Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Endometrial glands and stroma can be seen outside the uterine cavity in endometriosis, a gynecological disorder linked to estrogen dependency. Hormonal therapies, surgical excision, and non-steroidal anti-inflammatory drug therapy are among the traditional endometriosis treatments, however, various side effects limit their efficacy. Therefore, it is vital to research complementary and alternative therapeutic modalities to decrease the side effects of conventional therapies. While the search for the best endometriosis treatment continues, the focus is being paid to the assistance provided by polyphenols, notably quercetin. A broad spectrum of health-improving benefits of quercetin includes interactions with endometriosis-related molecular targets such as cell proliferation, apoptosis, invasiveness, inflammation, and oxidative stress. According to already-known research, medicines that mimic the physiological effects of quercetin are good candidates for creating novel endometriosis therapies. This review aims to comprehensively review quercetin's potential as a non-pharmacological treatment for endometriosis by interacting with several cellular and molecular targets.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673269733230921092509
2023-10-09
2025-01-28
Loading full text...

Full text loading...

References

  1. ZondervanK.T. BeckerC.M. KogaK. MissmerS.A. TaylorR.N. ViganòP. Endometriosis.Nat. Rev. Dis. Primers201841910.1038/s41572‑018‑0008‑530026507
    [Google Scholar]
  2. UlukusM. CakmakH. AriciA. The role of endometrium in endometriosis.J. Soc. Gynecol. Investig.200613746747610.1016/j.jsgi.2006.07.00516990031
    [Google Scholar]
  3. DawsonA. LlauradóF.M. AnglesioM. YongP.J. CareyM.S. Endometriosis and endometriosis-associated cancers: New insights into the molecular mechanisms of ovarian cancer development.Ecancermedicalscience20181280310.3332/ecancer.2018.80329456620
    [Google Scholar]
  4. RudermanR. PavoneM.E. Ovarian cancer in endometriosis: An update on the clinical and molecular aspects.Minerva Ginecol.201769328629428271698
    [Google Scholar]
  5. MissmerS.A. TuF.F. AgarwalS.K. ChapronC. SolimanA.M. ChiuveS. EichnerS. Flores-CalderaI. HorneA.W. KimballA.B. LauferM.R. LeylandN. SinghS.S. TaylorH.S. As-SanieS. Impact of endometriosis on life-course potential: A narrative review.Int. J. Gen. Med.20211492510.2147/IJGM.S26113933442286
    [Google Scholar]
  6. TroìaL. LuisiS. Sexual function and quality of life in women with endometriosis.Minerva Obstet. Gynecol.202274320322110.23736/S2724‑606X.22.05033‑335420289
    [Google Scholar]
  7. GiudiceL.C. KaoL.C. Endometriosis.Lancet200436494471789179910.1016/S0140‑6736(04)17403‑515541453
    [Google Scholar]
  8. ParasarP. OzcanP. TerryK.L. Endometriosis: Epidemiology, diagnosis and clinical management.Curr. Obstet. Gynecol. Rep.201761344110.1007/s13669‑017‑0187‑129276652
    [Google Scholar]
  9. GuptaD. HullM.L. FraserI. MillerL. BossuytP.M.M. JohnsonN. NisenblatV. Endometrial biomarkers for the non-invasive diagnosis of endometriosis.Cochrane Libr.201620164CD01216510.1002/14651858.CD01216527094925
    [Google Scholar]
  10. FischerC. SpethV. Fleig-EberenzS. NeuhausG. Induction of zygotic polyembryos in wheat: Influence of auxin polar transport.Plant Cell19979101767178010.2307/387052312237347
    [Google Scholar]
  11. BishayeeK. GhoshS. MukherjeeA. SadhukhanR. MondalJ. Khuda-BukhshA.R. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction.Cell Prolif.201346215316310.1111/cpr.1201723510470
    [Google Scholar]
  12. Vidya PriyadarsiniR. Senthil MuruganR. MaitreyiS. RamalingamK. KarunagaranD. NaginiS. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition.Eur. J. Pharmacol.20106491-3849110.1016/j.ejphar.2010.09.02020858478
    [Google Scholar]
  13. MaciejczykA. SurowiakP. Quercetin inhibits proliferation and increases sensitivity of ovarian cancer cells to cisplatin and paclitaxel.Ginekol. Pol.201384759059510.17772/gp/160924032269
    [Google Scholar]
  14. PanH.C. JiangQ. YuY. MeiJ.P. CuiY.K. ZhaoW.J. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells.Neurochem. Int.201580607110.1016/j.neuint.2014.12.00125481090
    [Google Scholar]
  15. LouM. ZhangL. JiP. FengF. LiuJ. YangC. LiB. WangL. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo.Biomed. Pharmacother.2016841910.1016/j.biopha.2016.08.05527621033
    [Google Scholar]
  16. CatanzaroD. RagazziE. VianelloC. CaparrottaL. MontopoliM. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines.Nat. Prod. Commun.20151081934578X150100010.1177/1934578X150100081326434118
    [Google Scholar]
  17. SuhD.K. LeeE.J. KimH.C. KimJ.H. Induction of G1/S phase arrest and apoptosis by quercetin in human osteosarcoma cells.Arch. Pharm. Res.201033578178510.1007/s12272‑010‑0519‑420512478
    [Google Scholar]
  18. CaddeoC. Díez-SalesO. PonsR. Fernàndez-BusquetsX. FaddaA.M. ManconiM. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation.Pharm. Res.201431495996810.1007/s11095‑013‑1215‑024297068
    [Google Scholar]
  19. CastangiaI. NácherA. CaddeoC. ValentiD. FaddaA.M. Díez-SalesO. Ruiz-SauríA. ManconiM. Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice.Acta Biomater.20141031292130010.1016/j.actbio.2013.11.00524239901
    [Google Scholar]
  20. AlımZ. KılıçD. DemirY. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: In vitro inhibition and molecular modeling studies.Arch. Physiol. Biochem.2019125538739510.1080/13813455.2018.147064629741961
    [Google Scholar]
  21. DemirY. CeylanH. TürkeşC. BeydemirŞ. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes.J. Biomol. Struct. Dyn.20224022120081202110.1080/07391102.2021.196719534424822
    [Google Scholar]
  22. BayrakS. ÖztürkC. DemirY. AlımZ. KüfreviogluÖ.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity.Protein Pept. Lett.202027318719210.2174/092986652666619100214230131577197
    [Google Scholar]
  23. ZondervanK.T. BeckerC.M. MissmerS.A. Endometriosis.N. Engl. J. Med.2020382131244125610.1056/NEJMra181076432212520
    [Google Scholar]
  24. LaganàA.S. VitaleS.G. GraneseR. PalmaraV. Ban FrangežH. Vrtačnik-BokalE. ChiofaloB. TrioloO. Clinical dynamics of dienogest for the treatment of endometriosis: From bench to bedside.Expert Opin. Drug Metab. Toxicol.201713659359610.1080/17425255.2017.129742128537213
    [Google Scholar]
  25. ChewK.T. NorsaadahS. SurayaA. HingE.Y. Ani AmeliaZ. Nor AzlinM.I. Nur AzurahA.G. Primary umbilical endometriosis successfully treated with dienogest.Horm. Mol. Biol. Clin. Investig.2017292676927318657
    [Google Scholar]
  26. RaffaelliR. GarzonS. BaggioS. GennaM. PominiP. LaganàA.S. GhezziF. FranchiM. Mesenteric vascular and nerve sparing surgery in laparoscopic segmental intestinal resection for deep infiltrating endometriosis.Eur. J. Obstet. Gynecol. Reprod. Biol.201823121421910.1016/j.ejogrb.2018.10.05730415128
    [Google Scholar]
  27. KondoW. RibeiroR. ZomerM.T. HayashiR. Laparoscopic double discoid resection with a circular stapler for bowel endometriosis.J. Minim. Invasive Gynecol.201522692993110.1016/j.jmig.2015.04.02125937595
    [Google Scholar]
  28. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.300436537558
    [Google Scholar]
  29. ÖzaslanM.S. SağlamtaşR. DemirY. GençY. Saraçoğluİ. Gülçinİ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity.Chem. Biodivers.2022198e20220028010.1002/cbdv.20220028035796520
    [Google Scholar]
  30. ForsterR. SarginsonA. VelichkovaA. HoggC. DorningA. HorneA.W. SaundersP.T.K. GreavesE. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis.FASEB J.20193310112101122210.1096/fj.201900797R31291762
    [Google Scholar]
  31. YuX. WangY. TanX. LiM. Upregulation of fibroblast growth factor 2 contributes to endometriosis through SPRYs/DUSP6/ERK signaling pathway.Acta Histochem.2021123515174910.1016/j.acthis.2021.15174934224989
    [Google Scholar]
  32. JeungI. CheonK. KimM.R. Decreased cytotoxicity of peripheral and peritoneal natural killer cell in endometriosis.BioMed Res. Int.201620161610.1155/2016/291607027294113
    [Google Scholar]
  33. MalhotraN. KarmakarD. TripathiV. LuthraK. KumarS. Correlation of angiogenic cytokines-leptin and IL-8 in stage, type and presentation of endometriosis.Gynecol. Endocrinol.201228322422710.3109/09513590.2011.59366421848410
    [Google Scholar]
  34. AnastasiuC.V. MogaM.A. Elena NeculauA. BălanA. ScârneciuI. DragomirR.M. DullA.M. ChiceaL.M. Biomarkers for the noninvasive diagnosis of endometriosis: State of the art and future perspectives.Int. J. Mol. Sci.2020215175010.3390/ijms2105175032143439
    [Google Scholar]
  35. NisenblatV. BossuytP.M.M. ShaikhR. FarquharC. JordanV. ScheffersC.S. MolB.W.J. JohnsonN. HullM.L. Blood biomarkers for the non-invasive diagnosis of endometriosis.Cochrane Libr.201620165CD01217910.1002/14651858.CD01217927132058
    [Google Scholar]
  36. KapoorR. SirohiV.K. GuptaK. DwivediA. Naringenin ameliorates progression of endometriosis by modulating Nrf2/Keap1/HO1 axis and inducing apoptosis in rats.J. Nutr. Biochem.20197021522610.1016/j.jnutbio.2019.05.00331252288
    [Google Scholar]
  37. KobayashiH. KimuraM. MaruyamaS. NagayasuM. ImanakaS. Revisiting estrogen-dependent signaling pathways in endometriosis: Potential targets for non-hormonal therapeutics.Eur. J. Obstet. Gynecol. Reprod. Biol.202125810311010.1016/j.ejogrb.2020.12.04433421806
    [Google Scholar]
  38. YangH. HuT. HuP. QiC. QianL. miR-143-3p inhibits endometriotic stromal cell proliferation and invasion by inactivating autophagy in endometriosis.Mol. Med. Rep.202123535610.3892/mmr.2021.1199533760149
    [Google Scholar]
  39. AbeW. NasuK. NakadaC. KawanoY. MoriyamaM. NaraharaH. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells.Hum. Reprod.201328375076110.1093/humrep/des44623293219
    [Google Scholar]
  40. OrellanaR. García-SolaresJ. DonnezJ. van KerkO. DolmansM.M. DonnezO. Important role of collective cell migration and nerve fiber density in the development of deep nodular endometriosis.Fertil. Steril.20171074987995.e510.1016/j.fertnstert.2017.01.00528238494
    [Google Scholar]
  41. DonnezO. SoaresM. DefrèreS. DehouxJ.P. van LangendoncktA. DonnezJ. DolmansM.M. ColetteS. Nerve fiber density in deep nodular endometriotic lesions induced in a baboon experimental model.Fertil. Steril.2013100411441150.e210.1016/j.fertnstert.2013.06.01423850304
    [Google Scholar]
  42. DonnezJ. SmoesP. GillerotS. Casanas-RouxF. NisolleM. Vascular endothelial growth factor (VEGF) in endometriosis.Hum. Reprod.19981361686169010.1093/humrep/13.6.16869688413
    [Google Scholar]
  43. BourlevV. VolkovN. PavlovitchS. LetsN. LarssonA. OlovssonM. The relationship between microvessel density, proliferative activity and expression of vascular endothelial growth factor-A and its receptors in eutopic endometrium and endometriotic lesions.Reproduction2006132350150910.1530/rep.1.0111016940291
    [Google Scholar]
  44. ZhangM. XuT. TongD. LiS. YuX. LiuB. JiangL. LiuK. Research advances in endometriosis-related signaling pathways: A review.Biomed. Pharmacother.202316411490910.1016/j.biopha.2023.11490937210898
    [Google Scholar]
  45. ChenL.H. LoW.C. HuangH.Y. WuH.M. A lifelong impact on endometriosis: Pathophysiology and pharmacological treatment.Int. J. Mol. Sci.2023248750310.3390/ijms2408750337108664
    [Google Scholar]
  46. ParkJ.K. SongM. DominguezC.E. WalterM.F. SantanamN. ParthasarathyS. MurphyA.A. Glycodelin mediates the increase in vascular endothelial growth factor in response to oxidative stress in the endometrium.Am. J. Obstet. Gynecol.200619561772177710.1016/j.ajog.2006.07.02517132480
    [Google Scholar]
  47. BruntyS. SantanamN. Current assessment of the (dys)function of macrophages in endometriosis and its associated pain.Ann. Transl. Med.20197S8S38110.21037/atm.2019.12.11932016099
    [Google Scholar]
  48. GuptaS. AgarwalA. KrajcirN. AlvarezJ.G. Role of oxidative stress in endometriosis.Reprod. Biomed. Online200613112613410.1016/S1472‑6483(10)62026‑316820124
    [Google Scholar]
  49. AgarwalA. GuptaS. SharmaR.K. Role of oxidative stress in female reproduction.Reprod. Biol. Endocrinol.2005312810.1186/1477‑7827‑3‑2816018814
    [Google Scholar]
  50. DemirY. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases.Drug Dev. Res.202081562863610.1002/ddr.2166732232985
    [Google Scholar]
  51. BeydemirŞ. DemirY. Antiepileptic drugs: Impacts on human serum paraoxonase-1.J. Biochem. Mol. Toxicol.2017316e2188910.1002/jbt.2188928032682
    [Google Scholar]
  52. DemirY. The behaviour of some antihypertension drugs on human serum paraoxonase-1: An important protector enzyme against atherosclerosis.J. Pharm. Pharmacol.201971101576158310.1111/jphp.1314431347707
    [Google Scholar]
  53. TürkeşC. DemirY. BeydemirŞ. Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I.J. Biomol. Struct. Dyn.2022401778510.1080/07391102.2020.180692732783605
    [Google Scholar]
  54. KorkmazI.N. TürkeşC. DemirY. ÖztekinA. ÖzdemirH. BeydemirŞ. Biological evaluation and in silico study of benzohydrazide derivatives as paraoxonase 1 inhibitors.J. Biochem. Mol. Toxicol.20223611e2318010.1002/jbt.2318035916346
    [Google Scholar]
  55. BurtonG.J. JauniauxE. Oxidative stress.Best Pract. Res. Clin. Obstet. Gynaecol.201125328729910.1016/j.bpobgyn.2010.10.01621130690
    [Google Scholar]
  56. ScutieroG. IannoneP. BernardiG. BonaccorsiG. SpadaroS. VoltaC.A. GrecoP. NappiL. Oxidative stress and endometriosis: A systematic review of the literature.Oxid. Med. Cell. Longev.201720171710.1155/2017/726523829057034
    [Google Scholar]
  57. LiY. CaiL. GuoN. LiuC. WangM. ZhuL. LiF. JinL. SuiC. Oviductal extracellular vesicles from women with endometriosis impair embryo development.Front. Endocrinol.202314117177810.3389/fendo.2023.117177837409222
    [Google Scholar]
  58. ZhangM. LiuC. YuanX.Q. CuiF.P. MiaoY. YaoW. QinD.Y. DengY.L. ChenP.P. ZengJ.Y. LiuX.Y. WuY. LiC.R. LuW.Q. LiY.F. ZengQ. Oxidatively generated DNA damage mediates the associations of exposure to phthalates with uterine fibroids and endometriosis: Findings from TREE cohort.Free Radic. Biol. Med.2023205697610.1016/j.freeradbiomed.2023.05.02937279842
    [Google Scholar]
  59. WingfieldM. MacphersonA. HealyD.L. RogersP.A.W. Cell proliferation is increased in the endometrium of women with endometriosis.Fertil. Steril.199564234034610.1016/S0015‑0282(16)57733‑47542208
    [Google Scholar]
  60. JürgensenA. MettlerL. VolkovN.I. ParwareschR. Proliferative activity of the endometrium throughout the menstrual cycle in infertile women with and without endometriosis.Fertil. Steril.199666336937510.1016/S0015‑0282(16)58502‑18751731
    [Google Scholar]
  61. NasiriN. MoiniA. Eftekhari-YazdiP. KarimianL. Salman-YazdiR. ArabipoorA. Oxidative stress statues in serum and follicular fluid of women with endometriosis.Cell J.201718458258728042542
    [Google Scholar]
  62. VárnagyÁ. KőszegiT. GyörgyiE. SzegediS. SulyokE. PrémuszV. BódisJ. Levels of total antioxidant capacity and 8-hydroxy-2′-deoxyguanosine of serum and follicular fluid in women undergoing in vitro fertilization: Focusing on endometriosis.Hum. Fertil.202023320020810.1080/14647273.2018.153571930422732
    [Google Scholar]
  63. MoriM. ItoF. ShiL. WangY. IshidaC. HattoriY. NiwaM. HirayamaT. NagasawaH. IwaseA. KikkawaF. ToyokuniS. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron.Redox Biol.2015657858610.1016/j.redox.2015.10.00126498255
    [Google Scholar]
  64. WooJ.H. ChoiY.S. ChoiJ.H. Iron-storage protein ferritin is upregulated in endometriosis and iron overload contributes to a migratory phenotype.Biomedicines202081145410.3390/biomedicines811045433121166
    [Google Scholar]
  65. NgS.W. NorwitzS.G. TaylorH.S. NorwitzE.R. Endometriosis: The role of iron overload and ferroptosis.Reprod. Sci.20202771383139010.1007/s43032‑020‑00164‑z32077077
    [Google Scholar]
  66. PirdelL. PirdelM. Role of iron overload-induced macrophage apoptosis in the pathogenesis of peritoneal endometriosis.Reproduction20141476R199R20710.1530/REP‑13‑055224599836
    [Google Scholar]
  67. NandaA. KT. BanerjeeP. DuttaM. WangdiT. SharmaP. ChaudhuryK. JanaS.K. Cytokines, angiogenesis, and extracellular matrix degradation are augmented by oxidative stress in endometriosis.Ann. Lab. Med.202040539039710.3343/alm.2020.40.5.39032311852
    [Google Scholar]
  68. HuangF. CaoJ. LiuQ. ZouY. LiH. YinT. MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1β induced in human endometriosis stromal cells in vitro. Int. J. Clin. Exp. Pathol.20136102129213624133591
    [Google Scholar]
  69. QiuX.M. LaiZ.Z. HaS.Y. YangH.L. LiuL.B. WangY. ShiJ.W. RuanL.Y. YeJ.F. WuJ.N. FuQ. YiX.F. ChangK.K. LiM.Q. IL-2 and IL-27 synergistically promote growth and invasion of endometriotic stromal cells by maintaining the balance of IFN-γ and IL-10 in endometriosis.Reproduction2020159325126010.1530/REP‑19‑041131869309
    [Google Scholar]
  70. González-RamosR. DefrèreS. DevotoL. Nuclear factor–kappaB: A main regulator of inflammation and cell survival in endometriosis pathophysiology.Fertil. Steril.201298352052810.1016/j.fertnstert.2012.06.02122771029
    [Google Scholar]
  71. González-RamosR. RoccoJ. RojasC. SovinoH. PochA. KohenP. Alvarado-DíazC. DevotoL. Physiologic activation of nuclear factor kappa-B in the endometrium during the menstrual cycle is altered in endometriosis patients.Fertil. Steril.201297364565110.1016/j.fertnstert.2011.12.00622196717
    [Google Scholar]
  72. GiordanoA. TommonaroG. Curcumin and cancer.Nutrients20191110237610.3390/nu1110237631590362
    [Google Scholar]
  73. ShakeriA. WardN. PanahiY. SahebkarA. Anti-angiogenic activity of curcumin in cancer therapy: A narrative review.Curr. Vasc. Pharmacol.201917326226910.2174/157016111666618020911301429424316
    [Google Scholar]
  74. WeiX. ShaoX. Nobiletin alleviates endometriosis via down-regulating NF-κB activity in endometriosis mouse model.Biosci. Rep.2018383BSR2018047010.1042/BSR20180470
    [Google Scholar]
  75. KumarP. AmreenS. GuptaP. RaoP. Evaluation of oxidative stress and severity of endometriosis.J. Hum. Reprod. Sci.2019121404610.4103/jhrs.JHRS_27_1731007466
    [Google Scholar]
  76. SzczepańskaM. KoźlikJ. SkrzypczakJ. MikołajczykM. Oxidative stress may be a piece in the endometriosis puzzle.Fertil. Steril.20037961288129310.1016/S0015‑0282(03)00266‑812798872
    [Google Scholar]
  77. JamaliN. ZalF. Mostafavi-PourZ. Samare-NajafM. PoordastT. DehghanianA. Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats.Reprod. Sci.202128368369210.1007/s43032‑020‑00377‑233141412
    [Google Scholar]
  78. FadinM. NicolettiM.C. PellizzatoM. AccardiM. BaiettiM.G. FratterA. Effectiveness of the integration of quercetin, turmeric, and N-acetylcysteine in reducing inflammation and pain associated with endometriosis. In vitro and in vivo studies.Minerva Ginecol.202072528529110.23736/S0026‑4784.20.04615‑832921020
    [Google Scholar]
  79. ParkS. LimW. BazerF.W. WhangK.Y. SongG. Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo.J. Nutr. Biochem.2019638710010.1016/j.jnutbio.2018.09.02430359864
    [Google Scholar]
  80. SignorileP.G. ViceconteR. BaldiA. Novel dietary supplement association reduces symptoms in endometriosis patients.J. Cell. Physiol.201823385920592510.1002/jcp.2640129243819
    [Google Scholar]
  81. CaoY. ZhuangM. YangY. XieS. CuiJ. CaoL. ZhangT. ZhuY. Preliminary study of quercetin affecting the hypothalamic-pituitary-gonadal axis on rat endometriosis model.Evid. Based Complement. Alternat. Med.2014201411210.1155/2014/78168425530789
    [Google Scholar]
  82. ZhangX WangX WangHJ YangQ QieMR Inhibition effect and mechanisms of quercetin on surgically induced endometriosis.Sichuan Da Xue Xue Bao Yi Xue Ban.200940222831, 244
    [Google Scholar]
  83. IlhanM. AliZ. KhanI.A. TaştanH. Küpeli AkkolE. The regression of endometriosis with glycosylated flavonoids isolated from Melilotus officinalis (L.) Pall. in an endometriosis rat model.Taiwan. J. Obstet. Gynecol.202059221121910.1016/j.tjog.2020.01.00832127140
    [Google Scholar]
  84. LiX. ZhuQ. MaM. GuoH. Quercetin inhibits the progression of endometrial HEC-1-A cells by regulating ferroptosis-a preliminary study.Eur. J. Med. Res.202227129210.1186/s40001‑022‑00934‑236522794
    [Google Scholar]
  85. CebeciogluR. YildirimM. AkagunduzD. KorkmazI. TekinH.O. Atasever-ArslanB. CatalT. Synergistic effects of quercetin and selenium on oxidative stress in endometrial adenocarcinoma cells.Bratisl. Med. J.2019120644945510.4149/BLL_2019_07231223026
    [Google Scholar]
  86. ScambiaG. RanellettiF.O. PaniciP.B. PiantelliM. BonannoG. De VincenzoR. FerrandinaG. MaggianoN. CapelliA. MancusoS. Inhibitory effect of quercetin on primary ovarian and endometrial cancers and synergistic activity with cis-diamminedichloroplatinum(II).Gynecol. Oncol.1992451131910.1016/0090‑8258(92)90484‑Z1601330
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673269733230921092509
Loading
/content/journals/cmc/10.2174/0109298673269733230921092509
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammatory; antioxidant; endometriosis; Polyphenol; quercetin; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test