810.1016/j.bmcl.2021.12797833766764
    [Google Scholar]
  77. IshikawaT. MizutaS. KanekoO. YahataK. Fragment molecular orbital study of the interaction between sarco/endoplasmic reticulum Ca2+ -ATPase and its inhibitor thapsigargin toward anti-malarial development.J. Phys. Chem. B2018122337970797710.1021/acs.jpcb.8b0450930067362
    [Google Scholar]
  78. SafarH.F. AliA.H. ZakariaN.H. KamalN. HassanN.I. AgustarH.K. TalipN. LatipJ. Steroids from Diplazium esculentum: Antiplasmodial activity and molecular docking studies to investigate their binding modes.Trop. Biomed.202239455255810.47665/tb.39.4.01136602215
    [Google Scholar]
  79. TsamesidisI. MousavizadehF. EgwuC. AmanatidouD. PantaleoA. Benoit-VicalF. ReybierK. GiannisA. In vitro and in silico antimalarial evaluation of FM-AZ, a new artemisinin derivative.Medicines202292810.3390/medicines902000835200752
    [Google Scholar]
  80. PotluriV. ShandilR.K. GavaraR. SambasivamG. CampoB. WittlinS. NarayananS. Discovery of FNDR-20123, a histone deacetylase inhibitor for the treatment of Plasmodium falciparum malaria.Malar. J.202019136510.1186/s12936‑020‑03421‑333046062
    [Google Scholar]
  81. WangM. TangT. LiR. HuangZ. LingD. ZhengL. DingY. LiuT. XuW. ZhuF. MinH. BoonhokR. MaoF. ZhuJ. LiX. JiangL. LiJ. Drug repurposing of quisinostat to discover novel Plasmodium falciparum HDAC1 inhibitors with enhanced triple-stage antimalarial activity and improved safety.J. Med. Chem.20226554156418110.1021/acs.jmedchem.1c0199335175762
    [Google Scholar]
  82. LiR. LingD. TangT. HuangZ. WangM. DingY. LiuT. WeiH. XuW. MaoF. ZhuJ. LiX. JiangL. LiJ. Discovery of novel Plasmodium falciparum HDAC1 inhibitors with dual-stage antimalarial potency and improved safety based on the clinical anticancer drug candidate quisinostat.J. Med. Chem.20216442254227110.1021/acs.jmedchem.0c0210433541085
    [Google Scholar]
  83. HuangZ. LiR. TangT. LingD. WangM. XuD. SunM. ZhengL. ZhuF. MinH. BoonhokR. DingY. WenY. ChenY. LiX. ChenY. LiuT. HanJ. MiaoJ. FangQ. CaoY. TangY. CuiJ. XuW. CuiL. ZhuJ. WongG. LiJ. JiangL. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1.Cell Discov.2020619310.1038/s41421‑020‑00215‑433311461
    [Google Scholar]
  84. SchlottA.C. MayclinS. ReersA.R. Coburn-FlynnO. BellA.S. GreenJ. KnuepferE. CharterD. BonnertR. CampoB. BurrowsJ. Lyons-AbbottS. StakerB.L. ChungC.W. MylerP.J. FidockD.A. TateE.W. HolderA.A. Structure-guided identification of resistance breaking antimalarial n-myristoyltransferase inhibitors.Cell Chem. Biol.20192679911000.e710.1016/j.chembiol.2019.03.01531080074
    [Google Scholar]
  85. Rodríguez-HernándezD. VijayanK. ZigweidR. FenwickM.K. SankaranB. RoobsoongW. SattabongkotJ. GlennonE.K.K. MylerP.J. SunnerhagenP. StakerB.L. KaushanskyA. GrøtliM. Identification of potent and selective N-myristoyltransferase inhibitors of Plasmodium vivax liver stage hypnozoites and schizonts.Nat. Commun.2023141540810.1038/s41467‑023‑41119‑737669940
    [Google Scholar]
  86. ApelC. BignonJ. Garcia-AlvarezM.C. CicconeS. ClercP. GrondinI. Girard-ValenciennesE. SmadjaJ. LopesP. FrédérichM. RoussiF. MeinnelT. GiglioneC. LitaudonM. N-myristoyltransferases inhibitory activity of ellagitannins from Terminalia bentzoë (L.) L. f. subsp. bentzoë.Fitoterapia2018131919510.1016/j.fitote.2018.10.01430342177
    [Google Scholar]
  87. BakerD.A. StewartL.B. LargeJ.M. BowyerP.W. AnsellK.H. Jiménez-DíazM.B. El BakkouriM. BirchallK. DecheringK.J. BoulocN.S. CoombsP.J. WhalleyD. HardingD.J. Smiljanic-HurleyE. WheldonM.C. WalkerE.M. DessensJ.T. LafuenteM.J. SanzL.M. GamoF.J. FerrerS.B. HuiR. BousemaT. Angulo-BarturénI. MerrittA.T. CroftS.L. GutteridgeW.E. KettleboroughC.A. OsborneS.A. A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission.Nat. Commun.20178143010.1038/s41467‑017‑00572‑x28874661
    [Google Scholar]
  88. BheemanaboinaR.R.Y. de SouzaM.L. GonzalezM.L. MahmoodS.U. EckT. KreissT. AylorS.O. RothA. LeeP. PybusB.S. ColussiD.J. ChildersW.E. GordonJ. SiekierkaJ.J. BhanotP. RotellaD.P. Discovery of imidazole-based inhibitors of Plasmodium falciparum cGMP-dependent protein kinase.ACS Med. Chem. Lett.202112121962196710.1021/acsmedchemlett.1c0054034917261
    [Google Scholar]
  89. MahindraA. JanhaO. MapesaK. Sanchez-AzquetaA. AlamM.M. Amambua-NgwaA. NwakanmaD.C. TobinA.B. JamiesonA.G. Development of potent Pf CLK3 inhibitors based on TCMDC-135051 as a new class of antimalarials.J. Med. Chem.202063179300931510.1021/acs.jmedchem.0c0045132787140
    [Google Scholar]
  90. NguyenW. DansM.G. CurrieI. AwaltJ.K. BaileyB.L. LumbC. NgoA. FavuzzaP. PalandriJ. RameshS. PeningtonJ. JarmanK.E. MukherjeeP. ChakrabortyA. MaierA.G. van DoorenG.G. PapenfussT. WittlinS. ChurchyardA. BaumJ. WinzelerE.A. BaudD. BrandS. JacksonP.F. CowmanA.F. SleebsB.E. 7- N -substituted-3-oxadiazole quinolones with potent antimalarial activity target the cytochrome bc 1 complex.ACS Infect. Dis.20239366869110.1021/acsinfecdis.2c0060736853190
    [Google Scholar]
  91. ChaorattanakaweeS. KosaisaveeV. BunsermyosW. AonsriC. ImaramW. SuwannasinK. KunasolC. ThamnurakC. BoonyalaiN. SaundersD. DondorpA.M. MungthinM. ImwongM. In vitro activity of rhinacanthin analogues against drug resistant Plasmodium falciparum isolates from Northeast Thailand.Malar. J.202322110510.1186/s12936‑023‑04532‑336959593
    [Google Scholar]
  92. PippioneA.C. SainasS. GoyalP. FritzsonI. CassianoG.C. GiraudoA. GiorgisM. TavellaT.A. BagnatiR. RolandoB. Caing-CarlssonR. CostaF.T.M. AndradeC.H. Al-KaradaghiS. BoschiD. FriemannR. LolliM.L. Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies.Eur. J. Med. Chem.201916326628010.1016/j.ejmech.2018.11.04430529545
    [Google Scholar]
  93. KokkondaS. El MazouniF. WhiteK.L. WhiteJ. ShacklefordD.M. Lafuente-MonasterioM.J. RowlandP. ManjalanagaraK. JosephJ.T. Garcia-PérezA. FernandezJ. GamoF.J. WatersonD. BurrowsJ.N. PalmerM.J. CharmanS.A. RathodP.K. PhillipsM.A. Isoxazolopyrimidine-based inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity.ACS Omega2018389227924010.1021/acsomega.8b0157330197997
    [Google Scholar]
  94. PalmerM.J. DengX. WattsS. KrilovG. GerasyutoA. KokkondaS. El MazouniF. WhiteJ. WhiteK.L. StriepenJ. BathJ. SchindlerK.A. YeoT. ShacklefordD.M. MokS. DeniI. LawongA. HuangA. ChenG. WangW. JayaseelanJ. KatneniK. PatilR. SaundersJ. ShahiS.P. ChittimallaR. Angulo-BarturenI. Jiménez-DíazM.B. WittlinS. TumwebazeP.K. RosenthalP.J. CooperR.A. AguiarA.C.C. GuidoR.V.C. PereiraD.B. MittalN. WinzelerE.A. TomchickD.R. LaleuB. BurrowsJ.N. RathodP.K. FidockD.A. CharmanS.A. PhillipsM.A. Potent antimalarials with development potential identified by structure-guided computational optimization of a pyrrole-based dihydroorotate dehydrogenase inhibitor series.J. Med. Chem.20216496085613610.1021/acs.jmedchem.1c0017333876936
    [Google Scholar]
  95. WangX. MiyazakiY. InaokaD.K. HartutiE.D. WatanabeY.I. ShibaT. HaradaS. SaimotoH. BurrowsJ.N. BenitoF.J.G. NozakiT. KitaK. Identification of Plasmodium falciparum mitochondrial malate: Quinone oxidoreductase inhibitors from the pathogen box.Genes201910647110.3390/genes1006047131234346
    [Google Scholar]
  96. CahyonoA.W. FitriL.E. WinarsihS. PrabandariE.E. WaluyoD. PramisandiA. ChrisnayantiE. DewiD. SiskaE. NurlailaN. NugrohoN.B. NozakiT. SuciatiS. Nornidulin, a new inhibitor of Plasmodium falciparum malate: Quinone oxidoreductase (PfMQO) from Indonesian Aspergillus sp. BioMCC f.T.8501.Pharmaceuticals202316226810.3390/ph1602026837259413
    [Google Scholar]
  97. HartutiE.D. InaokaD.K. KomatsuyaK. MiyazakiY. MillerR.J. XinyingW. SadikinM. PrabandariE.E. WaluyoD. KurodaM. AmaliaE. MatsuoY. NugrohoN.B. SaimotoH. PramisandiA. WatanabeY.I. MoriM. ShiomiK. BalogunE.O. ShibaT. HaradaS. NozakiT. KitaK. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target.Biochim. Biophys. Acta Bioenerg.20181859319120010.1016/j.bbabio.2017.12.00429269266
    [Google Scholar]
  98. SharmaS.K. ParasuramanP. KumarG. SuroliaN. SuroliaA. Green tea catechins potentiate triclosan binding to enoyl-ACP reductase from Plasmodium falciparum (PfENR).J. Med. Chem.200750476577510.1021/jm061154d17263522
    [Google Scholar]
  99. AdebayoJ.O. CeravoloI.P. GyebiG.A. OlorundareO.E. BabatundeA.S. Penna-CoutinhoJ.P. KoketsuM. KrettliA.U. Iloneoside, an antimalarial pregnane glycoside isolated from Gongronema latifolium leaf, potentiates the activity of chloroquine against multidrug resistant Plasmodium falciparum.Mol. Biochem. Parasitol.202224911147411147410.1016/j.molbiopara.2022.11147435307401
    [Google Scholar]
  100. PassariniG. FerreiraA. Moreira-DillL. ZanchiF. de JesusA. FacundoV. TelesC. Natural and semisynthetic triterpenes from Combretum leprosum Mart. with antiplasmodial activity.J. Braz. Chem. Soc.202233548349010.21577/0103‑5053.20210167
    [Google Scholar]
  101. TallorinL. DurrantJ.D. NguyenQ.G. McCammonJ.A. BurkartM.D. Celastrol inhibits Plasmodium falciparum enoyl-acyl carrier protein reductase.Bioorg. Med. Chem.201422216053606110.1016/j.bmc.2014.09.00225284249
    [Google Scholar]
  102. ChaniadP. MungthinM. PayakaA. ViriyavejakulP. PunsawadC. Antimalarial properties and molecular docking analysis of compounds from Dioscorea bulbifera L. as new antimalarial agent candidates.BMC Complement. Med. Ther.202121114410.1186/s12906‑021‑03317‑y34006257
    [Google Scholar]
  103. MishraS. KumarS. Ramdas KhareS. ShuklaA. ShankerK. PalA. KhanF. DarokarM.P. Quebrachitol from Putranjiva roxburghii Wall. (Putranjivaceae) a potent antimalarial: Pre-clinical efficacy and its interaction with PfLDH.Parasitol. Int.20239210267510.1016/j.parint.2022.10267536089201
    [Google Scholar]
  104. ChenW. HuangZ. WangW. MaoF. GuanL. TangY. JiangH. LiJ. HuangJ. JiangL. ZhuJ. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely.Bioorg. Med. Chem.201725246467647810.1016/j.bmc.2017.10.01729111368
    [Google Scholar]
  105. KumatiaE.K. ZoikuF.K. AsaseA. TungN.H. In vitro and in silico anti-malarial activity and cytotoxicity of n-hexyl 1-O-rutinoside (a glycoside) isolated from Annickia polycarpa (DC.) Setten and Maas ex I.M. Turner (Annonaceae).J. Ethnopharmacol.2024319Pt 211728710.1016/j.jep.2023.11728737827299
    [Google Scholar]
  106. SummersR.L. PasajeC.F.A. PiscoJ.P. StriepenJ. LuthM.R. KumpornsinK. CarpenterE.F. MunroJ.T. LinD. PlaterA. PunekarA.S. ShepherdA.M. ShepherdS.M. VanaerschotM. MurithiJ.M. RubianoK. AkidilA. OttilieS. MittalN. DilmoreA.H. WonM. MandtR.E.K. McGowenK. OwenE. WalpoleC. LlinásM. LeeM.C.S. WinzelerE.A. FidockD.A. GilbertI.H. WirthD.F. NilesJ.C. BaragañaB. LukensA.K. Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention.Cell Chem. Biol.2022292191201.e810.1016/j.chembiol.2021.07.01034348113
    [Google Scholar]
  107. de VriesL.E. JansenP.A.M. BarceloC. MunroJ. VerhoefJ.M.J. PasajeC.F.A. RubianoK. StriepenJ. AblaN. BerningL. BolscherJ.M. Demarta-GatsiC. HendersonR.W.M. HuijsT. KoolenK.M.J. TumwebazeP.K. YeoT. AguiarA.C.C. Angulo-BarturenI. ChurchyardA. BaumJ. FernándezB.C. FuchsA. GamoF.J. GuidoR.V.C. Jiménez-DiazM.B. PereiraD.B. RochfordR. RoeschC. SanzL.M. TrevittG. WitkowskiB. WittlinS. CooperR.A. RosenthalP.J. SauerweinR.W. SchalkwijkJ. HermkensP.H.H. BonnertR.V. CampoB. FidockD.A. LlinásM. NilesJ.C. KooijT.W.A. DecheringK.J. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183.Nat. Commun.2022131215810.1038/s41467‑022‑29688‑535444200
    [Google Scholar]
  108. SharmaM. MalhotraN. YogavelM. HarlosK. MelilloB. ComerE. GonseA. ParvezS. MitasevB. FangF.G. SchreiberS.L. SharmaA. Structural basis of malaria parasite phenylalanine tRNA-synthetase inhibition by bicyclic azetidines.Nat. Commun.202112134310.1038/s41467‑020‑20478‑533436639
    [Google Scholar]
  109. SharmaM. MutharasappanN. ManickamY. HarlosK. MelilloB. ComerE. TabassumH. ParvezS. SchreiberS.L. SharmaA. Inhibition of Plasmodium falciparum phenylalanine tRNA synthetase provides opportunity for antimalarial drug development.Structure2022307962972.e310.1016/j.str.2022.03.01735460612
    [Google Scholar]
  110. IstvanE.S. DhariaN.V. BoppS.E. GluzmanI. WinzelerE.A. GoldbergD.E. Validation of isoleucine utilization targets in Plasmodium falciparum.Proc. Natl. Acad. Sci. USA201110841627163210.1073/pnas.101156010821205898
    [Google Scholar]
  111. BaragañaB. ForteB. ChoiR. Nakazawa HewittS. Bueren-CalabuigJ.A. PiscoJ.P. PeetC. DranowD.M. RobinsonD.A. JansenC. NorcrossN.R. VinayakS. AndersonM. BrooksC.F. CooperC.A. DamerowS. DelvesM. DowersK. DuffyJ. EdwardsT.E. HallyburtonI. HorstB.G. HulversonM.A. FergusonL. Jiménez-DíazM.B. JumaniR.S. LorimerD.D. LoveM.S. MaherS. MatthewsH. McNamaraC.W. MillerP. O’NeillS. OjoK.K. Osuna-CabelloM. PintoE. PostJ. RileyJ. RottmannM. SanzL.M. ScullionP. SharmaA. ShepherdS.M. ShishikuraY. SimeonsF.R.C. StebbinsE.E. StojanovskiL. StraschilU. TamakiF.K. TamjarJ. TorrieL.S. VantauxA. WitkowskiB. WittlinS. YogavelM. ZuccottoF. Angulo-BarturenI. SindenR. BaumJ. GamoF.J. MäserP. KyleD.E. WinzelerE.A. MylerP.J. WyattP.G. FloydD. MatthewsD. SharmaA. StriepenB. HustonC.D. GrayD.W. FairlambA.H. PisliakovA.V. WalpoleC. ReadK.D. Van VoorhisW.C. GilbertI.H. Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis.Proc. Natl. Acad. Sci. USA2019116147015702010.1073/pnas.181468511630894487
    [Google Scholar]
  112. ZhouJ. HuangZ. ZhengL. HeiZ. WangZ. YuB. JiangL. WangJ. FangP. Inhibition of Plasmodium falciparum Lysyl-tRNA synthetase via an anaplastic lymphoma kinase inhibitor.Nucleic Acids Res.20204820115661157610.1093/nar/gkaa86233053158
    [Google Scholar]
  113. NyamaiD.W. Tastan BishopÖ. Identification of selective novel hits against Plasmodium falciparum prolyl tRNA synthetase active site and a predicted allosteric site using in silico approaches.Int. J. Mol. Sci.20202111380310.3390/ijms2111380332471245
    [Google Scholar]
  114. OkaniwaM. ShibataA. OchidaA. AkaoY. WhiteK.L. ShacklefordD.M. DuffyS. LucantoniL. DeyS. StriepenJ. YeoT. MokS. AguiarA.C.C. SturmA. CrespoB. SanzL.M. ChurchyardA. BaumJ. PereiraD.B. GuidoR.V.C. DecheringK.J. WittlinS. UhlemannA.C. FidockD.A. NilesJ.C. AveryV.M. CharmanS.A. LaleuB. Repositioning and characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one derivatives as Plasmodium cytoplasmic prolyl-tRNA synthetase inhibitors.ACS Infect. Dis.2021761680168910.1021/acsinfecdis.1c0002033929818
    [Google Scholar]
  115. BhartiH. SingalA. SainiM. CheemaP.S. RazaM. KunduS. NagA. Repurposing the pathogen box compounds for identification of potent anti-malarials against blood stages of Plasmodium falciparum with PfUCHL3 inhibitory activity.Sci. Rep.202212191810.1038/s41598‑021‑04619‑435042884
    [Google Scholar]
  116. ImhoffR.D. RosenthalM.R. AshrafK. BhanotP. NgC.L. FlahertyD.P. Identification of covalent fragment inhibitors for Plasmodium falciparum UCHL3 with anti-malarial efficacy.Bioorg. Med. Chem. Lett.20239412945810.1016/j.bmcl.2023.12945837634761
    [Google Scholar]
  117. NasamuA.S. PolinoA.J. IstvanE.S. GoldbergD.E. Malaria parasite plasmepsins: More than just plain old degradative pepsins.J. Biol. Chem.2020295258425844110.1074/jbc.REV120.00930932366462
    [Google Scholar]
  118. PolinoA.J. NasamuA.S. NilesJ.C. GoldbergD.E. Assessment of biological role and insight into druggability of the Plasmodium falciparum protease plasmepsin V.ACS Infect. Dis.20206473874610.1021/acsinfecdis.9b0046032069391
    [Google Scholar]
  119. JennisonC. LucantoniL. O’NeillM.T. McConvilleR. EricksonS.M. CowmanA.F. SleebsB.E. AveryV.M. BoddeyJ.A. Inhibition of plasmepsin V activity blocks Plasmodium falciparum gametocytogenesis and transmission to mosquitoes.Cell Rep.2019291237963806.e410.1016/j.celrep.2019.11.07331851913
    [Google Scholar]
  120. KovadaV. Withers-MartinezC. BobrovsR. Ce̅ruleH. LiepinsE. GrinbergaS. HackettF. CollinsC.R. KreicbergaA. Jiménez-DíazM.B. Angulo-BarturenI. RasinaD. SunaE. JaudzemsK. BlackmanM.J. JirgensonsA. Macrocyclic peptidomimetic plasmepsin X inhibitors with potent in vitro and in vivo antimalarial activity.J. Med. Chem.20236615106581068010.1021/acs.jmedchem.3c0081237505188
    [Google Scholar]
  121. LisauskaitėM. NixonG.L. WoodleyC.M. BerryN.G. ConinckxA. QieL.C. LeungS.C. TaramelliD. BasilicoN. ParapiniS. WardS.A. VadasO. Soldati- FavreD. HongW.D. O’NeillP.M. Design, synthesis and modelling of photoreactive chemical probes for investigating target engagement of plasmepsin IX and X in Plasmodium falciparum.RSC Chemical Biology202451192910.1039/D3CB00109A38179191
    [Google Scholar]
  122. HodderA.N. ChristensenJ. ScallyS. TrigliaT. NgoA. BirkinshawR.W. BaileyB. FavuzzaP. DietrichM.H. ThamW.H. CzabotarP.E. LowesK. GuoZ. MurgoloN. Lera RuizM. McCauleyJ.A. SleebsB.E. OlsenD. CowmanA.F. Basis for drug selectivity of plasmepsin IX and X inhibition in Plasmodium falciparum and vivax.Structure2022307947961.e610.1016/j.str.2022.03.01835460613
    [Google Scholar]
  123. ViswanathanN.K. ChirgwinM.E. GibbsJ. KalajB.N. DurhamS. TranJ. GomezM. LazaroH. ChenM. MansfieldC.R. DerbyshireE.R. EagonS. Synthesis and activity of β-carboline antimalarials targeting the Plasmodium falciparum heat shock 90 protein.Bioorg. Med. Chem. Lett.20239212941010.1016/j.bmcl.2023.12941037478957
    [Google Scholar]
  124. MafetheO. NtseaneT. DongolaT.H. ShonhaiA. GumedeN.J. MokoenaF. Pharmacophore model-based virtual screening workflow for discovery of inhibitors targeting Plasmodium falciparum Hsp90.ACS Omega2023841382203823210.1021/acsomega.3c0449437867657
    [Google Scholar]
  125. EversonN. BachJ. HammillJ.T. FaladeM.O. RiceA.L. GuyR.K. EagonS. Identification of Plasmodium falciparum heat shock 90 inhibitors via molecular docking.Bioorg. Med. Chem. Lett.20213512781810.1016/j.bmcl.2021.12781833513390
    [Google Scholar]
  126. CockburnI.L. BoshoffA. PesceE.R. BlatchG.L. Selective modulation of plasmodial Hsp70s by small molecules with antimalarial activity.Biol. Chem.2014395111353136210.1515/hsz‑2014‑013824854538
    [Google Scholar]
  127. SkorokhodO.A. Davalos-SchaflerD. GalloV. ValenteE. UlliersD. NotarpietroA. MandiliG. NovelliF. PersicoM. Taglialatela-ScafatiO. AreseP. SchwarzerE. Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge Plakortis simplex.Free Radic. Biol. Med.20158962463710.1016/j.freeradbiomed.2015.10.39926459031
    [Google Scholar]
  128. CockburnI.L. PesceE.R. PryzborskiJ.M. Davies-ColemanM.T. ClarkP.G.K. KeyzersR.A. StephensL.L. BlatchG.L. Screening for small molecule modulators of Hsp70 chaperone activity using protein aggregation suppression assays: Inhibition of the plasmodial chaperone PfHsp70-1.Biol. Chem.2011392543143810.1515/bc.2011.04021426241
    [Google Scholar]
  129. CowellA.N. WinzelerE.A. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections.Genome Med.20191116310.1186/s13073‑019‑0673‑331640748
    [Google Scholar]
  130. VanaerschotM. MurithiJ.M. PasajeC.F.A. Ghidelli-DisseS. DwomohL. BirdM. SpottiswoodeN. MittalN. ArendseL.B. OwenE.S. WichtK.J. SicilianoG. BöscheM. YeoT. KumarT.R.S. MokS. CarpenterE.F. GiddinsM.J. SanzO. OttilieS. AlanoP. ChibaleK. LlinásM. UhlemannA.C. DelvesM. TobinA.B. DoerigC. WinzelerE.A. LeeM.C.S. NilesJ.C. FidockD.A. Inhibition of resistance-refractory P. falciparum kinase PKG delivers prophylactic, blood stage, and transmission-blocking antiplasmodial activity.Cell Chem. Biol.2020277806816.e810.1016/j.chembiol.2020.04.00132359426
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673312727240527064833
Loading
/content/journals/cmc/10.2174/0109298673312727240527064833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test