Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background and Aims

The role of mitophagy in atherosclerosis has been extensively studied during the last few years. It was shown that mitophagy is involved in the regulation of macrophages, which are important players as immune cells in atherosclerosis development. In this study, we investigated the relationship between mitophagy and response to inflammatory stimulation of macrophage-like cells. Six cybrid cell lines with normal mitophagy, that is, increasing in response to stimulation, and 7 lines with defective mitophagy not responding to stimulation were obtained. The objective of the study was to compare the nature of the inflammatory response in normal and defective mitophagy in order to elucidate the role of mitophagy defects in inflammation.

Methods

We used cytoplasmic hybrids (cybrids) as cellular models, created using mitochondrial DNA from different atherosclerosis patients. Mitophagy was stimulated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and assessed as the degree of colocalization of mitochondria with lysosomes using confocal microscopy. Western blotting methods were used for the determination of proteins involved in the exact mechanism of mitophagy. Experiments with stimulation of mitophagy show a high correlation between these two approaches (microscopy and blotting). The pro-inflammatory response of cybrids was stimulated with bacterial lipopolysaccharide (LPS). The extent of the inflammatory response was assessed by the secretion of cytokines CCL2, IL8, IL6, IL1β, and TNF measured by ELISA.

Results

Basal level of secretion of cytokines CCL2, IL8 and TNF was 1.5-2 times higher in cultures of cybrids with defective mitophagy compared to cells with normal mitophagy. This suggests a persistently elevated inflammatory response in cells with defective mitophagy, even in the absence of an inflammatory stimulus. Such cells in the tissue will constantly recruit other immune cells, which is characteristic of macrophages derived from monocytes circulating in the blood of patients with atherosclerosis. We observed significant differences in the degree and type of response to inflammatory activation in cybrids with defective mitophagy. These differences were not so much quantitative as they were dramatically qualitative. Compared with cells with normal mitophagy, in cells with defective mitophagy, the relative (to basal) secretion of IL8, IL6 and IL1b increased after the second LPS activation. This indicates a possible lack of tolerance to inflammatory activation in cells with defective mitophagy, since typically, re-activation reveals a smaller pro-inflammatory cytokine response, allowing the inflammatory process to resolve. In cells with normal mitophagy, exactly this normal (tolerant) inflammatory reaction was observed.

Conclusion

Data on the involvement of mitophagy, including defective mitophagy, in disturbances of the inflammatory response in sepsis, viral infections, autoimmune diseases and other pathologies have previously been reported. In this work, we studied the role of defective mitophagy in non-infectious chronic inflammatory diseases using the example of atherosclerosis. We showed a dramatic disruption of the inflammatory response associated with defective mitophagy. Compared with cybrids with normal mitophagy, in cybrids with defective mitophagy, the secretion of all studied cytokines changed significantly both quantitatively and qualitatively. In particular, the secretion of 3 of 5 cytokines demonstrated an intolerant inflammatory response manifested by increased secretion after repeated inflammatory stimulation. Such an intolerant reaction likely indicates a significant disruption of the pro-inflammatory response of macrophages, which can contribute to the chronification of inflammation. Elucidating the mechanisms of chronification of inflammation is extremely important for the search for fundamentally new pharmacological targets and the development of drugs for the prevention and treatment of chronic inflammatory diseases, including atherosclerosis and diseases characteristic of inflammation. Such diseases account for up to 80% of morbidity and mortality.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673294643240228105957
2024-03-01
2025-01-28
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/1/CMC-32-1-08.html?itemId=/content/journals/cmc/10.2174/0109298673294643240228105957&mimeType=html&fmt=ahah

References

  1. KauppilaT.E.S. KauppilaJ.H.K. LarssonN.G. Mammalian mitochondria and aging: An update.Cell Metab.2017251577110.1016/j.cmet.2016.09.017
    [Google Scholar]
  2. LiuW. SongH. XuJ. GuoY. ZhangC. YaoY. ZhangH. LiuZ. LiY.C. Low shear stress inhibits endothelial mitophagy via caveolin-1/miR-7-5p/SQSTM1 signaling pathway.Atherosclerosis202235691710.1016/j.atherosclerosis.2022.07.01435952464
    [Google Scholar]
  3. PiccaA. CalvaniR. Coelho-JuniorH.J. MarzettiE. Cell death and inflammation: The role of mitochondria in health and disease.Cells202110353710.3390/cells1003053733802550
    [Google Scholar]
  4. ChowdhuryA. WitteS. AichA. Role of mitochondrial nucleic acid sensing pathways in health and patho-physiology.Front. Cell Dev. Biol.20221079606610.3389/fcell.2022.79606635223833
    [Google Scholar]
  5. Bravo-San PedroJ.M. KroemerG. GalluzziL. Bravo-San Autophagy and mitophagy in cardiovascular disease.Circ. Res.2017120111812182410.1161/CIRCRESAHA.117.31108228546358
    [Google Scholar]
  6. ChenY. QinW. LiL. WuP. WeiD. Mitophagy: Critical role in atherosclerosis progression.DNA Cell Biol.2022411085186010.1089/dna.2022.024936036955
    [Google Scholar]
  7. DumontA. LeeM. BarouilletT. MurphyA. Yvan-CharvetL. Mitochondria orchestrate macrophage effector functions in atherosclerosis.Mol. Aspects Med.20217710092210.1016/j.mam.2020.10092233162108
    [Google Scholar]
  8. SobeninI.A. SazonovaM.A. PostnovA.Y. BobryshevY.V. OrekhovA.N. Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta.Clin. Dev. Immunol.201220121510.1155/2012/83246422997526
    [Google Scholar]
  9. SobeninI.A. SazonovaM.A. PostnovA.Y. SalonenJ.T. BobryshevY.V. OrekhovA.N. Association of mitochondrial genetic variation with carotid atherosclerosis.PLoS One201387e6807010.1371/journal.pone.006807023874496
    [Google Scholar]
  10. SobeninI. ZhelankinA. MitrofanovK. SinyovV. SazonovaM. PostnovA. OrekhovA. Mutations of mitochondrial DNA in atherosclerosis and atherosclerosis-related diseases.Curr. Pharm. Des.20152191158116310.2174/138161282066614101313300025312735
    [Google Scholar]
  11. SobeninI.A. ZhelankinA.V. KhasanovaZ.B. SinyovV.V. MedvedevaL.V. SagaidakM.O. MakeevV.J. KolmychkovaK.I. SmirnovaA.S. SukhorukovV.N. PostnovA.Y. GrechkoA.V. OrekhovA.N. Heteroplasmic variants of mitochondrial DNA in atherosclerotic lesions of human aortic intima.Biomolecules20199945510.3390/biom909045531500189
    [Google Scholar]
  12. KingM.P. AttardiG. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation.Science1989246492950050310.1126/science.28144772814477
    [Google Scholar]
  13. SazonovaM.A. RyzhkovaA.I. SinyovV.V. SazonovaM.D. KhasanovaZ.B. NikitinaN.A. KaragodinV.P. OrekhovA.N. SobeninI.A. Creation of cultures containing mutations linked with cardiovascular diseases using transfection and genome editing.Curr. Pharm. Des.201925669369910.2174/138161282566619032912153230931844
    [Google Scholar]
  14. MaK. ChenG. LiW. KeppO. ZhuY. ChenQ. Mitophagy, Mitochondrial Homeostasis, and Cell Fate.Front. Cell Dev. Biol.202024846710.3389/fcell.2020.00467
    [Google Scholar]
  15. ZhuJ. DagdaR.K. ChuC.T. Monitoring mitophagy in neuronal cell cultures.Methods Mol. Biol.201179332533910.1007/978‑1‑61779‑328‑8_2121913110
    [Google Scholar]
  16. DolmanN.J. ChambersK.M. MandavilliB. BatchelorR.H. JanesM.S. Tools and techniques to measure mitophagy using fluorescence microscopy.Autophagy20139111653166210.4161/auto.2400124121704
    [Google Scholar]
  17. BerezhnovA.V. SoutarM.P.M. FedotovaE.I. FrolovaM.S. Plun-FavreauH. ZinchenkoV.P. AbramovA.Y. Intracellular pH modulates autophagy and mitophagy.J. Biol. Chem.2016291168701870810.1074/jbc.M115.69177426893374
    [Google Scholar]
  18. StirlingD.R. Swain-BowdenM.J. LucasA.M. CarpenterA.E. CiminiB.A. GoodmanA. CellProfiler 4: improvements in speed, utility and usability.BMC Bioinformatics202122143310.1186/s12859‑021‑04344‑934507520
    [Google Scholar]
  19. KlionskyD.J. AbdallaF.C. AbeliovichH. AbrahamR.T. Acevedo-ArozenaA. AdeliK. AgholmeL. AgnelloM. AgostinisP. Aguirre-GhisoJ.A. AhnH.J. Ait-MohamedO. Ait-Si-AliS. AkematsuT. AkiraS. Al-YounesH.M. Al-ZeerM.A. AlbertM.L. AlbinR.L. Alegre-AbarrateguiJ. AleoM.F. AlirezaeiM. AlmasanA. Almonte-BecerrilM. AmanoA. AmaravadiR.K. AmarnathS. AmerA.O. Andrieu-AbadieN. AnantharamV. AnnD.K. Anoopkumar-DukieS. AokiH. ApostolovaN. AranciaG. ArisJ.P. AsanumaK. AsareN.Y.O. AshidaH. AskanasV. AskewD.S. AubergerP. BabaM. BackuesS.K. BaehreckeE.H. BahrB.A. BaiX.Y. BaillyY. BaiocchiR. BaldiniG. BalduiniW. BallabioA. BamberB.A. BamptonE.T.W. JuhászG. BartholomewC.R. BasshamD.C. BastR.C.Jr BatokoH. BayB.H. BeauI. BéchetD.M. BegleyT.J. BehlC. BehrendsC. BekriS. BellaireB. BendallL.J. BenettiL. BerliocchiL. BernardiH. BernassolaF. BesteiroS. Bhatia-KissovaI. BiX. Biard-PiechaczykM. BlumJ.S. BoiseL.H. BonaldoP. BooneD.L. BornhauserB.C. BortoluciK.R. BossisI. BostF. BourquinJ.P. BoyaP. Boyer-GuittautM. BozhkovP.V. BradyN.R. BrancoliniC. BrechA. BrenmanJ.E. BrennandA. BresnickE.H. BrestP. BridgesD. BristolM.L. BrookesP.S. BrownE.J. BrumellJ.H. Brunetti-PierriN. BrunkU.T. BulmanD.E. BultmanS.J. BultynckG. BurbullaL.F. BurschW. ButcharJ.P. BuzgariuW. BydlowskiS.P. CadwellK. CahováM. CaiD. CaiJ. CaiQ. CalabrettaB. Calvo-GarridoJ. CamougrandN. CampanellaM. Campos-SalinasJ. CandiE. CaoL. CaplanA.B. CardingS.R. CardosoS.M. CarewJ.S. CarlinC.R. CarmignacV. CarneiroL.A.M. CarraS. CarusoR.A. CasariG. CasasC. CastinoR. CebolleroE. CecconiF. CelliJ. ChaachouayH. ChaeH.J. ChaiC.Y. ChanD.C. ChanE.Y. ChangR.C.C. CheC.M. ChenC.C. ChenG.C. ChenG.Q. ChenM. ChenQ. ChenS.S.L. ChenW. ChenX. ChenX. ChenX. ChenY.G. ChenY. ChenY. ChenY.J. ChenZ. ChengA. ChengC.H.K. ChengY. CheongH. CheongJ.H. CherryS. Chess-WilliamsR. CheungZ.H. ChevetE. ChiangH.L. ChiarelliR. ChibaT. ChinL.S. ChiouS.H. ChisariF.V. ChoC.H. ChoD.H. ChoiA.M.K. ChoiD. ChoiK.S. ChoiM.E. ChouaibS. ChoubeyD. ChoubeyV. ChuC.T. ChuangT.H. ChuehS.H. ChunT. ChwaeY.J. ChyeM.L. CiarciaR. CirioloM.R. ClagueM.J. ClarkR.S.B. ClarkeP.G.H. ClarkeR. CodognoP. CollerH.A. ColomboM.I. CominciniS. CondelloM. CondorelliF. CooksonM.R. CoombsG.H. CoppensI. CorbalanR. CossartP. CostelliP. CostesS. Coto-MontesA. CouveE. CoxonF.P. CreggJ.M. CrespoJ.L. CronjéM.J. CuervoA.M. CullenJ.J. CzajaM.J. D’AmelioM. Darfeuille-MichaudA. DavidsL.M. DaviesF.E. De FeliciM. de GrootJ.F. de HaanC.A.M. De MartinoL. De MilitoA. De TataV. DebnathJ. DegterevA. DehayB. DelbridgeL.M.D. DemarchiF. DengY.Z. DengjelJ. DentP. DentonD. DereticV. DesaiS.D. DevenishR.J. Di GioacchinoM. Di PaoloG. Di PietroC. Díaz-ArayaG. Díaz-LaviadaI. Diaz-MecoM.T. Diaz-NidoJ. DikicI. Dinesh-KumarS.P. DingW.X. DistelhorstC.W. DiwanA. Djavaheri-MergnyM. DokudovskayaS. DongZ. DorseyF.C. DosenkoV. DowlingJ.J. DoxseyS. DreuxM. DrewM.E. DuanQ. DuchosalM.A. DuffK.E. DugailI. DurbeejM. DuszenkoM. EdelsteinC.L. EdingerA.L. EgeaG. EichingerL. EissaN.T. EkmekciogluS. El-DeiryW.S. ElazarZ. ElgendyM. EllerbyL.M. EngK.E. EngelbrechtA.M. EngelenderS. ErenpreisaJ. EscalanteR. EsclatineA. EskelinenE.L. EspertL. EspinaV. FanH. FanJ. FanQ.W. FanZ. FangS. FangY. FantoM. FanzaniA. FarkasT. FarréJ.C. FaureM. FechheimerM. FengC.G. FengJ. FengQ. FengY. FésüsL. FeuerR. Figueiredo-PereiraM.E. FimiaG.M. FingarD.C. FinkbeinerS. FinkelT. FinleyK.D. FioritoF. FisherE.A. FisherP.B. FlajoletM. Florez-McClureM.L. FlorioS. FonE.A. FornaiF. FortunatoF. FotedarR. FowlerD.H. FoxH.S. FrancoR. FrankelL.B. FransenM. FuentesJ.M. FueyoJ. FujiiJ. FujisakiK. FujitaE. FukudaM. FurukawaR.H. GaestelM. GaillyP. GajewskaM. GalliotB. GalyV. GaneshS. GanetzkyB. GanleyI.G. GaoF.B. GaoG.F. GaoJ. GarciaL. Garcia-ManeroG. Garcia-MarcosM. GarmynM. GartelA.L. GattiE. GautelM. GawrilukT.R. GeggM.E. GengJ. GermainM. GestwickiJ.E. GewirtzD.A. GhavamiS. GhoshP. GiammarioliA.M. GiatromanolakiA.N. GibsonS.B. GilkersonR.W. GingerM.L. GinsbergH.N. GolabJ. GoligorskyM.S. GolsteinP. Gomez-ManzanoC. GoncuE. GongoraC. GonzalezC.D. GonzalezR. González-EstévezC. González-PoloR.A. Gonzalez-ReyE. GorbunovN.V. GorskiS. GoruppiS. GottliebR.A. GozuacikD. GranatoG.E. GrantG.D. GreenK.N. GregorcA. GrosF. GroseC. GruntT.W. GualP. GuanJ.L. GuanK.L. GuichardS.M. GukovskayaA.S. GukovskyI. GunstJ. GustafssonÅ.B. HalaykoA.J. HaleA.N. HalonenS.K. HamasakiM. HanF. HanT. HancockM.K. HansenM. HaradaH. HaradaM. HardtS.E. HarperJ.W. HarrisA.L. HarrisJ. HarrisS.D. HashimotoM. HaspelJ.A. HayashiS. HazelhurstL.A. HeC. HeY.W. HébertM.J. HeidenreichK.A. HelfrichM.H. HelgasonG.V. HenskeE.P. HermanB. HermanP.K. HetzC. HilfikerS. HillJ.A. HockingL.J. HofmanP. HofmannT.G. HöhfeldJ. HolyoakeT.L. HongM.H. HoodD.A. HotamisligilG.S. HouwerzijlE.J. Høyer-HansenM. HuB. HuC.A. HuH.M. HuaY. HuangC. HuangJ. HuangS. HuangW.P. HuberT.B. HuhW.K. HungT.H. HuppT.R. HurG.M. HurleyJ.B. HussainS.N.A. HusseyP.J. HwangJ.J. HwangS. IchiharaA. IlkhanizadehS. InokiK. IntoT. IovaneV. IovannaJ.L. IpN.Y. IsakaY. IshidaH. IsidoroC. IsobeK. IwasakiA. IzquierdoM. IzumiY. JaakkolaP.M. JäätteläM. JacksonG.R. JacksonW.T. JanjiB. JendrachM. JeonJ.H. JeungE.B. JiangH. JiangH. JiangJ.X. JiangM. JiangQ. JiangX. JiangX. JiménezA. JinM. JinS.V. JoeC.O. JohansenT. JohnsonD.E. JohnsonG.V.W. JonesN.L. JosephB. JosephS.K. JoubertA.M. JuhászG. Juillerat-JeanneretL. JungC.H. JungY.K. KaarnirantaK. KaasikA. KabutaT. KadowakiM. KågedalK. KamadaY. KaminskyyV.O. KampingaH.H. KanamoriH. KangC. KangK.B. KangK.I. KangR. KangY.A. KankiT. KannegantiT.D. KannoH. KanthasamyA.G. KanthasamyA. KarantzaV. KaushalG.P. KaushikS. KawazoeY. KeP.Y. KehrlJ.H. KelekarA. KerkhoffC. KesselD.H. KhalilH. KielJ.A.K.W. KigerA.A. KiharaA. KimD.R. KimD.H. KimD.H. KimE.K. KimH.R. KimJ.S. KimJ.H. KimJ.C. KimJ.K. KimP.K. KimS.W. KimY.S. KimY. KimchiA. KimmelmanA.C. KingJ.S. KinsellaT.J. KirkinV. KirshenbaumL.A. KitamotoK. KitazatoK. KleinL. KlimeckiW.T. KluckenJ. KnechtE. KoB.C.B. KochJ.C. KogaH. KohJ.Y. KohY.H. KoikeM. KomatsuM. KominamiE. KongH.J. KongW.J. KorolchukV.I. KotakeY. KoukourakisM.I. FloresJ.B.K. KovácsA.L. KraftC. KraincD. KrämerH. Kretz-RemyC. KrichevskyA.M. KroemerG. KrügerR. KrutO. KtistakisN.T. KuanC.Y. KucharczykR. KumarA. KumarR. KumarS. KunduM. KungH.J. KurzT. KwonH.J. La SpadaA.R. LafontF. LamarkT. LandryJ. LaneJ.D. LapaquetteP. LaporteJ.F. LászlóL. LavanderoS. LavoieJ.N. LayfieldR. LazoP.A. LeW. Le CamL. LedbetterD.J. LeeA.J.X. LeeB.W. LeeG.M. LeeJ. leeJ. LeeM. LeeM.S. LeeS.H. LeeuwenburghC. LegembreP. LegouisR. LehmannM. LeiH.Y. LeiQ.Y. LeibD.A. LeiroJ. LemastersJ.J. LemoineA. LesniakM.S. LevD. LevensonV.V. LevineB. LevyE. LiF. LiJ.L. LiL. LiS. LiW. LiX.J. LiY.B. LiY.P. LiangC. LiangQ. LiaoY.F. LiberskiP.P. LiebermanA. LimH.J. LimK.L. LimK. LinC.F. LinF.C. LinJ. LinJ.D. LinK. LinW.W. LinW.C. LinY.L. LindenR. LingorP. Lippincott-SchwartzJ. LisantiM.P. LitonP.B. LiuB. LiuC.F. LiuK. LiuL. LiuQ.A. LiuW. LiuY.C. LiuY. LockshinR.A. LokC.N. LonialS. LoosB. Lopez-BeresteinG. López-OtínC. LossiL. LotzeM.T. LőwP. LuB. LuB. LuB. LuZ. LucianoF. LukacsN.W. LundA.H. Lynch-DayM.A. MaY. MacianF. MacKeiganJ.P. MacleodK.F. MadeoF. MaiuriL. MaiuriM.C. MalagoliD. MalicdanM.C.V. MalorniW. ManN. MandelkowE.M. ManonS. ManovI. MaoK. MaoX. MaoZ. MarambaudP. MarazzitiD. MarcelY.L. MarchbankK. MarchettiP. MarciniakS.J. MarcondesM. MardiM. MarfeG. MariñoG. MarkakiM. MartenM.R. MartinS.J. Martinand-MariC. MartinetW. Martinez-VicenteM. MasiniM. MatarreseP. MatsuoS. MatteoniR. MayerA. MazureN.M. McConkeyD.J. McConnellM.J. McDermottC. McDonaldC. McInerneyG.M. McKennaS.L. McLaughlinB. McLeanP.J. McMasterC.R. McQuibbanG.A. MeijerA.J. MeislerM.H. MeléndezA. MeliaT.J. MelinoG. MenaM.A. MenendezJ.A. Menna-BarretoR.F.S. MenonM.B. MenziesF.M. MercerC.A. MerighiA. MerryD.E. MeschiniS. MeyerC.G. MeyerT.F. MiaoC.Y. MiaoJ.Y. MichelsP.A.M. MichielsC. MijaljicaD. MilojkovicA. MinucciS. MiraccoC. MirantiC.K. MitroulisI. MiyazawaK. MizushimaN. MograbiB. MohseniS. MoleroX. MollereauB. MollinedoF. MomoiT. MonastyrskaI. MonickM.M. MonteiroM.J. MooreM.N. MoraR. MoreauK. MoreiraP.I. MoriyasuY. MoscatJ. MostowyS. MottramJ.C. MotylT. MoussaC.E.H. MüllerS. MullerS. MüngerK. MünzC. MurphyL.O. MurphyM.E. MusaròA. MysorekarI. NagataE. NagataK. NahimanaA. NairU. NakagawaT. NakahiraK. NakanoH. NakatogawaH. NanjundanM. NaqviN.I. NarendraD.P. NaritaM. NavarroM. NawrockiS.T. NazarkoT.Y. NemchenkoA. NeteaM.G. NeufeldT.P. NeyP.A. NezisI.P. NguyenH.P. NieD. NishinoI. NislowC. NixonR.A. NodaT. NoegelA.A. NogalskaA. NoguchiS. NotterpekL. NovakI. NozakiT. NukinaN. NürnbergerT. NyfelerB. ObaraK. OberleyT.D. OddoS. OgawaM. OhashiT. OkamotoK. OleinickN.L. OliverF.J. OlsenL.J. OlssonS. OpotaO. OsborneT.F. OstranderG.K. OtsuK. OuJ.J. OuimetM. OverholtzerM. OzpolatB. PaganettiP. PagniniU. PalletN. PalmerG.E. PalumboC. PanT. PanaretakisT. PandeyU.B. PapackovaZ. PapassideriI. ParisI. ParkJ. ParkO.K. ParysJ.B. ParzychK.R. PatschanS. PattersonC. PattingreS. PawelekJ.M. PengJ. PerlmutterD.H. PerrottaI. PerryG. PervaizS. PeterM. PetersG.J. PetersenM. PetrovskiG. PhangJ.M. PiacentiniM. PierreP. Pierrefite-CarleV. PierronG. Pinkas-KramarskiR. PirasA. PiriN. PlataniasL.C. PöggelerS. PoirotM. PolettiA. PoüsC. Pozuelo-RubioM. Prætorius-IbbaM. PrasadA. PrescottM. PriaultM. Produit-ZengaffinenN. Progulske-FoxA. Proikas-CezanneT. PrzedborskiS. PrzyklenkK. PuertollanoR. PuyalJ. QianS.B. QinL. QinZ.H. QuagginS.E. RabenN. RabinowichH. RabkinS.W. RahmanI. RamiA. RammG. RandallG. RandowF. RaoV.A. RathmellJ.C. RavikumarB. RayS.K. ReedB.H. ReedJ.C. ReggioriF. Régnier-VigourouxA. ReichertA.S. ReinersJ.J.Jr ReiterR.J. RenJ. RevueltaJ.L. RhodesC.J. RitisK. RizzoE. RobbinsJ. RobergeM. RocaH. RoccheriM.C. RocchiS. RodemannH.P. Rodríguez de CórdobaS. RohrerB. RoninsonI.B. RosenK. Rost-RoszkowskaM.M. RouisM. RouschopK.M.A. RovettaF. RubinB.P. RubinszteinD.C. RuckdeschelK. RuckerE.B.III RudichA. RudolfE. Ruiz-OpazoN. RussoR. RustenT.E. RyanK.M. RyterS.W. SabatiniD.M. SadoshimaJ. SahaT. SaitohT. SakagamiH. SakaiY. SalekdehG.H. SalomoniP. SalvaterraP.M. SalvesenG. SalvioliR. SanchezA.M.J. Sánchez-AlcázarJ.A. Sánchez-PrietoR. SandriM. SankarU. SansanwalP. SantambrogioL. SaranS. SarkarS. SarwalM. SasakawaC. SasnauskieneA. SassM. SatoK. SatoM. SchapiraA.H.V. ScharlM. SchätzlH.M. ScheperW. SchiaffinoS. SchneiderC. SchneiderM.E. Schneider-StockR. SchoenleinP.V. SchorderetD.F. SchüllerC. SchwartzG.K. ScorranoL. SealyL. SeglenP.O. Segura-AguilarJ. SeiliezI. SeleverstovO. SellC. SeoJ.B. SeparovicD. SetaluriV. SetoguchiT. SettembreC. ShackaJ.J. ShanmugamM. ShapiroI.M. ShaulianE. ShawR.J. ShelhamerJ.H. ShenH.M. ShenW.C. ShengZ.H. ShiY. ShibuyaK. ShidojiY. ShiehJ.J. ShihC.M. ShimadaY. ShimizuS. ShintaniT. ShirihaiO.S. ShoreG.C. SibirnyA.A. SidhuS.B. SikorskaB. Silva-ZacarinE.C.M. SimmonsA. SimonA.K. SimonH.U. SimoneC. SimonsenA. SinclairD.A. SinghR. SinhaD. SinicropeF.A. SirkoA. SiuP.M. SivridisE. SkopV. SkulachevV.P. SlackR.S. SmailiS.S. SmithD.R. SoengasM.S. SoldatiT. SongX. SoodA.K. SoongT.W. SotgiaF. SpectorS.A. SpiesC.D. SpringerW. SrinivasulaS.M. StefanisL. SteffanJ.S. StendelR. StenmarkH. StephanouA. SternS.T. SternbergC. StorkB. StrålforsP. SubausteC.S. SuiX. SulzerD. SunJ. SunS.Y. SunZ.J. SungJ.J.Y. SuzukiK. SuzukiT. SwansonM.S. SwantonC. SweeneyS.T. SyL.K. SzabadkaiG. TabasI. TaegtmeyerH. TafaniM. Takács-VellaiK. TakanoY. TakegawaK. TakemuraG. TakeshitaF. TalbotN.J. TanK.S.W. TanakaK. TanakaK. TangD. TangD. TanidaI. TannousB.A. TavernarakisN. TaylorG.S. TaylorG.A. TaylorJ.P. TeradaL.S. TermanA. TettamantiG. ThevissenK. ThompsonC.B. ThorburnA. ThummM. TianF. TianY. Tocchini-ValentiniG. TolkovskyA.M. TominoY. TöngesL. ToozeS.A. TournierC. TowerJ. TownsR. TrajkovicV. TravassosL.H. TsaiT.F. TschanM.P. TsubataT. TsungA. TurkB. TurnerL.S. TyagiS.C. UchiyamaY. UenoT. UmekawaM. Umemiya-ShirafujiR. UnniV.K. VaccaroM.I. ValenteE.M. Van den BergheG. van der KleiI.J. van DoornW.G. van DykL.F. van EgmondM. van GrunsvenL.A. VandenabeeleP. VandenbergheW.P. VanhorebeekI. VaqueroE.C. VelascoG. VellaiT. VicencioJ.M. VierstraR.D. VilaM. VindisC. ViolaG. ViscomiM.T. VoitsekhovskajaO.V. von HaefenC. VotrubaM. WadaK. Wade-MartinsR. WalkerC.L. WalshC.M. WalterJ. WanX.B. WangA. WangC. WangD. WangF. WangF. WangG. WangH. WangH.G. WangH.D. WangJ. WangK. WangM. WangR.C. WangX. WangX.J. WangY.J. WangY. WangZ.B. WangZ.C. WangZ. WansinkD.G. WardD.M. WatadaH. WatersS.L. WebsterP. WeiL. WeihlC.C. WeissW.A. WelfordS.M. WenL.P. WhitehouseC.A. WhittonJ.L. WhitworthA.J. WilemanT. WileyJ.W. WilkinsonS. WillboldD. WilliamsR.L. WilliamsonP.R. WoutersB.G. WuC. WuD.C. WuW.K.K. WyttenbachA. XavierR.J. XiZ. XiaP. XiaoG. XieZ. XieZ. XuD. XuJ. XuL. XuX. YamamotoA. YamamotoA. YamashinaS. YamashitaM. YanX. YanagidaM. YangD.S. YangE. YangJ.M. YangS.Y. YangW. YangW.Y. YangZ. YaoM.C. YaoT.P. YeganehB. YenW.L. YinJ.J. YinX.M. YooO.J. YoonG. YoonS.Y. YorimitsuT. YoshikawaY. YoshimoriT. YoshimotoK. YouH.J. YouleR.J. YounesA. YuL. YuL. YuS.W. YuW.H. YuanZ.M. YueZ. YunC.H. YuzakiM. ZabirnykO. Silva-ZacarinE. ZacksD. ZacksenhausE. ZaffaroniN. ZakeriZ. ZehH.J.III ZeitlinS.O. ZhangH. ZhangH.L. ZhangJ. ZhangJ.P. ZhangL. ZhangL. ZhangM.Y. ZhangX.D. ZhaoM. ZhaoY.F. ZhaoY. ZhaoZ.J. ZhengX. ZhivotovskyB. ZhongQ. ZhouC.Z. ZhuC. ZhuW.G. ZhuX.F. ZhuX. ZhuY. ZoladekT. ZongW.X. ZorzanoA. ZschockeJ. ZuckerbraunB. Guidelines for the use and interpretation of assays for monitoring autophagy.Autophagy20128444554410.4161/auto.1949622966490
    [Google Scholar]
  20. EvansH.M. SchultzD.F. BoimanA.J. McKellM.C. QuallsJ.E. DeepeG.S.Jr Restraint of fumarate accrual by HIF-1α preserves miR-27a-mediated limitation of interleukin 10 during infection of macrophages by histoplasma capsulatum.MBio2021126e02710-2110.1128/mBio.02710‑2134749531
    [Google Scholar]
  21. RiosE.C.S. de LimaT.M. MorettiA.I.S. SorianoF.G. The role of nitric oxide in the epigenetic regulation of THP-1 induced by lipopolysaccharide.Life Sci.201614711011610.1016/j.lfs.2016.01.04126826317
    [Google Scholar]
  22. NikiforovN.G. KirichenkoT.V. KubekinaM.V. ChegodaevY.S. ZhuravlevA.D. IlchukL.A. NikolaevaM.A. ArefievaA.S. PopovM.A. VerkhovaS.S. Bagheri EktaM. OrekhovA.N. Macrophages derived from LPS-stimulated monocytes from individuals with subclinical atherosclerosis were characterized by increased pro-inflammatory activity.Cytokine202317215641110.1016/j.cyto.2023.15641137918051
    [Google Scholar]
  23. NeteaM.G. QuintinJ. van der MeerJ.W.M. Trained immunity: A memory for innate host defense.Cell Host Microbe20119535536110.1016/j.chom.2011.04.00621575907
    [Google Scholar]
  24. AlB. SuenT.K. PlacekK. NeteaM.G . Innate (learned) memory.J. Allergy Clin Immunol.2023152355156610.1016/j.jaci.2023.06.014
    [Google Scholar]
  25. OrekhovA.N. NikiforovN.G. OmelchenkoA.V. SinyovV.V. SobeninI.A. VinokurovA.Y. OrekhovaV.A. The role of mitochondrial mutations in chronification of inflammation: Hypothesis and overview of own data.Life (Basel)2022128115310.3390/life1208115336013333
    [Google Scholar]
  26. LiuM. WuY. Role of mitophagy in coronary heart disease: Targeting the mitochondrial dysfunction and inflammatory regulation.Front. Cardiovasc. Med.2022981945410.3389/fcvm.2022.81945435187131
    [Google Scholar]
  27. KryskoD.V. AgostinisP. KryskoO. GargA.D. BachertC. LambrechtB.N. VandenabeeleP. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation.Trends Immunol.201132415716410.1016/j.it.2011.01.00521334975
    [Google Scholar]
  28. GkikasI. PalikarasK. TavernarakisN. The role of mitophagy in innate immunity.Front. Immunol.20189128310.3389/fimmu.2018.0128329951054
    [Google Scholar]
  29. OnishiM. YamanoK. SatoM. MatsudaN. OkamotoK. Molecular mechanisms and physiological functions of mitophagy.EMBO J.2021403e10470510.15252/embj.202010470533438778
    [Google Scholar]
  30. ChoD.H. KimJ.K. JoE.K. Mitophagy and innate immunity in infection.Mol. Cells2020431102210.14348/molcells.2020.232931999918
    [Google Scholar]
  31. YinX. XinH. MaoS. WuG. GuoL. The role of autophagy in sepsis: Protection and injury to organs.Front. Physiol.201910107110.3389/fphys.2019.0107131507440
    [Google Scholar]
  32. LeeJ.P.W. FooteA. FanH. Peral de CastroC. LangT. JonesS.A. GavrilescuN. MillsK.H.G. LeechM. MorandE.F. HarrisJ. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages.Autophagy201612690791610.1080/15548627.2016.116435827163877
    [Google Scholar]
  33. QiuP. LiuY. ZhangJ. Review: The role and mechanisms of macrophage autophagy in sepsis.Inflammation201942161910.1007/s10753‑018‑0890‑830194660
    [Google Scholar]
  34. KimM.J. YoonJ.H. RyuJ.H. Mitophagy: A balance regulator of NLRP3 inflammasome activation.BMB Rep.2016491052953510.5483/BMBRep.2016.49.10.11527439607
    [Google Scholar]
  35. HuM. LuoQ. AlitongbiekeG. ChongS. XuC. XieL. ChenX. ZhangD. ZhouY. WangZ. YeX. CaiL. ZhangF. ChenH. JiangF. FangH. YangS. LiuJ. Diaz-MecoM.T. SuY. ZhouH. MoscatJ. LinX. ZhangX. Celastrol-Induced Nur77 Interaction with TRAF2 alleviates inflammation by promoting mitochondrial ubiquitination and autophagy.Mol. Cell2017661141153.e610.1016/j.molcel.2017.03.00828388439
    [Google Scholar]
  36. KimM.J. BaeS.H. RyuJ.C. KwonY. OhJ.H. KwonJ. MoonJ.S. KimK. MiyawakiA. LeeM.G. ShinJ. KimY.S. KimC.H. RyterS.W. ChoiA.M.K. RheeS.G. RyuJ.H. YoonJ.H. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages.Autophagy20161281272129110.1080/15548627.2016.118308127337507
    [Google Scholar]
  37. ZhangL. QinY. ChenM. Viral strategies for triggering and manipulating mitophagy.Autophagy201814101665167310.1080/15548627.2018.146601429895192
    [Google Scholar]
  38. OrekhovA.N. IvanovaE.A. MarkinA.M. NikiforovN.G. SobeninI.A. Genetics of arterial-wall-specific mechanisms in atherosclerosis: Focus on mitochondrial mutations.Curr. Atheroscler. Rep.202022105410.1007/s11883‑020‑00873‑532772280
    [Google Scholar]
  39. LiH. ShenL. HuP. HuangR. CaoY. DengJ. YuanW. LiuD. YangJ. GuH. BaiY. Aging-associated mitochondrial DNA mutations alter oxidative phosphorylation machinery and cause mitochondrial dysfunctions.Biochim. Biophys. Acta Mol. Basis Dis.2017186392266227310.1016/j.bbadis.2017.05.02228559044
    [Google Scholar]
  40. SazonovaM.A. SinyovV.V. RyzhkovaA.I. SazonovaM.D. KhasanovaZ.B. ShkuratT.P. KaragodinV.P. OrekhovA.N. SobeninI.A. Creation of cybrid cultures containing mtDNA mutations m.12315G>A and m.1555G>A, associated with atherosclerosis.Biomolecules20199949910.3390/biom909049931540444
    [Google Scholar]
  41. GangurV. BirminghamN.P. ThanesvorakulS. Chemokines in health and disease.Vet. Immunol. Immunopathol.2002863-412713610.1016/S0165‑2427(02)00018‑112007879
    [Google Scholar]
  42. IwaseS. NakadaT. HattoriN. TakahashiW. TakahashiN. AizimuT. YoshidaM. MorizaneT. OdaS. Interleukin-6 as a diagnostic marker for infection in critically ill patients: A systematic review and meta-analysis.Am. J. Emerg. Med.201937226026510.1016/j.ajem.2018.05.04029887194
    [Google Scholar]
  43. MoriyaJ. Critical roles of inflammation in atherosclerosis.J. Cardiol.2019731222710.1016/j.jjcc.2018.05.01029907363
    [Google Scholar]
  44. van HorssenJ. van SchaikP. WitteM. Inflammation and mitochondrial dysfunction: A vicious circle in neurodegenerative disorders?Neurosci. Lett.201971013293110.1016/j.neulet.2017.06.05028668382
    [Google Scholar]
  45. KhotinaV.A. KalmykovV.A. ZhuravlevA.D. SinyovV.V. SobeninI.A. OrekhovA.N. SukhorukovV.N. Orekhov, A.N. Mitochondrial genome editing: a possible interplay of atherosclerosis-associated mutation m.15059G>A with defective mitophagy.J. Lipid Atheroscler.202410.1101/2023.04.21.537899
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673294643240228105957
Loading
/content/journals/cmc/10.2174/0109298673294643240228105957
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test