Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Methamphetamine (METH) is a synthetic drug widely abused globally and can result in hyperthermia (HT) and psychiatric symptoms. Our previous studies showed that heat shock protein 90 alpha (HSP90α) plays a vital role in METH/HT-elicited neuronal necroptosis; however, the detailed mechanism of HSP90α regulation remained obscure.

Methods

Herein, we demonstrated a function of the suppressor of G-two allele of SKP1 (Sgt1) in METH/HT-induced necroptosis. Sgt1 was mainly expressed in neurons, co-located with HSP90α, and increased in rat striatum after METH treatment. METH/HT injury triggered necroptosis and increased Sgt1 expression in PC-12 cells.

Results

Data from computer simulations indicated that Sgt1 might interact with HSP90α. Geldanamycin (GA), the specific inhibitor of HSP90α, attenuated the interaction between Sgt1 and HSP90α. Knockdown of Sgt1 expression did not affect the expression level of HSP90α. Still, it inhibited the expression of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), p-RIP3, and p-MLKL, as well as necroptosis induced by METH/HT injury.

Conclusion

In conclusion, Sgt1 may regulate the expression of RIP3, p-RIP3, MLKL, and p-MLKL by assisting HSP90α in affecting the METH/HT-induced necroptotic cell death.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673277649231127055610
2024-01-08
2025-06-22
Loading full text...

Full text loading...

References

  1. ČechováB. ŠlamberováR. Methamphetamine, neurotransmitters and neurodevelopment.Physiol. Res.202170S3S301S31510.33549/physiolres.93482135099249
    [Google Scholar]
  2. ParatzE.D. CunninghamN.J. MacIsaacA.I. The cardiac complications of methamphetamines.Heart Lung Circ.201625432533210.1016/j.hlc.2015.10.01926706652
    [Google Scholar]
  3. ChenL. YanH. WangY. HeZ. LengQ. HuangS. WuF. FengX. YanJ. The mechanisms and boundary conditions of drug memory reconsolidation.Front. Neurosci.20211571795610.3389/fnins.2021.71795634421529
    [Google Scholar]
  4. Ares-SantosS. GranadoN. EspadasI. Martinez-MurilloR. MoratallaR. Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining.Neuropsychopharmacology20143951066108010.1038/npp.2013.30724169803
    [Google Scholar]
  5. ZhuJ. XuW. WangJ. AliS.F. AnguloJ.A. The neurokinin-1 receptor modulates the methamphetamine-induced striatal apoptosis and nitric oxide formation in mice.J. Neurochem.2009111365666810.1111/j.1471‑4159.2009.06330.x19682209
    [Google Scholar]
  6. HildebrandJ.M. TanzerM.C. LucetI.S. YoungS.N. SpallS.K. SharmaP. PierottiC. GarnierJ.M. DobsonR.C.J. WebbA.I. TripaydonisA. BabonJ.J. MulcairM.D. ScanlonM.J. AlexanderW.S. WilksA.F. CzabotarP.E. LesseneG. MurphyJ.M. SilkeJ. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death.Proc. Natl. Acad. Sci.201411142150721507710.1073/pnas.140898711125288762
    [Google Scholar]
  7. CaiZ. JitkaewS. ZhaoJ. ChiangH.C. ChoksiS. LiuJ. WardY. WuL. LiuZ.G. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis.Nat. Cell Biol.2014161556510.1038/ncb288324316671
    [Google Scholar]
  8. XiongK. YanW-T. LuS. YangY-D. NingW-Y. CaiY. HuX-M. ZhangQ. Research trends, hot spots and prospects for necroptosis in the field of neuroscience.Neural Regen. Res.20211681628163710.4103/1673‑5374.30303233433494
    [Google Scholar]
  9. LiaoL. LuS. YanW. WangS. GuoL. YangY. HuangK. HuX. ZhangQ. YanJ. XiongK. The role of HSP90α in methamphetamine/hyperthermia-induced necroptosis in rat striatal neurons.Front. Pharmacol.20211271639410.3389/fphar.2021.71639434349659
    [Google Scholar]
  10. ZhaoX. LuJ. ChenX. GaoZ. ZhangC. ChenC. QiaoD. WangH. Methamphetamine exposure induces neuronal programmed necrosis by activating the receptor-interacting protein kinase 3-related signalling pathway.FASEB J.2021355e2156110.1096/fj.202100188R33864423
    [Google Scholar]
  11. YanY.E. ZhaoY.Q. WangH. FanM. Pathophysiological factors underlying heatstroke.Med. Hypotheses200667360961710.1016/j.mehy.2005.12.04816631316
    [Google Scholar]
  12. ChauhanH. KillingerB. MillerC. MoszczynskaA. Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum.Int. J. Mol. Sci.20141545884590610.3390/ijms1504588424717411
    [Google Scholar]
  13. MarcoC.A. GuptaK. LubovJ. JamisonA. MurrayB.P. Hyperthermia associated with methamphetamine and cocaine use.Am. J. Emerg. Med.202142202210.1016/j.ajem.2020.12.08333429187
    [Google Scholar]
  14. SchopfF.H. BieblM.M. BuchnerJ. The HSP90 chaperone machinery.Nat. Rev. Mol. Cell Biol.201718634536010.1038/nrm.2017.2028429788
    [Google Scholar]
  15. McClellanA.J. XiaY. DeutschbauerA.M. DavisR.W. GersteinM. FrydmanJ. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches.Cell2007131112113510.1016/j.cell.2007.07.03617923092
    [Google Scholar]
  16. ZhaoX.M. ChenZ. ZhaoJ.B. ZhangP.P. PuY.F. JiangS.H. HouJ.J. CuiY.M. JiaX.L. ZhangS.Q. Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis.Cell Death Dis.201672e208910.1038/cddis.2015.39026866270
    [Google Scholar]
  17. LiD. XuT. CaoY. WangH. LiL. ChenS. WangX. ShenZ. A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis.Proc. Natl. Acad. Sci.2015112165017502210.1073/pnas.150524411225852146
    [Google Scholar]
  18. OgiH. SakurabaY. KitagawaR. XiaoL. ShenC. CynthiaM.A. OhtaS. ArnoldM.A. RamirezN. HoughtonP.J. KitagawaK. The oncogenic role of the cochaperone Sgt1.Oncogenesis201545e14910.1038/oncsis.2015.1225985210
    [Google Scholar]
  19. CalderwoodS.K. Cdc37 as a co-chaperone to Hsp90.Subcell. Biochem.20157810311210.1007/978‑3‑319‑11731‑7_525487018
    [Google Scholar]
  20. RöhlA. WenglerD. MadlT. LaglederS. TippelF. HerrmannM. HendrixJ. RichterK. HackG. SchmidA.B. KesslerH. LambD.C. BuchnerJ. Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules.Nat. Commun.201561665510.1038/ncomms765525851214
    [Google Scholar]
  21. RehnA.B. BuchnerJ. p23 and Aha1.Subcell. Biochem.20157811313110.1007/978‑3‑319‑11731‑7_625487019
    [Google Scholar]
  22. JiménezB. UgwuF. ZhaoR. OrtíL. MakhnevychT. Pineda-LucenaA. HouryW.A. Structure of minimal tetratricopeptide repeat domain protein Tah1 reveals mechanism of its interaction with Pih1 and Hsp90.J. Biol. Chem.201228785698570910.1074/jbc.M111.28745822179618
    [Google Scholar]
  23. BoulonS. Marmier-GourrierN. Pradet-BaladeB. WurthL. VerheggenC. JádyB.E. RothéB. PesciaC. RobertM.C. KissT. BardoniB. KrolA. BranlantC. AllmangC. BertrandE. CharpentierB. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery.J. Cell Biol.2008180357959510.1083/jcb.20070811018268104
    [Google Scholar]
  24. MayorA. MartinonF. De SmedtT. PétrilliV. TschoppJ. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses.Nat. Immunol.20078549750310.1038/ni145917435760
    [Google Scholar]
  25. SahasrabudheP. RohrbergJ. BieblM.M. RutzD.A. BuchnerJ. The plasticity of the Hsp90 co-chaperone system.Mol. Cell2017676947961.e510.1016/j.molcel.2017.08.00428890336
    [Google Scholar]
  26. Percie du SertN. HurstV. AhluwaliaA. AlamS. AveyM.T. BakerM. BrowneW.J. ClarkA. CuthillI.C. DirnaglU. EmersonM. GarnerP. HolgateS.T. HowellsD.W. KarpN.A. LazicS.E. LidsterK. MacCallumC.J. MacleodM. PearlE.J. PetersenO.H. RawleF. ReynoldsP. RooneyK. SenaE.S. SilberbergS.D. StecklerT. WürbelH. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.PLoS Biol.2020187e300041010.1371/journal.pbio.300041032663219
    [Google Scholar]
  27. CouncilN.R. Guide for the Care and Use of Laboratory Animals.8th edWashington, DCThe National Academies Press2011
    [Google Scholar]
  28. HuangY.N. WuC.H. LinT.C. WangJ.Y. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity.Toxicol. Appl. Pharmacol.2009240331532610.1016/j.taap.2009.06.02119576919
    [Google Scholar]
  29. XiongK. LiaoH. LongL. DingY. HuangJ. YanJ. Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons.Toxicol. In Vitro20163516316810.1016/j.tiv.2016.06.00227288563
    [Google Scholar]
  30. VieiraM. FernandesJ. CarretoL. Anuncibay-SotoB. SantosM. HanJ. Fernández-LópezA. DuarteC.B. CarvalhoA.L. SantosA.E. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3.Neurobiol. Dis.201468263610.1016/j.nbd.2014.04.00224746856
    [Google Scholar]
  31. WanH. YanY. HuX. ShangL. ChenY. HuangY. ZhangQ. YanW. XiongK. Inhibition of mitochondrial VDAC1 oligomerization alleviates apoptosis and necroptosis of retinal neurons following OGD/R injury.Ann. Anat.202324715204910.1016/j.aanat.2023.15204936690044
    [Google Scholar]
  32. HuangY. WangS. HuangF. ZhangQ. QinB. LiaoL. WangM. WanH. YanW. ChenD. LiuF. JiangB. JiD. XiaX. HuangJ. XiongK. c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway.Ann. Anat.202123515167210.1016/j.aanat.2020.15167233434657
    [Google Scholar]
  33. ZhouZ. ShangL. ZhangQ. HuX. HuangJ. XiongK. DTX3L induced NLRP3 ubiquitination inhibit R28 cell pyroptosis in OGD/R injury.Biochim. Biophys. Acta Mol. Cell Res.20231870311943310.1016/j.bbamcr.2023.11943336706922
    [Google Scholar]
  34. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  35. PierceB.G. WieheK. HwangH. KimB.H. VrevenT. WengZ. ZDOCK server: Interactive docking prediction of protein–protein complexes and symmetric multimers.Bioinformatics201430121771177310.1093/bioinformatics/btu09724532726
    [Google Scholar]
  36. BakerN.A. SeptD. JosephS. HolstM.J. McCammonJ.A. Electrostatics of nanosystems: Application to microtubules and the ribosome.Proc. Natl. Acad. Sci.20019818100371004110.1073/pnas.18134239811517324
    [Google Scholar]
  37. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera-A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  38. TakahashiA. CasaisC. IchimuraK. ShirasuK. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis.Proc. Natl. Acad. Sci. USA200310020117771178210.1073/pnas.203393410014504384
    [Google Scholar]
  39. LeeY.T. JacobJ. MichowskiW. NowotnyM. KuznickiJ. ChazinW.J. Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain.J. Biol. Chem.200427916165111651710.1074/jbc.M40021520014761955
    [Google Scholar]
  40. BansalP.K. AbdulleR. KitagawaK. Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex.Mol. Cell. Biol.200424188069807910.1128/MCB.24.18.8069‑8079.200415340069
    [Google Scholar]
  41. DownsA.M. McElligottZ.A. Noradrenergic circuits and signaling in substance use disorders.Neuropharmacology202220810899710.1016/j.neuropharm.2022.10899735176286
    [Google Scholar]
  42. ChenL. HuangS. YangC. WuF. ZhengQ. YanH. YanJ. LuoY. GalajE. Blockade of β-adrenergic receptors by propranolol disrupts reconsolidation of drug memory and attenuates heroin seeking.Front. Pharmacol.20211268684510.3389/fphar.2021.68684534113256
    [Google Scholar]
  43. ZhangF. HuangS. BuH. ZhouY. ChenL. KangZ. ChenL. YanH. YangC. YanJ. JianX. LuoY. Disrupting reconsolidation by systemic inhibition of mTOR kinase via rapamycin reduces cocaine-seeking behavior.Front. Pharmacol.20211265286510.3389/fphar.2021.65286533897438
    [Google Scholar]
  44. FanE. XuZ. YanJ. WangF. SunS. ZhangY. ZhengS. WangX. RaoY. Acute exposure to N-Ethylpentylone induces developmental toxicity and dopaminergic receptor-regulated aberrances in zebrafish larvae.Toxicol. Appl. Pharmacol.202141711547710.1016/j.taap.2021.11547733667508
    [Google Scholar]
  45. DengB. ZhangZ. ZhouH. ZhangX. NiuS. YanX. YanJ. MicroRNAs in methamphetamine-induced neurotoxicity and addiction.Front. Pharmacol.20221387566610.3389/fphar.2022.87566635496314
    [Google Scholar]
  46. SabriniS. RussellB. WangG. LinJ. KirkI. CurleyL. Methamphetamine induces neuronal death: Evidence from rodent studies.Neurotoxicology202077202810.1016/j.neuro.2019.12.00631812708
    [Google Scholar]
  47. DavidsonC. GowA.J. LeeT.H. EllinwoodE.H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment.Brain Res. Brain Res. Rev.200136112210.1016/S0165‑0173(01)00054‑611516769
    [Google Scholar]
  48. YuS. ZhuL. ShenQ. BaiX. DiX. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology.Behav. Neurol.2015201511110.1155/2015/10396925861156
    [Google Scholar]
  49. LiuY. WenD. GaoJ. XieB. YuH. ShenQ. ZhangJ. JingW. CongB. MaC. Methamphetamine induces GSDME-dependent cell death in hippocampal neuronal cells through the endoplasmic reticulum stress pathway.Brain Res. Bull.2020162738310.1016/j.brainresbull.2020.06.00532544512
    [Google Scholar]
  50. HalpinL.E. NorthropN.A. YamamotoB.K. Ammonia mediates methamphetamine-induced increases in glutamate and excitotoxicity.Neuropsychopharmacology20143941031103810.1038/npp.2013.30624165886
    [Google Scholar]
  51. PanA.L. HasalliuE. HasalliuM. AnguloJ.A. Epigallocatechin gallate mitigates the methamphetamine-induced striatal dopamine terminal toxicity by preventing oxidative stress in the mouse brain.Neurotox. Res.202037488389210.1007/s12640‑020‑00177‑132080803
    [Google Scholar]
  52. ShaerzadehF. StreitW.J. HeysieattalabS. KhoshboueiH. Methamphetamine neurotoxicity, microglia, and neuroinflammation.J. Neuroinflammation201815134110.1186/s12974‑018‑1385‑030541633
    [Google Scholar]
  53. MolkovY.I. ZaretskaiaM.V. ZaretskyD.V. Meth math: modeling temperature responses to methamphetamine.Am. J. Physiol. Regul. Integr. Comp. Physiol.20143068R552R56610.1152/ajpregu.00365.201324500434
    [Google Scholar]
  54. MatsumotoR.R. SeminerioM.J. TurnerR.C. RobsonM.J. NguyenL. MillerD.B. O’CallaghanJ.P. Methamphetamine-induced toxicity: An updated review on issues related to hyperthermia.Pharmacol. Ther.20141441284010.1016/j.pharmthera.2014.05.00124836729
    [Google Scholar]
  55. KiyatkinE.A. SharmaH.S. Leakage of the blood-brain barrier followed by vasogenic edema as the ultimate cause of death induced by acute methamphetamine overdose.Int. Rev. Neurobiol.201914618920710.1016/bs.irn.2019.06.01031349927
    [Google Scholar]
  56. CaplanA.J. JacksonS. SmithD. Hsp90 reaches new heights.EMBO Rep.20034212613010.1038/sj.embor.embor74212612599
    [Google Scholar]
  57. IsaacsJ.S. XuW. NeckersL. Heat shock protein 90 as a molecular target for cancer therapeutics.Cancer Cell20033321321710.1016/S1535‑6108(03)00029‑112676580
    [Google Scholar]
  58. Wang, Z.; Guo, L.m.; Wang, Y.; Zhou, H.k.; Wang, S.c.; Chen, D.; Huang, J.f.; Xiong, K., Inhibition of HSP90α protects cultured neurons from oxygen-glucose deprivation induced necroptosis by decreasing RIP3 expression. J. of Cell. Physiol., 2018, 233(6), 4864-4884
  59. KitagawaK. SkowyraD. ElledgeS.J. HarperJ.W. HieterP. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex.Mol. Cell199941213310.1016/S1097‑2765(00)80184‑710445024
    [Google Scholar]
  60. SpiechowiczM. BernsteinH.G. DobrowolnyH. LeśniakW. MawrinC. BogertsB. KuźnickiJ. FilipekA. Density of Sgt1-immunopositive neurons is decreased in the cerebral cortex of Alzheimer’s disease brain.Neurochem. Int.200649548749310.1016/j.neuint.2006.03.00916698122
    [Google Scholar]
  61. BohushA. NiewiadomskaG. WeisS. FilipekA. HSP90 and its novel co-chaperones, SGT1 and CHP-1, in brain of patients with Parkinson’s disease and dementia with lewy bodies.J. Parkinsons Dis.2019919710710.3233/JPD‑18144330741686
    [Google Scholar]
  62. ŻabkaM. LeśniakW. PrusW. KuźnickiJ. FilipekA. Sgt1 has co-chaperone properties and is up-regulated by heat shock.Biochem. Biophys. Res. Commun.2008370117918310.1016/j.bbrc.2008.03.05518358234
    [Google Scholar]
  63. KadotaY. ShirasuK. GueroisR. NLR sensors meet at the SGT1–HSP90 crossroad.Trends Biochem. Sci.201035419920710.1016/j.tibs.2009.12.00520096590
    [Google Scholar]
  64. ChoA.K. MelegaW.P. Patterns of methamphetamine abuse and their consequences.J. Addict. Dis.2001211213410.1300/J069v21n01_0311831497
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673277649231127055610
Loading
/content/journals/cmc/10.2174/0109298673277649231127055610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test