Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Adiponectin replacement therapy shows promising outcomes in various diseases, especially for bone-related disorders. Challenges in using the complete protein have led to alternative approaches, with AdipoRon and AdipoAI emerging as extensively researched drug candidates. Their influence on models of bone-related disorders has progressed considerably but there has been no review of their effectiveness in modulating bone metabolism and repair.

Methods

This systematic review seeks to address this knowledge gap. Based on preclinical evidence from PubMed, EMBASE, and COCHRANE, ten studies were included following PRISMA guidelines. The JBI Checklist Critical Appraisal Tool assessed the quality of this systematic review. The studies encompassed various animal models, addressing bone defects, osseointegration, diabetes-associated periodontitis, fracture repair, growth retardation, and diabetes-associated peri-implantitis.

Results

AdipoRon and AdipoAI demonstrated effectiveness in modulating bone metabolism and repair through diverse pathways, including the activation of AdipoR1/APPL1, inhibition of F-actin ring formation, suppression of IκB-α phosphorylation, p65 nuclear translocation and Wnt5a-Ror2 signaling pathway, reduction of CCL2 secretion and expression, regulation of autophagy LC3A/B expression, modulation of SDF-1 production, activation of the ERK1/2 signaling pathway, modulation of bone integration-related markers and osteokines such as RANKL, BMP-2, OPG, OPN, and Runx2, inhibition of RANKL in osteoblasts, and inhibition of podosome formation the activation of AMPK.

Conclusion

While preclinical studies show promise, human trials are crucial to confirm the clinical safety and effectiveness of AdipoRon and AdipoAI. Caution is necessary due to potential off-target effects, especially in bone therapy with multi-target approaches. Structural biology and computational methods can help predict and understand these effects.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673308301240821052742
2024-08-28
2025-04-11
Loading full text...

Full text loading...

References

  1. Diep NguyenT.M. Adiponectin: Role in physiology and pathophysiology.Int. J. Prev. Med.202011113610.4103/ijpvm.IJPVM_193_2033088464
    [Google Scholar]
  2. MessinisI.E. MessiniC.I. DafopoulosK. Obesity. MahmoodT. ArulkumaranS. OxfordElsevier20139911610.1016/B978‑0‑12‑416045‑3.00008‑X
    [Google Scholar]
  3. HuX. HuC. ZhangC. ZhangM. LongS. CaoZ. Role of adiponectin in prostate cancer.Int. Braz. J. Urol.201945222022810.1590/s1677‑5538.ibju.2018.026130648824
    [Google Scholar]
  4. KhoramipourK. ChamariK. HekmatikarA.A. ZiyaiyanA. TaherkhaniS. ElguindyN.M. BragazziN.L. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition.Nutrients2021134118010.3390/nu1304118033918360
    [Google Scholar]
  5. van AndelM. HeijboerA.C. DrentM.L. Advances in Clinical Chemistry. MakowskiG.S. Elsevier201885115147
    [Google Scholar]
  6. ThundyilJ. PavlovskiD. SobeyC.G. ArumugamT.V. Adiponectin receptor signalling in the brain.Br. J. Pharmacol.2012165231332710.1111/j.1476‑5381.2011.01560.x21718299
    [Google Scholar]
  7. WongG.W. WangJ. HugC. TsaoT.S. LodishH.F. A family of Acrp30/adiponectin structural and functional paralogs.Proc. Natl. Acad. Sci. USA200410128103021030710.1073/pnas.040376010115231994
    [Google Scholar]
  8. ChoiH.M. DossH.M. KimK.S. Multifaceted physiological roles of adiponectin in inflammation and diseases.Int. J. Mol. Sci.2020214121910.3390/ijms2104121932059381
    [Google Scholar]
  9. SzumilasK. SzumilasP. Słuczanowska-GłąbowskaS. ZgutkaK. PawlikA. Role of adiponectin in the pathogenesis of rheumatoid arthritis.Int. J. Mol. Sci.20202121826510.3390/ijms2121826533158216
    [Google Scholar]
  10. van AndelM. HeijboerA.C. DrentM.L. Adiponectin and its isoforms in pathophysiology.Adv. Clin. Chem.20188511514710.1016/bs.acc.2018.02.00729655459
    [Google Scholar]
  11. RoyP.K. IslamJ. LalhlenmawiaH. Prospects of potential adipokines as therapeutic agents in obesity-linked atherogenic dyslipidemia and insulin resistance.Egypt. Heart J.20237512410.1186/s43044‑023‑00352‑737014444
    [Google Scholar]
  12. PascoluttiR. ErlandsonS.C. BurriD.J. ZhengS. KruseA.C. Mapping and engineering the interaction between adiponectin and T-cadherin.J. Biol. Chem.202029592749275910.1074/jbc.RA119.01097031915248
    [Google Scholar]
  13. RubinaK.A. SeminaE.V. KalininaN.I. SysoevaV.Y. BalatskiyA.V. TkachukV.A. Revisiting the multiple roles of T-cadherin in health and disease.Eur. J. Cell Biol.20211007-815118310.1016/j.ejcb.2021.15118334798557
    [Google Scholar]
  14. PolitoR. NigroE. PecoraroA. MonacoM.L. PernaF. SanduzziA. GenoveseA. SpadaroG. DanieleA. Adiponectin receptors and pro-inflammatory cytokines are modulated in common variable immunodeficiency patients: Correlation with Ig replacement therapy.Front. Immunol.201910281210.3389/fimmu.2019.0281231827477
    [Google Scholar]
  15. YamauchiT. KamonJ. ItoY. TsuchidaA. YokomizoT. KitaS. SugiyamaT. MiyagishiM. HaraK. TsunodaM. MurakamiK. OhtekiT. UchidaS. TakekawaS. WakiH. TsunoN.H. ShibataY. TerauchiY. FroguelP. TobeK. KoyasuS. TairaK. KitamuraT. ShimizuT. NagaiR. KadowakiT. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.Nature2003423694176276910.1038/nature0170512802337
    [Google Scholar]
  16. NeumeierM. HellerbrandC. GäbeleE. BuettnerR. BollheimerC. WeigertJ. SchäfflerA. WeissT.S. LichtenauerM. SchölmerichJ. BuechlerC. Adiponectin and its receptors in rodent models of fatty liver disease and liver cirrhosis.World J. Gastroenterol.200612345490549410.3748/wjg.v12.i34.549017006986
    [Google Scholar]
  17. LiM. ChiX. WangY. SetrerrahmaneS. XieW. XuH. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy.Signal Transduct. Target. Ther.20227121610.1038/s41392‑022‑01073‑035794109
    [Google Scholar]
  18. HalbergN. SchrawT.D. WangZ.V. KimJ.Y. YiJ. HamiltonM.P. Luby-PhelpsK. SchererP.E. Systemic fate of the adipocyte-derived factor adiponectin.Diabetes20095891961197010.2337/db08‑175019581422
    [Google Scholar]
  19. Parker-DuffenJ.L. NakamuraK. SilverM. KikuchiR. TiggesU. YoshidaS. DenzelM.S. RanschtB. WalshK. T-cadherin is essential for adiponectin-mediated revascularization.J. Biol. Chem.201328834248862489710.1074/jbc.M113.45483523824191
    [Google Scholar]
  20. SongH.J. OhS. QuanS. RyuO.H. JeongJ.Y. HongK.S. KimD.H. Gender differences in adiponectin levels and body composition in older adults: Hallym aging study.BMC Geriatr.2014141810.1186/1471‑2318‑14‑824460637
    [Google Scholar]
  21. LewisJ.W. EdwardsJ.R. NaylorA.J. McGettrickH.M. Adiponectin signalling in bone homeostasis, with age and in disease.Bone Res.202191110.1038/s41413‑020‑00122‑033414405
    [Google Scholar]
  22. HowladerM. SultanaM.I. AkterF. HossainM.M. Adiponectin gene polymorphisms associated with diabetes mellitus: A descriptive review.Heliyon202178e0785110.1016/j.heliyon.2021.e0785134471717
    [Google Scholar]
  23. BarbalhoS.M. Méndez-SánchezN. Fornari LaurindoL. AdipoRon and ADP355, adiponectin receptor agonists, in metabolic-associated fatty liver disease (MAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review.Biochem. Pharmacol.202321811587110.1016/j.bcp.2023.11587137866803
    [Google Scholar]
  24. SchererP.E. WilliamsS. FoglianoM. BaldiniG. LodishH.F. A novel serum protein similar to C1q, produced exclusively in adipocytes.J. Biol. Chem.199527045267462674910.1074/jbc.270.45.267467592907
    [Google Scholar]
  25. HuiX. FengT. LiuQ. GaoY. XuA. The FGF21–adiponectin axis in controlling energy and vascular homeostasis.J. Mol. Cell Biol.20168211011910.1093/jmcb/mjw01326993043
    [Google Scholar]
  26. HuiX. LamK.S.L. VanhoutteP.M. XuA. Adiponectin and cardiovascular health: An update.Br. J. Pharmacol.2012165357459010.1111/j.1476‑5381.2011.01395.x21457225
    [Google Scholar]
  27. MinnitiG. Pescinini-SalzedasL.M. MinnitiG.A.S. LaurindoL.F. BarbalhoS.M. Vargas SinatoraR. SloanL.A. HaberR.S.A. AraújoA.C. QuesadaK. HaberJ.F.S. BecharaM.D. SloanK.P. Organokines, sarcopenia, and metabolic repercussions: The vicious cycle and the interplay with exercise.Int. J. Mol. Sci.202223211345210.3390/ijms23211345236362238
    [Google Scholar]
  28. YoonM.J. LeeG.Y. ChungJ.J. AhnY.H. HongS.H. KimJ.B. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha.Diabetes20065592562257010.2337/db05‑132216936205
    [Google Scholar]
  29. MohammadiT. PaknahadZ. Adiponectin concentration in gestational diabetic women: A case-control study.Clin. Nutr. Res.20176426727610.7762/cnr.2017.6.4.26729124047
    [Google Scholar]
  30. WeyerC. FunahashiT. TanakaS. HottaK. MatsuzawaY. PratleyR.E. TataranniP.A. Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia.J. Clin. Endocrinol. Metab.20018651930193510.1210/jcem.86.5.746311344187
    [Google Scholar]
  31. AddyC.L. GavrilaA. TsiodrasS. BrodoviczK. KarchmerA.W. MantzorosC.S. Hypoadiponectinemia is associated with insulin resistance, hypertriglyceridemia, and fat redistribution in human immunodeficiency virus-infected patients treated with highly active antiretroviral therapy.J. Clin. Endocrinol. Metab.200388262763610.1210/jc.2002‑02079512574192
    [Google Scholar]
  32. GamberiT. MagheriniF. ModestiA. FiaschiT. Adiponectin signaling pathways in liver diseases.Biomedicines2018625210.3390/biomedicines602005229735928
    [Google Scholar]
  33. OuchiN. WalshK. Adiponectin as an anti-inflammatory factor.Clin. Chim. Acta20073801-2243010.1016/j.cca.2007.01.02617343838
    [Google Scholar]
  34. WangX. ChenQ. PuH. WeiQ. DuanM. ZhangC. JiangT. ShouX. ZhangJ. YangY. Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice.Lipids Health Dis.20161513310.1186/s12944‑016‑0202‑y26965176
    [Google Scholar]
  35. LaurindoL.F. de MaioM.C. BarbalhoS.M. GuiguerE.L. AraújoA.C. de Alvares GoulartR. FlatoU.A.P. JúniorE.B. DetregiachiC.R.P. dos Santos HaberJ.F. BuenoP.C.S. GirioR.S.J. EleutérioR.G. BecharaM.D. Organokines in rheumatoid arthritis: A critical review.Int. J. Mol. Sci.20222311619310.3390/ijms2311619335682868
    [Google Scholar]
  36. BarbalhoS.M. MinnitiG. MiolaV.F.B. HaberJ.F.S. BuenoP.C.S. de Argollo HaberL.S. GirioR.S.J. DetregiachiC.R.P. Dall’AntoniaC.T. RodriguesV.D. NicolauC.C.T. CatharinV.M.C.S. AraújoA.C. LaurindoL.F. Organokines in COVID-19: A systematic review.Cells20231210134910.3390/cells1210134937408184
    [Google Scholar]
  37. ShimontyA. BonewaldL.F. HuotJ.R. Metabolic health and disease: A role of osteokines?Calcif. Tissue Int.20231131213810.1007/s00223‑023‑01093‑037193929
    [Google Scholar]
  38. YangJ. ParkO.J. KimJ. HanS. YangY. YunC.H. HanS.H. Adiponectin deficiency triggers bone loss by up-regulation of osteoclastogenesis and down-regulation of osteoblastogenesis.Front. Endocrinol.20191081510.3389/fendo.2019.0081531824428
    [Google Scholar]
  39. LuoX.H. GuoL.J. XieH. YuanL.Q. WuX.P. ZhouH.D. LiaoE.Y. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway.J. Bone Miner. Res.200621101648165610.1359/jbmr.06070716995820
    [Google Scholar]
  40. NaotD. WatsonM. CallonK.E. TuariD. MussonD.S. ChoiA.J. SreenivasanD. FernandezJ. TuP.T. DickinsonM. GambleG.D. GreyA. CornishJ. Reduced bone density and cortical bone indices in female adiponectin-knockout mice.Endocrinology201615793550356110.1210/en.2016‑105927384302
    [Google Scholar]
  41. TuQ. ZhangJ. DongL.Q. SaundersE. LuoE. TangJ. ChenJ. Adiponectin inhibits osteoclastogenesis and bone resorption via APPL1-mediated suppression of Akt1.J. Biol. Chem.201128614125421255310.1074/jbc.M110.15240521300805
    [Google Scholar]
  42. OtvosL.Jr. Potential adiponectin receptor response modifier therapeutics.Front. Endocrinol.20191053910.3389/fendo.2019.0053931456747
    [Google Scholar]
  43. Jasinski-BergnerS. BüttnerM. QuandtD. SeligerB. KielsteinH. Adiponectin and its receptors are differentially expressed in human tissues and cell lines of distinct origin.Obes. Facts201710656958310.1159/00048173229207395
    [Google Scholar]
  44. WakiH. YamauchiT. KamonJ. ItoY. UchidaS. KitaS. HaraK. HadaY. VasseurF. FroguelP. KimuraS. NagaiR. KadowakiT. Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin.J. Biol. Chem.200327841403524036310.1074/jbc.M30036520012878598
    [Google Scholar]
  45. WangZ.V. SchererP.E. Adiponectin, the past two decades.J. Mol. Cell Biol.2016829310010.1093/jmcb/mjw01126993047
    [Google Scholar]
  46. HeikerJ.T. KlötingN. BlüherM. Beck-SickingerA.G. Access to gram scale amounts of functional globular adiponectin from E. coli inclusion bodies by alkaline-shock solubilization.Biochem. Biophys. Res. Commun.20103981323710.1016/j.bbrc.2010.06.02020541528
    [Google Scholar]
  47. KimS. LeeY. KimJ.W. SonY.J. MaM.J. UmJ.H. KimN.D. MinS.H. KimD.I. KimB.B. Discovery of a novel potent peptide agonist to adiponectin receptor 1.PLoS One2018136e019925610.1371/journal.pone.019925629912982
    [Google Scholar]
  48. OtvosL.Jr HaspingerE. La RussaF. MasperoF. GrazianoP. KovalszkyI. LovasS. NamaK. HoffmannR. KnappeD. CassoneM. WadeJ. SurmaczE. Design and development of a peptide-based adiponectin receptor agonist for cancer treatment.BMC Biotechnol.20111119010.1186/1472‑6750‑11‑9021974986
    [Google Scholar]
  49. LaurindoL.F. SosinA.F. LamasC.B. de Alvares GoulartR. dos Santos HaberJ.F. DetregiachiC.R.P. BarbalhoS.M. Exploring the logic and conducting a comprehensive evaluation of AdipoRon-based adiponectin replacement therapy against hormone-related cancers-a systematic review.Naunyn Schmiedebergs Arch Pharmacol202439742067208237864589
    [Google Scholar]
  50. KhandelwalM. ManglaniK. UpadhyayP. AzadM. GuptaS. AdipoRon induces AMPK activation and ameliorates Alzheimer’s like pathologies and associated cognitive impairment in APP/PS1 mice.Neurobiol. Dis.202217410587610.1016/j.nbd.2022.10587636162737
    [Google Scholar]
  51. EsfahaniM. ShababN. SaidijamM. AdipoRon may be benefit for atherosclerosis prevention.Iran. J. Basic Med. Sci.201720210710928293385
    [Google Scholar]
  52. SunJ. LiuX. ShenC. ZhangW. NiuY. Adiponectin receptor agonist AdipoRon blocks skin inflamm-ageing by regulating mitochondrial dynamics.Cell Prolif.20215412e1315510.1111/cpr.1315534725875
    [Google Scholar]
  53. SelvaisC.M. Davis-López de CarrizosaM.A. NachitM. VerseleR. DubuissonN. NoelL. GillardJ. LeclercqI.A. BrichardS.M. Abou-SamraM. AdipoRon enhances healthspan in middle-aged obese mice: Striking alleviation of myosteatosis and muscle degenerative markers.J. Cachexia Sarcopenia Muscle202314146447810.1002/jcsm.1314836513619
    [Google Scholar]
  54. Abou-SamraM. SelvaisC.M. BoursereauR. LecompteS. NoelL. BrichardS.M. AdipoRon, a new therapeutic prospect for Duchenne muscular dystrophy.J. Cachexia Sarcopenia Muscle202011251853310.1002/jcsm.1253131965757
    [Google Scholar]
  55. ZhangN. WeiW.Y. LiaoH.H. YangZ. HuC. WangS. DengW. TangQ.Z. AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload.J. Mol. Med.201896121345135710.1007/s00109‑018‑1696‑830341569
    [Google Scholar]
  56. YuH. WuH. XieQ. LiuZ. ChenZ. TuQ. ChenJ. FangF. QiuW. Construction of ceRNA and m6A-related lncRNA networks associated with anti-inflammation of AdipoAI.Front. Immunol.202313105165410.3389/fimmu.2022.105165436703959
    [Google Scholar]
  57. QiuW. WuH. HuZ. WuX. TuM. FangF. ZhuX. LiuY. LianJ. ValverdeP. Van DykeT. SteffensenB. DongL.Q. TuQ. ZhouX. ChenJ. Identification and characterization of a novel adiponectin receptor agonist adipo anti-inflammation agonist and its anti-inflammatory effects in vitro and in vivo.Br. J. Pharmacol.2021178228029710.1111/bph.1527732986862
    [Google Scholar]
  58. AromatarisE. FernandezR. GodfreyC.M. HollyC. KhalilH. TungpunkomP. Summarizing systematic reviews.Int. J. Evid.-Based Healthcare201513313214010.1097/XEB.000000000000005526360830
    [Google Scholar]
  59. ZengX. ZhangY. KwongJ.S.W. ZhangC. LiS. SunF. NiuY. DuL. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: A systematic review.J. Evid. Based Med.20158121010.1111/jebm.1214125594108
    [Google Scholar]
  60. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271-nn7110.1136/bmj.n7133782057
    [Google Scholar]
  61. WuX. ZhuD. ShiL. TuQ. YuY. ChenJ. AdipoRon accelerates bone repair of calvarial defect in diet-induced obesity mice.Heliyon202393e1397510.1016/j.heliyon.2023.e1397536873496
    [Google Scholar]
  62. MadelM.B. FuH. PierrozD.D. SchiffrinM. WinklerC. WilsonA. PochonC. ToffoliB. TaïebM. JouzeauJ.Y. GilardiF. FerrariS. BonnetN. Blin-WakkachC. DesvergneB. MoulinD. Lack of adiponectin drives hyperosteoclastogenesis in lipoatrophic mice.Front. Cell Dev. Biol.2021962715310.3389/fcell.2021.62715333869176
    [Google Scholar]
  63. LiuH. LiuS. JiH. ZhaoQ. LiuY. HuP. LuoE. An adiponectin receptor agonist promote osteogenesis via regulating bone-fat balance.Cell Prolif.2021546e1303510.1111/cpr.1303533939201
    [Google Scholar]
  64. HuangB. BiW. SunY. LiR. WuX. YuY. AdipoRon promotes the osseointegration of dental implants in mice with type 2 diabetes mellitus.Front. Physiol.20211269773810.3389/fphys.2021.69773836632609
    [Google Scholar]
  65. WangZ. TangJ. LiY. WangY. GuoY. TuQ. ChenJ. WangC. AdipoRon promotes diabetic fracture repair through endochondral ossification-based bone repair by enhancing survival and differentiation of chondrocytes.Exp. Cell Res.2020387211175710.1016/j.yexcr.2019.11175731838062
    [Google Scholar]
  66. NicolasS. RochetN. GautierN. ChabryJ. PisaniD.F. The adiponectin receptor agonist AdipoRon normalizes glucose metabolism and prevents obesity but not growth retardation induced by glucocorticoids in young mice.Metabolism202010315402710.1016/j.metabol.2019.15402731778708
    [Google Scholar]
  67. WuX. QiuW. HuZ. LianJ. LiuY. ZhuX. TuM. FangF. YuY. ValverdeP. TuQ. YuY. ChenJ. An adiponectin receptor agonist reduces type 2 diabetic periodontitis.J. Dent. Res.201998331332110.1177/002203451881844930626266
    [Google Scholar]
  68. QiuW. ChenZ. WangZ. ChenY. LuanK. ZhangK. YuH. TuQ. ChenJ. WuH. FangF. AdipoAI suppresses osteoclastogenesis by activating AdipoR1/APPL1: An in vivo experimental study in diabetes-associated peri-implantitis.Clin. Oral Implants Res.202334660261710.1111/clr.1407037092468
    [Google Scholar]
  69. QiuW. WangZ. ChenZ. SunQ. WuH. ChenZ. LuanK. LiuZ. DingD. TuQ. ChenJ. WuB. FangF. The adiponectin receptor agonist AdipoAI attenuates periodontitis in diabetic rats by inhibiting gingival fibroblast-induced macrophage migration.Br. J. Pharmacol.2023180182436245110.1111/bph.1610337143319
    [Google Scholar]
  70. WuX. SunY. CuiR. QiuW. ZhangJ. HuZ. BiW. YangF. MaD. Van DykeT. TuQ. YuY. ChenJ. A novel adiponectin receptor agonist (AdipoAI) ameliorates type 2 diabetes-associated periodontitis by enhancing autophagy in osteoclasts.J. Periodontal Res.202257238139110.1111/jre.1296934984683
    [Google Scholar]
  71. Okada-IwabuM. YamauchiT. IwabuM. HonmaT. HamagamiK. MatsudaK. YamaguchiM. TanabeH. Kimura-SomeyaT. ShirouzuM. OgataH. TokuyamaK. UekiK. NaganoT. TanakaA. YokoyamaS. KadowakiT. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity.Nature2013503747749349910.1038/nature1265624172895
    [Google Scholar]
  72. NigroE. DanieleA. SalzilloA. RagoneA. NaviglioS. SapioL. AdipoRon and other adiponectin receptor agonists as potential candidates in cancer treatments.Int. J. Mol. Sci.20212211556910.3390/ijms2211556934070338
    [Google Scholar]
  73. ChenJ.C. CastilloA.B. JacobsC.R. Osteoporosis Academic PressSan Diego2013453475
    [Google Scholar]
  74. HosoganeN. HuangZ. RawlinsB.A. LiuX. Boachie-AdjeiO. BoskeyA.L. ZhuW. Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells.Int. J. Biochem. Cell Biol.20104271132114110.1016/j.biocel.2010.03.02020362069
    [Google Scholar]
  75. CarboneL.D. BůžkováP. FinkH.A. RobbinsJ.A. BethelM. HamrickM.W. HillW.D. Association of plasma SDF-1 with bone mineral density, body composition, and hip fractures in older adults: The cardiovascular health study.Calcif. Tissue Int.2017100659960810.1007/s00223‑017‑0245‑828246930
    [Google Scholar]
  76. JungY. WangJ. SchneiderA. SunY.X. Koh-PaigeA.J. OsmanN.I. McCauleyL.K. TaichmanR.S. Regulation of SDF-1 (CXCL12) production by osteoblasts; A possible mechanism for stem cell homing.Bone200638449750810.1016/j.bone.2005.10.00316337237
    [Google Scholar]
  77. YangF. XueF. GuanJ. ZhangZ. YinJ. KangQ. Stromal-cell-derived factor (SDF) 1-alpha overexpression promotes bone regeneration by osteogenesis and angiogenesis in osteonecrosis of the femoral head.Cell. Physiol. Biochem.20184662561257510.1159/00048968429758548
    [Google Scholar]
  78. YavropoulouM.P. YovosJ.G. The molecular basis of bone mechanotransduction.J. Musculoskelet. Neuronal Interact.201616322123627609037
    [Google Scholar]
  79. GeorgessD. Machuca-GayetI. BlangyA. JurdicP. Podosome organization drives osteoclast-mediated bone resorption.Cell Adhes. Migr.20148319220410.4161/cam.2784024714644
    [Google Scholar]
  80. JeyabalanJ. ShahM. ViolletB. ChenuC. AMP-activated protein kinase pathway and bone metabolism.J. Endocrinol.2012212327729010.1530/JOE‑11‑030621903861
    [Google Scholar]
  81. DaW. TaoL. ZhuY. The role of osteoclast energy metabolism in the occurrence and development of osteoporosis.Front. Endocrinol.20211267538510.3389/fendo.2021.67538534054735
    [Google Scholar]
  82. CaiZ. YangB. ShiY. ZhangW. LiuF. ZhaoW. YangM.W. High glucose downregulates the effects of autophagy on osteoclastogenesis via the AMPK/mTOR/ULK1 pathway.Biochem. Biophys. Res. Commun.2018503242843510.1016/j.bbrc.2018.04.05229649480
    [Google Scholar]
  83. CaoX. RANKL-RANK signaling regulates osteoblast differentiation and bone formation.Bone Res.2018613510.1038/s41413‑018‑0040‑930510840
    [Google Scholar]
  84. WangL. DongM. ShiD. YangC. LiuS. GaoL. NiuW. Role of PI3K in the bone resorption of apical periodontitis.BMC Oral Health202222134510.1186/s12903‑022‑02364‑235953782
    [Google Scholar]
  85. KitagishiY. KobayashiM. KikutaK. MatsudaS. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses.Depress. Res. Treat.201220121810.1155/2012/75256323320155
    [Google Scholar]
  86. LiuR. ChenY. LiuG. LiC. SongY. CaoZ. LiW. HuJ. LuC. LiuY. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers.Cell Death Dis.202011979710.1038/s41419‑020‑02998‑632973135
    [Google Scholar]
  87. XiaY. ShenS. VermaI.M. NF-κB, an active player in human cancers.Cancer Immunol. Res.20142982383010.1158/2326‑6066.CIR‑14‑011225187272
    [Google Scholar]
  88. DasA. BhattacharyaB. RoyS. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer.Genes Dis.20229486888810.1016/j.gendis.2021.12.02535685456
    [Google Scholar]
  89. DomotoT. UeharaM. BolidongD. MinamotoT. Glycogen synthase kinase 3β in cancer biology and treatment.Cells202096138810.3390/cells906138832503133
    [Google Scholar]
  90. PhukanS. BabuV.S. KannojiA. HariharanR. BalajiV.N. GSK3β: role in therapeutic landscape and development of modulators.Br. J. Pharmacol.2010160111910.1111/j.1476‑5381.2010.00661.x20331603
    [Google Scholar]
  91. HoxhajG. ManningB.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism.Nat. Rev. Cancer2020202748810.1038/s41568‑019‑0216‑731686003
    [Google Scholar]
  92. DongJ. XuX. ZhangQ. YuanZ. TanB. The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wnt/β-catenin.Exp. Cell Res.2020394111213710.1016/j.yexcr.2020.11213732534061
    [Google Scholar]
  93. MukherjeeA. RotweinP. Akt promotes BMP2-mediated osteoblast differentiation and bone development.J. Cell Sci.2009122571672610.1242/jcs.04277019208758
    [Google Scholar]
  94. KawamuraN. KugimiyaF. OshimaY. OhbaS. IkedaT. SaitoT. ShinodaY. KawasakiY. OgataN. HoshiK. AkiyamaT. ChenW.S. HayN. TobeK. KadowakiT. AzumaY. TanakaS. NakamuraK. ChungU. KawaguchiH. Akt1 in osteoblasts and osteoclasts controls bone remodeling.PLoS One2007210e105810.1371/journal.pone.000105817957242
    [Google Scholar]
  95. Ghosh-ChoudhuryN. AbboudS.L. NishimuraR. CelesteA. MahimainathanL. ChoudhuryG.G. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription.J. Biol. Chem.200227736333613336810.1074/jbc.M20505320012084724
    [Google Scholar]
  96. LinC. ShaoY. ZengC. ZhaoC. FangH. WangL. PanJ. LiuL. QiW. FengX. QiuH. ZhangH. ChenY. WangH. CaiD. XianC.J. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis.J. Cell. Physiol.201823386135614710.1002/jcp.2646029323710
    [Google Scholar]
  97. SchraderJ.W. GodingJ.W. The Autoimmune Diseases 5th edAcademic PressBoston2014
    [Google Scholar]
  98. RoumeliotisS. RoumeliotisA. DounousiE. EleftheriadisT. LiakopoulosV. Advances in Clinical Chemistry. MakowskiG.S. Elsevier20209891147
    [Google Scholar]
  99. UdagawaN. KoideM. NakamuraM. NakamichiY. YamashitaT. UeharaS. KobayashiY. FuruyaY. YasudaH. FukudaC. TsudaE. Osteoclast differentiation by RANKL and OPG signaling pathways.J. Bone Miner. Metab.2021391192610.1007/s00774‑020‑01162‑633079279
    [Google Scholar]
  100. KostenuikP. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength.Curr. Opin. Pharmacol.20055661862510.1016/j.coph.2005.06.00516188502
    [Google Scholar]
  101. SiJ. WangC. ZhangD. WangB. HouW. ZhouY. Osteopontin in bone metabolism and bone diseases.Med. Sci. Monit.202026e91915910.12659/MSM.91915931996665
    [Google Scholar]
  102. DongM. YuX. ChenW. GuoZ. SuiL. XuY. ShangY. NiuW. KongY. Osteopontin promotes bone destruction in periapical periodontitis by activating the NF-κB pathway.Cell. Physiol. Biochem.201849388489810.1159/00049321930184545
    [Google Scholar]
  103. ThurnerP.J. ChenC.G. Ionova-MartinS. SunL. HarmanA. PorterA. AgerJ.W.III RitchieR.O. AllistonT. Osteopontin deficiency increases bone fragility but preserves bone mass.Bone20104661564157310.1016/j.bone.2010.02.01420171304
    [Google Scholar]
  104. RashidH. MaC. ChenH. WangH. HassanM.Q. SinhaK. de CrombruggheB. JavedA. Sp7 and Runx2 molecular complex synergistically regulate expression of target genes.Connect. Tissue Res.201455Suppl 1838710.3109/03008207.2014.923872
    [Google Scholar]
  105. KomoriT. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2.Int. J. Mol. Sci.2019207169410.3390/ijms2007169430987410
    [Google Scholar]
  106. EnomotoH. ShiojiriS. HoshiK. FuruichiT. FukuyamaR. YoshidaC.A. KanataniN. NakamuraR. MizunoA. ZanmaA. YanoK. YasudaH. HigashioK. TakadaK. KomoriT. Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2-/- mice by RANKL transgene.J. Biol. Chem.200327826239712397710.1074/jbc.M30245720012697767
    [Google Scholar]
  107. KomoriT. The functions of Runx family transcription factors and Cbfb in skeletal development.Oral Sci. Int.20151211410.1016/S1348‑8643(14)00032‑9
    [Google Scholar]
  108. KomoriT. Roles of Runx2 in skeletal development.Adv. Exp. Med. Biol.2017962839310.1007/978‑981‑10‑3233‑2_628299652
    [Google Scholar]
  109. KimW.J. ShinH.L. KimB.S. KimH.J. RyooH.M. RUNX2-modifying enzymes: Therapeutic targets for bone diseases.Exp. Mol. Med.20205281178118410.1038/s12276‑020‑0471‑432788656
    [Google Scholar]
  110. WortzelI. SegerR. The ERK cascade: Distinct functions within various subcellular organelles.Genes Cancer20112319520910.1177/194760191140732821779493
    [Google Scholar]
  111. KatzS. BolandR. SantillánG. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: Involvement of mechanical stress-activated calcium influx, PKC and Src activation.Int. J. Biochem. Cell Biol.200638122082209110.1016/j.biocel.2006.05.01816893669
    [Google Scholar]
  112. TangM. PengZ. MaiZ. ChenL. MaoQ. ChenZ. ChenQ. LiuL. WangY. AiH. Fluid shear stress stimulates osteogenic differentiation of human periodontal ligament cells via the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling pathways.J. Periodontol.201485121806181310.1902/jop.2014.14024425186781
    [Google Scholar]
  113. JiangL. TangZ. Expression and regulation of the ERK1/2 and p38 MAPK signaling pathways in periodontal tissue remodeling of orthodontic tooth movement.Mol. Med. Rep.20181711499150629138812
    [Google Scholar]
  114. SiddiquiJ.A. PartridgeN.C. CCL2/monocyte chemoattractant protein 1 and parathyroid hormone action on bone.Front. Endocrinol.201784910.3389/fendo.2017.0004928424660
    [Google Scholar]
  115. KhanU.A. HashimiS.M. BakrM.M. ForwoodM.R. MorrisonN.A. CCL2 and CCR2 are essential for the formation of osteoclasts and foreign body giant cells.J. Cell. Biochem.2016117238238910.1002/jcb.2528226205994
    [Google Scholar]
  116. ToyaM. ZhangN. TsubosakaM. KushiokaJ. GaoQ. LiX. ChowS.K.H. GoodmanS.B. CCL2 promotes osteogenesis by facilitating macrophage migration during acute inflammation.Front. Cell Dev. Biol.202311121364110.3389/fcell.2023.121364137457301
    [Google Scholar]
  117. SimsN.A. Influences of the IL-6 cytokine family on bone structure and function.Cytokine202114615565510.1016/j.cyto.2021.15565534332274
    [Google Scholar]
  118. McGregorN.E. MuratM. ElangoJ. PoultonI.J. WalkerE.C. Crimeen-IrwinB. HoP.W.M. GooiJ.H. MartinT.J. SimsN.A. IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis.J. Biol. Chem.2019294197850786310.1074/jbc.RA119.00807430923130
    [Google Scholar]
  119. YoshitakeF. ItohS. NaritaH. IshiharaK. EbisuS. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways.J. Biol. Chem.200828317115351154010.1074/jbc.M60799920018296709
    [Google Scholar]
  120. XieZ. TangS. YeG. WangP. LiJ. LiuW. LiM. WangS. WuX. CenS. ZhengG. MaM. WuY. ShenH. Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells.Stem Cell Res. Ther.2018911310.1186/s13287‑017‑0766‑029357923
    [Google Scholar]
  121. KamizakiK. EndoM. MinamiY. KobayashiY. Role of noncanonical Wnt ligands and Ror-family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system.Dev. Dyn.20212501273810.1002/dvdy.15131925877
    [Google Scholar]
  122. GuoR. XingQ.S. Roles of Wnt signaling pathway and ror2 receptor in embryonic development: An update review article.Epigenet. Insights2022152516865721106423210.1177/2516865721106423235128307
    [Google Scholar]
  123. MaedaK. KobayashiY. UdagawaN. UeharaS. IshiharaA. MizoguchiT. KikuchiY. TakadaI. KatoS. KaniS. NishitaM. MarumoK. MartinT.J. MinamiY. TakahashiN. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis.Nat. Med.201218340541210.1038/nm.265322344299
    [Google Scholar]
  124. LeiL. HuangZ. FengJ. HuangZ. TaoY. HuX. ZhangX. Loss of receptor tyrosine kinase-like orphan receptor 2 impairs the osteogenesis of mBMSCs by inhibiting signal transducer and activator of transcription 3.Stem Cell Res. Ther.202011113710.1186/s13287‑020‑01646‑232216811
    [Google Scholar]
  125. LiuY. BhatR.A. Seestaller-WehrL.M. FukayamaS. MangineA. MoranR.A. KommB.S. BodineP.V.N. BilliardJ. The orphan receptor tyrosine kinase Ror2 promotes osteoblast differentiation and enhances ex vivo bone formation.Mol. Endocrinol.200721237638710.1210/me.2006‑034217095577
    [Google Scholar]
  126. MatsubaraT. KinbaraM. MaedaT. YoshizawaM. KokabuS. Takano YamamotoT. Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin.Biochem. Biophys. Res. Commun.2017489447247610.1016/j.bbrc.2017.05.17428576497
    [Google Scholar]
  127. WilsonS.R. PetersC. SaftigP. BrömmeD. CathepsinK. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.J. Biol. Chem.200928442584259210.1074/jbc.M80528020019028686
    [Google Scholar]
  128. GarbeA.I. RoscherA. SchülerC. LutterA.H. GlösmannM. BernhardtR. ChopinM. HempelU. HofbauerL.C. RammeltS. EgerbacherM. ErbenR.G. JessbergerR. Regulation of bone mass and osteoclast function depend on the F-actin modulator SWAP-70.J. Bone Miner. Res.201227102085209610.1002/jbmr.167022648978
    [Google Scholar]
  129. HuS. PlanusE. GeorgessD. PlaceC. WangX. Albiges-RizoC. JurdicP. GéminardJ.C. Podosome rings generate forces that drive saltatory osteoclast migration.Mol. Biol. Cell201122173120312610.1091/mbc.e11‑01‑008621737683
    [Google Scholar]
  130. TakitoJ. InoueS. NakamuraM. The sealing zone in osteoclasts: A self-organized structure on the bone.Int. J. Mol. Sci.201819498410.3390/ijms1904098429587415
    [Google Scholar]
  131. ItzsteinC. CoxonF.P. RogersM.J. The regulation of osteoclast function and bone resorption by small GTPases.Small GTPases20112311713010.4161/sgtp.2.3.1645321776413
    [Google Scholar]
  132. XuL. DengC. ZhangY. ZhaoL. LinghuY. YuY. Expression of autophagy-related factors LC3A and Beclin 1 and apoptosis-related factors Bcl-2 and BAX in osteoblasts treated with sodium fluoride.Front. Physiol.20211260384810.3389/fphys.2021.60384834276389
    [Google Scholar]
  133. de Oliveira dos SantosA.R. de Oliveira ZanusoB. MiolaV.F.B. BarbalhoS.M. Santos BuenoP.C. FlatoU.A.P. DetregiachiC.R.P. BuchaimD.V. BuchaimR.L. TofanoR.J. MendesC.G. TofanoV.A.C. dos Santos HaberJ.F. Adipokines, myokines, and hepatokines: Crosstalk and metabolic repercussions.Int. J. Mol. Sci.2021225263910.3390/ijms2205263933807959
    [Google Scholar]
  134. JadzicJ. DjonicD. Bone loss in chronic liver diseases: Could healthy liver be a requirement for good bone health?World J. Gastroenterol.202329582583310.3748/wjg.v29.i5.82536816627
    [Google Scholar]
  135. Méndez-SánchezN. BugianesiE. GishR.G. LammertF. TilgH. NguyenM.H. SarinS.K. FabrellasN. Zelber-SagiS. FanJ.G. ShihaG. TargherG. ZhengM.H. ChanW.K. VinkerS. KawaguchiT. CasteraL. YilmazY. KorenjakM. SpearmanC.W. UnganM. PalmerM. El-ShabrawiM. GrussH.J. DufourJ.F. DhawanA. WedemeyerH. GeorgeJ. ValentiL. FouadY. Romero-GomezM. EslamM. AbateM.L. AbbasB. AbbassyA.A. Abd El GhanyW. Abd ElkhalekA. Abd ElMajeedE. AbdalgaberM. AbdAllahM. AbdallahM. AbdallahN. AbdelaleemS. AbdelghaniY. AbdelghanyW. AbdelhalimS.M. AbdelhamidW. AbdelhamidN. AbdelkaderN.A. AbdelkreemE. AbdelmohsenA.M. AbdelrahmanA.A. Abd-elsalamS.M. AbdeltawabD. AbduhA. AbdulhakamN. AbdullaM. AbedpoorN. AbenavoliL. ÅbergF. AblackO. Abo elftouhM. Abo-AmerY.E-E. AboubkrA. AboudA. AbouelnagaA.M. AboufarragG.A. AboutalebA. AbundisL. AdalıG. AdamesE. AdamsL. AddaD. AdelN. AdelN. Adel SayedM. AfaaT.J. AfredjN. AghayevaG. AghemoA. Aguilar-SalinasC.A. AhlenstielG. AhmadyW. AhmedW. AhmedA. AhmedS.N. AhmedH.M. AhmedR. AignerE. AkarsuM. AkroushM. AkyuzU. Al MahtabM. Al QadiriT. Al RawahiY. AL rubaeeR. Al SaffarM. AlamS. Al-AniZ. AlbillosA. AlboraieM. Al-BusafiS. Al-EmamM. AlharthiJ. AliK. AliB.A. AliM. AliR.A.R. AlisiA. AL-KhafajiA.R. AlkhatryM. AllerR. AlmansouryY. Al-NaamaniK. AlnakeebA. AlonsoA. AlqahtaniS.A. AlrabadiL. AlswatK. AltaherM. AltamimiT. AltamiranoJ. Alvares-da-SilvaM.R. AlyE.A.M. AlzahabyA. AlzamzamyA. AmanoK. AmerM.A. AminM.A. AminS.A. AmirA.A. AmpueroJ. AnasN. AndreoneP. AndriamandimbyS.F. AneesM. AngelaP. AntoniosM. ArafatW. ArayaJ.M. Armendariz-BorundaJ. ArmstrongM.J. AshktorabH. AspichuetaP. AssalF. AtefM. AttiaD. AtwaH. AwadR. AwadM.A.E. AwnyS. AwolowoO. AwukuY.A. AyadaI. AyeT.T. AymanS. AymanH. AyoubH. AzmyH.M. BabaranR.P. BadreldinO. BadryA. Bahçecioğluİ.H. BahourA. BaiJ. BalabanY. BalasubramanyamM. BamakhramaK. BanalesJ.M. BangaruB. BaoJ. BarahonaJ.S. BarakatS. BarbalhoS.M. BarbraB. BarrancoB. BarreraF. BaumannU. BazeedS. BechE. BenayadA. BenesicA. BernsteinD. BessoneF. BirneyS. BisseyeC. BlakeM. BobatB. BonfrateL. BordinD.S. Bosques-PadillaF. BoursierJ. BoushabB.M. BowenD. BravoP.M. BrennanP.N. BrightB. BroekaertI. BuqueX. Burgos-SantamaríaD. BurmanJ. BusettoL. ByrneC.D. Cabral-ProdigalidadP.A.I. Cabrera-AlvarezG. CaiW. CainelliF. CaliskanA.R. CanbayA. Cano-ContrerasA. CaoH-X. CaoZ. CarrionA. CarubbiF. CasanovasT. Castellanos FernándezM.I. ChaiJ. ChanS.P. CharatcharoenwitthayaP. Chavez-TapiaN. ChayamaK. ChenJ. ChenL. ChenZ-W. ChenH. ChenS-D. ChenQ. ChenY. ChenG. ChenE-Q. ChenF. ChenF. ChenP-J. ChengR. ChengW. ChiehJ.T.W. ChokrI. CholongitasE. ChoudhuryA. ChowdhuryA. ChukwudikeE.S. CiardulloS. ClaytonM. ClementK. CloaM.M. CocciaC. CollazosC. ColomboM. CosarA.M. CotrimH.P. CouillerotJ. CoulibalyA. CrespoG. CrespoJ. CruellsM. CuaI.H.Y. DabbousH.K. DalekosG.N. D’AliaP. DanL. DaoV.H. DarwishM. DatzC. Davalos-MoscolM.B. DawoudH. de CareagaB.O. de KnegtR. de LedinghenV. de SilvaJ. DebziN. DecraeckerM. Del PozoE. DelgadoT.C. Delgado-BlancoM. DembińskiŁ. DepinaA. DerbalaM. DesalegnH. Desbois-MouthonC. DesokyM. DevA. Di CiaulaA. DiagoM. DialloI. DíazL.A. DirchwolfM. DongiovanniP. DorofeyevA. DouX. DouglasM.W. DoulberisM. DoviaC.K. DoyleA. DragojevićI. DrenthJ.P.H. DuanX. DulskasA. DumitrascuD.L. DuncanO. DusabejamboV. DwawhiR.S.N.A. EiketsuS. El AmrousyD. El DeebA. El DerinyG. El DinH.S. El KamshishyS. El KassasM. El RazikyM. ElagamyO.A. ElakelW. ElalfyD. ElarabyH. ElAwadyH. ElbadawyR. EldashH.H. EldefrawyM.S. ElecharriC.L. ElfaramawyA. ElfatihM. ElfikyM. ElgamsyM. ElgendyM. El-GuindiM.A. ElhussienyN. EliwaA.M. ElkabbanyZ. El-KhayatH. El-KoofyN.M. ElmetwalliA. ElrabatA. El-RaeyF. ElrashdyF. ElsahharM. ElsaidE.M. ElsayedS. ElsayedH. ElsayedA. ElsayedA.M. ElsayedH. El-SerafyM. ElsharkawyA.M. ElsheemyR.Y. ElshemyE.E. ElsherbiniS. EltoukhyN. ElwakilR. EmadO. EmadS. EmbabiM. ErgençI. ErmolovaT. EsmatG. EsmatD.M. EstupiñanE.C. EttairS. EugenT. Ezz-EldinM. FalcónL.P.V. FanY-C. FandariS. FaragM. FarahatT.M. FaresE.M. FaresM. FassioE. FathyH. FathyD. FathyW. FayedS. FengD. FengG. Fernández-BermejoM. FerreiraC.T. FerrerJ.D. ForbesA. FouadR. FouadH.M. FrischT. FujiiH. FukunagaS. FukunishiS. FulyaH. FuruhashiM. GaberY. GalangA.J.G. GallardoJ.C. GallosoR. GamalM. GamalR. GamalH. GanJ. GanboldA. GaoX. GarasG. GarbaT. García-CortesM. García-MonzónC. García-SamaniegoJ. GastaldelliA. GaticaM. GatleyE. GegeshidzeT. GengB. GhazinyanH. GhoneemS. GiacomelliL. GiannelliG. GianniniE.G. GieferM. GinèsP. GiralaM. GiraudiP.J. GohG.B-B. GomaaA.A. GongB. GonzalesD.H.C. GonzalezH.C. Gonzalez-HuezoM.S. GrauperaI. GrgurevicI. GrønbækH. GuX. GuanL. GueyeI. GuinganéA.N. GulO.O. GulC.B. GuoQ. GuptaP.P. GurakarA. GutierrezJ.C.R. HabibG. HafezA. HagmanE. HalawaE. HamdyO. HamedA.E. HamedD.H. HamidS. HamoudiW. HanY. HaridyJ. HaridyH. HarrisD.C.H.H. HartM. HasanF. HashimA. HassanI. HassanA. HassanE.A. HassanA.A. HassanM.S. HassaninF. HassnineA. HaukelandJ.W. HawalA.I.M. HeJ. HeQ. HeY. HeF-P. HegazyM. HegazyA. HenegilO. HernándezN. Hernández-GuerraM. Higuera-de-la-TijeraF. HindyI. HirotaK. HoL.C. HodgeA. HosnyM. HouX. HuangJ-F. HuangY. HuangZ. HuangY. HuangA. HuangY. HuangX-P. Hui-pingS. HunyadyB. HusseinM.A. HusseinO. HussienS.M. Ibáñez-SamaniegoL. IbdahJ. IbrahimL. IbrahimM. IbrahimI. Icaza-ChávezM.E. IdelbiS. IdilmanR.I. IkedaM. IndolfiG. InvernizziF. IrshadI. IsaH.M.A. IskandarN.J. IsmaielA. IsmailM. IsmailZ. IsmailF. IwamotoH. JackK. JacobR. JafarovF. JafriW. JahshanH. JalalP.K. JancorieneL. JanickoM. JayasenaH. JefferiesM. JhaV. JiF. JiY. JiaJ. JiangC. JiangN. JiangZ. JinX. JinY. JingX. JingyuQ. JinjolavaM. JongF.X.H.H. JucovA. JuliusI. KaddahM. KamadaY. kamalA. KamalE.M. KamelA.S. KaoJ-H. KarinM. KarlasT. KashwaaM. KatsidziraL. KayaE. KayassehM.A. KeenanB. KeklikkiranC. KemlW. KhalafD.K. KhalefaR. KhamisS. KhaterD. khattabH. KhavkinA. KhlynovaO. KhmisN. KobyliakN. KoffasA. KoikeK. KokK.Y.Y. KollerT. KomasN.P. KorochanskayaN.V. KoullaY. KoyaS. KraftC. KrajaB. KrawczykM. KuchayM.S. KulkarniA.V. KumarA. KumarM. LakohS. LamP. LanL. LangeN.F. LankaraniK.B. LanthierN. LapshynaK. LashenS.A. LaureK.N.J. LazebnikL. LebrecD. LeeS.S. LeeW.S. LeeY.Y. LeemingD.J. LeiteN.C. LeonR. LesmanaC.R.A. LiJ. LiQ. LiJ. LiY-Y. LiY. LiL. LiM. liY. LiangH. LijuanT. LimS.G. LimL-L. LinS. LinH-C. LinR. LithyR. LiuY. LiuY. LiuX. LiuW-Y. LiuS. LiuK. LiuT. LonardoA. LópezM.B. López-BenagesE. Lopez-JaramilloP. LuH. LuL.G. LuY. LubelJ. LuiR. LupascoI. LuzinaE. LvX-H. LynchK. MaH-L. MachadoM.V. MadukaN. MadzharovaK. MagdaongR. MahadevaS. MahfouzA. MahmoodN.R.K.N. MahmoudE. MahrousM. MaiwallR. MajeedA. MajumdarA. MakL. MakloufM.M. MalekzadehR. MandatoC. MangiaA. MannJ. MansourH.H. MansouriA. MantovaniA. MaoJ. MaramagF. MarchesiniG. MarcusC. MarinhoR.A.R.T. Martinez-ChantarM.L. MartinsA.A.S. MarwanR. MasonK.F. MasoudG. MassoudM.N. MatamorosM.A. MateosR.M. MawedA. MbanyaJ.C. MbendiC. McColaughL. McLeodD. MedinaJ.F.R. MegahedA. MehrezM. MemonI. MeratS. MercadoR. MesbahA. MeskiniT. MetwallyM. MetwalyR. MiaoL. MicahE. MieleL. MilivojevicV. MilovanovicT. MinaY.L. MishkovikM. MishrikiA. MitchellT. MohamedA. MohamedM. MohamedS. MohammedS. MohammedA. MohanV. MohieS. MokhtarA. MoniemR. MontillaM.S. MoralesJ.A.O. MorataM.M.S. Moreno-PlanasJ.M. MoriseS. MosaadS. MoselhyM. MostafaA.M. MostafaE. MouaneN. MousaN. MoustafaH.M. MsherifA. MullerK. MunozC. Muñoz-UrribarriA.B. MurilloO.A. MustaphaF.I. MuzurovićE. NabilY. NafadyS. NagamatsuA. NakajimaA. NakanoD. NanY. NascimbeniF. NaseefM.S. NashatN. NataliaT. NegroF. NersesovA.V. NeumanM. Ng’wanasayiM. NiY. NicollA. NiizekiT. NikolovaD. NingningW. NiriellaM. NogoibaevaK.A. NordienR. O SullivanC. O’BeirneJ. ObekpaS. OcamaP. OchwotoM. OgolodomM.P. OjoO. OkrostsvaridzeN. OliveiraC.P. OmañaR.C. OmarO.M. OmarH. OmarM. OmranS. OmranR. OsmanM.M. OwiseN. Owusu-AnsahT. Padilla- MachacaP.M. PalleS. PanZ. PanX-Y. PanQ. PapaefthymiouA. PaquissiF.C. ParG. ParkashA. PayawalD. PeltekianK.M. PengX. PengL. PengY. PengoriaR. PerezM. PérezJ.L. PérezN.M. PersicoM. PessoaM.G. PettaS. PhilipM. Plaz TorresM.C. PolavarapuN. PoniachikJ. PortincasaP. PuC. PürnakT. PurwantoE. QiX. QiX. QianZ. QiangZ. QiaoZ. QiaoL. QueirozA. RabieeA. RadwanM. RahetilahyA.M. RamadanY. RamadanD. RamliA.S. RammG.A. RanA. RankovicI. RaoH. RaoufS. RayS. ReauN. RefaatA. ReibergerT. Remes-TrocheJ.M. ReyesE.C. RichardsonB. RidruejoE. Riestra JimenezS. RizkI. RobertsS. RobleroJ.P. RoblesJ.A.P. RockeyD. RodríguezM. Rodríguez HernándezH. RománE. RomeiroF.G. RomeoS. Rosales-ZabalJ.M. RoshdiG.R. RossoN. RufA. RuizP.C. RunesN.R. RuzzenenteA. RyanM. SaadA. SabbaghE.B.E. SabbahM. SaberS. SabreyR. SabryR. SaeedM.A. SaidD. SaidE.M. SakrM.A. SalahY. SalamaR.M. SalamaA. SalehH. SalehA. SalemA. SalemA.T. SalifouA. SalihA.F. SalmanA. SamoudaH. SanaiF. Sánchez-ÁvilaJ.F. SankerL. SanoT. SanzM. SaparbuT. SawhneyR. SayedF. SayedS.A. SayedA.O. SayedM. SebastianiG. SecadasL. SediqiK.Q. SeifS. SemidaN. ŞenateşE. SerbanE.D. SerfatyL. SetoW-K. SghaierI. ShaM. ShabaanH.M. ShalabyL. ShaltoutI. ShararaA.I. SharmaV. ShawaI.T. ShawkatA. ShawkyN. ShehataO. SheilsS. ShewayeA.B. ShiG. ShiJ. ShimoseS. ShironoT. ShouL. ShresthaA. ShuiG. SievertW. SigurdardottirS. SiraM.M. SiradjR. SisonC. SmythL. SolimanR. SollanoJ.D. SombieR. SonderupM. SoodS. SorianoG. StedmanC.A.M. StefanyukO. ŠtimacD. StrasserS. StrnadP. StuartK. SuW. SuM. SumidaY. SumieS. SunD-Q. SunJ. SuzukiH. Svegliati-BaroniG. SwarM.O. TaharbouchtS. TaherZ. TakamuraS. TanL. TanS-S. TanwandeeT. TarekS. TatianaG. TavaglioneF. TecsonG.Y. TeeH-P. TeschkeR. TharwatM. ThongV.D. ThurszM. TineT. TiribelliC. TolmaneI. TongJ. TongoM. TorkieM. TorreA. TorresE.A. TrajkovskaM. TreeprasertsukS. TsutsumiT. TuT. TurJ.A. TuranD. TurcanS. TurkinaS. TutarE. TzeutonC. UgiagbeR. UygunA. VaccaM. VajroP. Van der PoortenD. Van KleefL.A. VashakidzeE. VelazquezC.M. VelazquezM.I. VentoS. VerhoevenV. Vespasiani-GentilucciU. VethakkanS.R. VilasecaJ. VítekL. VolkanovskaA. WallaceM. WanW. WangY. WangY. WangX. WangX. WangC. WangC. WangM. WangchukP. WeltmanM. WhiteM.F. WiegandJ. WifiM-N. WiggA. WilhelmiM. WilliamR. WittenburgH. WuS. WubenehA.M. XiaH. XiaoJ. XiaoX. XiaofengW. XiongW. XuL. XuJ. XuW. XuJ-H. XuK. XuY. XuS-H. XuM. XuA. XuC. YanH. YangJ. YangR-X. YangY. YangQ. YangN. YaoJ. YaraJ. YaraşS. YılmazN. YounesR. younesH. YoungS. YoussefF. YuY. YuM-L. YuanJ. YueZ. YuenM-F. YunW. YurukovaN. ZakariaS. ZakyS. ZaldastanishviliM. ZapataR. ZareN. ZeremE. ZeribanN. ZeshuaiX. ZhangH. ZhangX. ZhangY. ZhangW-H. ZhangX. ZhangY. ZhangY. ZhangZ. ZhaoJ. ZhaoR-R. ZhaoH. ZhengC. ZhengY. ZhengR. ZhengT-L. ZhengK. ZhouX.Q. ZhouY. ZhouY-J. ZhouH. ZhouL. ZhouY. ZhuL. ZhuY.F. ZhuY. ZhuP-W. ZiadaE. ZiringD. ZiyiL. ZouS. ZouZ. ZouH. Zuart RuizR. Global multi-stakeholder consensus on the redefinition of fatty liver disease Global multi-stakeholder endorsement of the MAFLD definition.Lancet Gastroenterol. Hepatol.20227538839010.1016/S2468‑1253(22)00062‑035248211
    [Google Scholar]
  136. PeiX. JiangW. LiL. ZengQ. LiuC.H. WangM. ChenE. ZhouT. TangH. WuD. Mendelian-randomization study revealed causal relationship between nonalcoholic fatty liver disease and osteoporosis/fractures.J. Gastroenterol. Hepatol.202439584785710.1111/jgh.1644838240493
    [Google Scholar]
  137. ZengL. LiY. HongC. WangJ. ZhuH. LiQ. CuiH. MaP. LiR. HeJ. ZhuH. LiuL. XiaoL. Association between fatty liver index and controlled attenuation parameters as markers of metabolic dysfunction-associated fatty liver disease and bone mineral density: Observational and two-sample Mendelian randomization studies.Osteoporos. Int.202435467968910.1007/s00198‑023‑06996‑038221591
    [Google Scholar]
  138. ZhangW. LiY. LiS. ZhouJ. WangK. LiZ. ChenN. ChenX. Associations of metabolic dysfunction-associated fatty liver disease and hepatic fibrosis with bone mineral density and risk of osteopenia/osteoporosis in T2DM patients.Front. Endocrinol.202314127850510.3389/fendo.2023.127850538116314
    [Google Scholar]
  139. DanfordC.J. TrivediH.D. BonderA. Bone health in patients with liver diseases.J. Clin. Densitom.202023221222210.1016/j.jocd.2019.01.00430744928
    [Google Scholar]
  140. GuichelaarM.M.J. MalinchocM. SibongaJ. ClarkeB.L. HayJ.E. Bone metabolism in advanced cholestatic liver disease: Analysis by bone histomorphometry.Hepatology200236489590310.1053/jhep.2002.3635712297836
    [Google Scholar]
  141. IoneleC.M. Turcu-StiolicaA. SubtireluM.S. UngureanuB.S. CioroianuG.O. RogoveanuI. A systematic review and meta-analysis on metabolic bone disease in patients with primary sclerosing cholangitis.J. Clin. Med.20221113380710.3390/jcm1113380735807091
    [Google Scholar]
  142. BosterJ.M. GoodrichN.P. SpinoC. LoomesK.M. AlonsoE.M. KamathB.M. SokolR.J. KarpenS. MiethkeA. ShneiderB.L. MollestonJ.P. KohliR. HorslenS.P. RosenthalP. ValentinoP.L. TeckmanJ.H. HangartnerT.N. SundaramS.S. Childhood Liver Disease Research Network (ChiLDReN) Sarcopenia is associated with osteopenia and impaired quality of life in children with genetic intrahepatic cholestatic liver disease.Hepatol. Commun.2023711e029310.1097/HC9.000000000000029337902507
    [Google Scholar]
  143. BeckH. HärterM. HaßB. SchmeckC. BaerfackerL. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the bayer chemical research laboratory.Drug Discov. Today20222761560157410.1016/j.drudis.2022.02.01535202802
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673308301240821052742
Loading
/content/journals/cmc/10.2174/0109298673308301240821052742
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): AdipoAI; adiponectin receptor; AdipoRon; bone metabolism; molecular weight; periodontitis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test