Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The evolution of novel Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) strains with greater degrees of infectivity, resistance to vaccine-induced acquired immunity, and more severe morbidity have contributed to the recent spread of COVID-19. In light of this, novel therapeutic alternatives with improved effectiveness and fewer side effects have become a necessity. Despite many new or repurposed antiviral agents recommended for Coronavirus disease (COVID-19) therapy, this objective remains unfulfilled. Under these circumstances, the scientific community holds the significant responsibility to develop classes of novel therapeutic modalities to combat SARS-CoV-2 with the least harmful side effects.

Objective

Antisense Oligonucleotides (ASOs) are short single-stranded oligonucleotides that allow the specific targeting of RNA, leading to its degradation. They may also prevent cellular factors or machinery from binding to the target RNA. It is possible to improve the pharmacokinetics and pharmacodynamics of ASOs by chemical modification or bioconjugation, which may provide conditions for customization of a particular clinical target. This study aimed to outline the potential use of ASOs in the treatment of COVID-19 disease, along with the use of antisense stabilization and transfer methods, as well as future challenges and limitations.

Methods

We have reviewed the structure and properties of ASOs containing nucleobase, sugar, or backbone modifications, and provided an overview of the therapeutic potential, delivery challenges, and strategies of ASOs in the treatment of COVID-19.

Results

The first-line therapy for COVID-19-infected individuals, as well as the development of oligonucleotide-based drugs, warrants further investigation. Chemical changes in the oligonucleotide structure can affect the biological processes. These chemical alterations may lead to enhanced potency, while changing the pharmacokinetics and pharmacodynamics.

Conclusion

ASOs can be designed to target both coding and non-coding regions of the viral genome to disrupt or completely degrade the genomic RNA and thereby eliminate SARS-CoV-2. They may be very effective in areas, where vaccine distribution is challenging, and they may be helpful for future coronavirus pandemics.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673300236240529195835
2024-06-11
2025-04-23
Loading full text...

Full text loading...

References

  1. WoolhouseM.E.J. BrierleyL. Epidemiological characteristics of human-infective RNA viruses.Sci. Data20185118001710.1038/sdata.2018.1729461515
    [Google Scholar]
  2. LiveCOVID. Coronavirus Statistics. Worldometer. Available from: https://www.worldometers.info/coronavirus/
  3. ZhuC. LeeJ.Y. WooJ.Z. XuL. NguyenlaX. YamashiroL.H. JiF. BieringS.B. Van DisE. GonzalezF. FoxD. WehriE. RustagiA. PinskyB.A. SchaletzkyJ. BlishC.A. ChiuC. HarrisE. SadreyevR.I. StanleyS. KauppinenS. RouskinS. NäärA.M. An intranasal ASO therapeutic targeting SARS-CoV-2.Nat. Commun.2022131450310.1038/s41467‑022‑32216‑035922434
    [Google Scholar]
  4. ChengM.H. KriegerJ.M. BanerjeeA. XiangY. KaynakB. ShiY. ArditiM. BaharI. Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions.iScience202225310393910.1016/j.isci.2022.10393935194576
    [Google Scholar]
  5. CeruttiG. GuoY. LiuL. LiuL. ZhangZ. LuoY. HuangY. WangH.H. HoD.D. ShengZ. ShapiroL. Cryo-EM structure of the SARS-CoV-2 Omicron spike.Cell Rep.202238911042810.1016/j.celrep.2022.11042835172173
    [Google Scholar]
  6. BarhD. TiwariS. Rodrigues GomesL.G. Ramalho PintoC.H. AndradeB.S. AhmadS. AljabaliA.A.A. AlzahraniK.J. BanjerH.J. HassanS.S. RedwanE.M. RazaK. Góes-NetoA. Sabino-SilvaR. LundstromK. UverskyV.N. AzevedoV. TambuwalaM.M. SARS- CoV-2 variants show a gradual declining pathogenicity and pro-inflammatory cytokine stimulation, an increasing antigenic and anti-inflammatory cytokine induction, and rising structural protein instability: A minimal number genome-based approach.Inflammation202346129731210.1007/s10753‑022‑01734‑w36215001
    [Google Scholar]
  7. WorobeyM. PekarJ. LarsenB.B. NelsonM.I. HillV. JoyJ.B. RambautA. SuchardM.A. WertheimJ.O. LemeyP. The emergence of SARS-CoV-2 in Europe and North America.Science2020370651656457010.1126/science.abc816932912998
    [Google Scholar]
  8. OrósticaK.Y. ContrerasS. Sanchez-DazaA. FernandezJ. PriesemannV. Olivera-NappaÁ. New year, new SARS-CoV-2 variant: Resolutions on genomic surveillance protocols to face Omicron.The Lancet Regional Health-Americas20227100203
    [Google Scholar]
  9. ZhaoH. LuL. PengZ. ChenL.L. MengX. ZhangC. IpJ.D. ChanW.M. ChuA.W.H. ChanK.H. JinD.Y. ChenH. YuenK.Y. ToK.K.W. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2- expressed cells.Emerg. Microbes Infect.202211127728310.1080/22221751.2021.202332934951565
    [Google Scholar]
  10. FangZ. PengL. FillerR. SuzukiK. McNamaraA. LinQ. RenauerP.A. YangL. MenascheB. SanchezA. RenP. XiongQ. StrineM. ClarkP. LinC. KoA.I. GrubaughN.D. WilenC.B. ChenS. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2.Nat. Commun.2022131325010.1038/s41467‑022‑30878‑435668119
    [Google Scholar]
  11. TouretF. GiraudE. BourretJ. DonatiF. Tran-RajauJ. ChiaravalliJ. LemoineF. AgouF. Simon-LorièreE. van der WerfS. de LamballerieX. Enhanced neutralization escape to therapeutic monoclonal antibodies by SARS-CoV-2 omicron sub-lineages.iScience202326410641310.1016/j.isci.2023.10641336968074
    [Google Scholar]
  12. ImaiM. ItoM. KisoM. YamayoshiS. UrakiR. FukushiS. WatanabeS. SuzukiT. MaedaK. Sakai- TagawaY. Iwatsuki-HorimotoK. HalfmannP.J. KawaokaY. Efficacy of antiviral agents against omicron subvariants BQ.1.1 and XBB.N. Engl. J. Med.202338818991
    [Google Scholar]
  13. YadavM.K. AhmadS. RazaK. KumarS. EswaranM. Pasha KMM. Predictive modeling and therapeutic repurposing of natural compounds against the receptor-binding domain of SARS-CoV-2.J. Biomol. Struct. Dyn.20234151527153910.1080/07391102.2021.202199334974820
    [Google Scholar]
  14. HashemianS.M.R. SheidaA. TaghizadiehM. MemarM.Y. HamblinM.R. Bannazadeh BaghiH. Sadri NahandJ. AsemiZ. MirzaeiH. Paxlovid (Nirmatrelvir/Ritonavir): A new approach to COVID-19 therapy?Biomed. Pharmacother.202316211436710.1016/j.biopha.2023.11436737018987
    [Google Scholar]
  15. AlizadehmohajerN. BehmardiA. NajafgholianS. MoradiS. MohammadiF. NedaeiniaR. Haghjooy JavanmardS. SohrabiE. SalehiR. FernsG.A. Emami NejadA. ManianM. Screening of potential inhibitors of COVID-19 with repurposing approach via molecular docking.Netw. Model. Anal. Health Inform. Bioinform.20221111110.1007/s13721‑021‑00341‑335136710
    [Google Scholar]
  16. TarnW.Y. ChengY. KoS.H. HuangL.M. Antisense oligonucleotide-based therapy of viral infections.Pharmaceutics20211312201510.3390/pharmaceutics1312201534959297
    [Google Scholar]
  17. RobertsT.C. LangerR. WoodM.J.A. Advances in oligonucleotide drug delivery.Nat. Rev. Drug Discov.2020191067369410.1038/s41573‑020‑0075‑732782413
    [Google Scholar]
  18. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑832007145
    [Google Scholar]
  19. ZarandiP.K. ZinatizadehM.R. ZinatizadehM. YousefiM.H. RezaeiN. SARS-CoV-2: From the pathogenesis to potential anti-viral treatments.Biomed. Pharmacother.202113711135210.1016/j.biopha.2021.11135233550050
    [Google Scholar]
  20. GlowackaI. BertramS. MüllerM.A. AllenP. SoilleuxE. PfefferleS. SteffenI. TsegayeT.S. HeY. GnirssK. NiemeyerD. SchneiderH. DrostenC. PöhlmannS. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response.J. Virol.20118594122413410.1128/JVI.02232‑1021325420
    [Google Scholar]
  21. HuangI.C. BoschB.J. LiF. LiW. LeeK.H. GhiranS. VasilievaN. DermodyT.S. HarrisonS.C. DormitzerP.R. FarzanM. RottierP.J.M. ChoeH. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells.J. Biol. Chem.200628163198320310.1074/jbc.M50838120016339146
    [Google Scholar]
  22. SimmonsG. GosaliaD.N. RennekampA.J. ReevesJ.D. DiamondS.L. BatesP. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry.Proc. Natl. Acad. Sci. USA200510233118761188110.1073/pnas.050557710216081529
    [Google Scholar]
  23. GeneCards TMPRSS2.Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=TMPRSS2
  24. MetzdorfK. JacobsenH. Greweling-PilsM.C. HoffmannM. LüddeckeT. MillerF. MelcherL. KempfA.M. NehlmeierI. BruderD. WideraM. CiesekS. PöhlmannS. Čičin-ŠainL. TMPRSS2 is essential for SARS-CoV-2 beta and omicron infection.Viruses202315227110.3390/v1502027136851486
    [Google Scholar]
  25. dos Santos NascimentoI.J. da Silva-JúniorE.F. de AquinoT.M. Molecular modeling targeting transmembrane serine protease 2 (TMPRSS2) as an alternative drug target against coronaviruses.Curr. Drug Targets202223324025910.2174/138945012266621080909090934370633
    [Google Scholar]
  26. dos Santos NascimentoI.J. de MouraR.O. Would the development of a multitarget inhibitor of 3CLpro and TMPRSS2 be promising in the fight against SARS-CoV-2?Med. Chem.202319540541210.2174/157340641866622101109343936221875
    [Google Scholar]
  27. SenapatiS. BanerjeeP. BhagavatulaS. KushwahaP.P. KumarS. Contributions of human ACE2 and TMPRSS2 in determining host–pathogen interaction of COVID-19.J. Genet.202110011210.1007/s12041‑021‑01262‑w33707363
    [Google Scholar]
  28. WuC. ZhengM. YangY. GuX. YangK. LiM. LiuY. ZhangQ. ZhangP. WangY. WangQ. XuY. ZhouY. ZhangY. ChenL. LiH. Furin: A potential therapeutic target for COVID-19.iScience2020231010164210.1016/j.isci.2020.10164233043282
    [Google Scholar]
  29. HoffmannM. Kleine-WeberH. SchroederS. KrügerN. HerrlerT. ErichsenS. SchiergensT.S. HerrlerG. WuN.H. NitscheA. MüllerM.A. DrostenC. PöhlmannS. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.Cell20201812271280.e810.1016/j.cell.2020.02.05232142651
    [Google Scholar]
  30. ParkJ.E. LiK. BarlanA. FehrA.R. PerlmanS. McCrayP.B.Jr GallagherT. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism.Proc. Natl. Acad. Sci. USA201611343122621226710.1073/pnas.160814711327791014
    [Google Scholar]
  31. SchubertK. KarousisE.D. JomaaA. ScaiolaA. EcheverriaB. GurzelerL.A. LeibundgutM. ThielV. MühlemannO. BanN. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation.Nat. Struct. Mol. Biol.2020271095996610.1038/s41594‑020‑0511‑832908316
    [Google Scholar]
  32. AttiaY.A. El-SaadonyM.T. SwelumA.A. QattanS.Y.A. Al-qurashiA.D. AsiryK.A. ShafiM.E. ElbestawyA.R. GadoA.R. KhafagaA.F. HusseinE.O.S. Ba-AwadhH. TiwariR. DhamaK. AlhussainiB. AlyileiliS.R. El-TarabilyK.A. Abd El-HackM.E. COVID-19: pathogenesis, advances in treatment and vaccine development and environmental impact-an updated review.Environ. Sci. Pollut. Res. Int.20212818222412226410.1007/s11356‑021‑13018‑133733422
    [Google Scholar]
  33. AhmadS. Pasha KMM. RazaK. RafeeqM.M. HabibA.H. EswaranM. YadavM.K. Reporting dinaciclib and theodrenaline as a multitargeted inhibitor against SARS-CoV-2: An in-silico study.J. Biomol. Struct. Dyn.20234194013402310.1080/07391102.2022.206030835451934
    [Google Scholar]
  34. RamasamyS. SubbianS. Critical determinants of cytokine storm and type I interferon response in COVID-19 pathogenesis.Clin. Microbiol. Rev.2021343e00299-2010.1128/CMR.00299‑2033980688
    [Google Scholar]
  35. LaiF.W. StephensonK.B. MahonyJ. LichtyB.D. Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation.J. Virol.2014881546510.1128/JVI.02678‑1324109243
    [Google Scholar]
  36. PalaciosY. Chavez-GalanL. Immunosuppressant therapies in COVID-19: Is the TNF axis an alternative?Pharmaceuticals202215561610.3390/ph1505061635631442
    [Google Scholar]
  37. Aartsma-RusA. FDA approval of nusinersen for spinal muscular atrophy makes 2016 the year of splice modulating oligonucleotides.Nucleic Acid Ther.2017272676910.1089/nat.2017.066528346110
    [Google Scholar]
  38. ArisanE.D. DartA. GrantG.H. ArisanS. CuhadarogluS. LangeS. Uysal-OnganerP. The prediction of miRNAs in SARS-CoV-2 genomes: hsa-miR databases identify 7 key miRs linked to host responses and virus pathogenicity-related KEGG pathways significant for comorbidities.Viruses202012661410.3390/v1206061432512929
    [Google Scholar]
  39. KhaniE. ShahrabiM. RezaeiH. PourkarimF. AfshariradH. SolduzianM. Current evidence on the use of anakinra in COVID-19.Int. Immunopharmacol.202211110907510.1016/j.intimp.2022.10907535905562
    [Google Scholar]
  40. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group Shankar-HariM. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: A meta-analysis. JAMA2021326649951810.1001/jama.2021.1133034228774
    [Google Scholar]
  41. AntonovV.N. IgnatovaG.L. PribytkovaO.V. SleptsovaS.S. StrebkovaE.A. KhudyakovaE.A. SimakovA.I. RabetsS.Y. TikhonovaE.P. KurmaevaD.Y. PetrushinM.A. MashkovA.S. GayazovaE.V. YashevaI.V. AndreevM.A. KhinovkerV.V. KarpuninA.Y. BerezhanskiyB.V. Experience of olokizumab use in COVID-19 patients.Ter. Arkh.2020921214815410.26442/00403660.2020.12.20052233720587
    [Google Scholar]
  42. GanyukovaN.G. LikstanovM.I. KosinovaM.V. KushnirI.N. MosesV.G. MosesK.B. Efficiency of il-6 inhibitor (olokizumab) in suppressing inflammation in patients with moderate COVID-19 pneumonia.Fund. Clin. Med.20205481310.23946/2500‑0764‑2020‑5‑4‑8‑13
    [Google Scholar]
  43. ZizzoG. TamburelloA. CastelnovoL. LariaA. MumoliN. FaggioliP.M. StefaniI. MazzoneA. Immunotherapy of COVID-19: Inside and beyond IL-6 signalling.Front. Immunol.20221379531510.3389/fimmu.2022.79531535340805
    [Google Scholar]
  44. van de VeerdonkF.L. NeteaM.G. van DeurenM. van der MeerJ.W.M. de MastQ. BrüggemannR.J. van der HoevenH. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome.eLife20209e5755510.7554/eLife.5755532338605
    [Google Scholar]
  45. PassosG.F. FernandesE.S. CamposM.M. AraújoJ.G.V.C. PesqueroJ.L. SouzaG.E.P. AvellarM.C.W. TeixeiraM.M. CalixtoJ.B. Kinin B1 receptor up-regulation after lipopolysaccharide administration: Role of proinflammatory cytokines and neutrophil influx.J. Immunol.200417231839184710.4049/jimmunol.172.3.183914734768
    [Google Scholar]
  46. NazerianY. VakiliK. EbrahimiA. NiknejadH. Developing cytokine storm-sensitive therapeutic strategy in COVID-19 using 8P9R chimeric peptide and soluble ACE2.Front. Cell Dev. Biol.2021971758710.3389/fcell.2021.71758734540833
    [Google Scholar]
  47. Bautista-BecerrilB. Pérez-DimasG. Sommerhalder-NavaP.C. HanonoA. Martínez-CisnerosJ.A. Zarate-MaldonadoB. Muñoz-SoriaE. Aquino-GálvezA. Castillejos-LópezM. Juárez-CisnerosA. Lopez-GonzalezJ.S. CamarenaA. miRNAs, from evolutionary junk to possible prognostic markers and therapeutic targets in COVID-19.Viruses20211414110.3390/v1401004135062245
    [Google Scholar]
  48. PandaM. KalitaE. SinghS. KumarK. RaoA. PrajapatiV.K. MiRNA-SARS-CoV-2 dialogue and prospective anti-COVID-19 therapies.Life Sci.202230512076110.1016/j.lfs.2022.12076135787998
    [Google Scholar]
  49. TrougakosI.P. StamatelopoulosK. TerposE. TsitsilonisO.E. AivaliotiE. ParaskevisD. KastritisE. PavlakisG.N. DimopoulosM.A. Insights to SARS-CoV- 2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications.J. Biomed. Sci.2021281910.1186/s12929‑020‑00703‑533435929
    [Google Scholar]
  50. JafarzadehA. NematiM. JafarzadehS. Contribution of STAT3 to the pathogenesis of COVID-19.Microb. Pathog.202115410483610.1016/j.micpath.2021.10483633691172
    [Google Scholar]
  51. NedaeiniaR. AvanA. AhmadianM. NiaS.N. RanjbarM. SharifiM. GoliM. PiroozmandA. NourmohammadiE. ManianM. FernsG.A. Ghayour-MobarhanM. SalehiR. Current status and perspectives regarding LNA-Anti-miR oligonucleotides and microRNA miR-21 inhibitors as a potential therapeutic option in treatment of colorectal cancer.J. Cell. Biochem.2017118124129414010.1002/jcb.2604728401648
    [Google Scholar]
  52. KhanM.A.A.K. SanyM.R.U. IslamM.S. IslamA.B.M.M.K. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV- 2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19.Front. Genet.20201176510.3389/fgene.2020.0076532765592
    [Google Scholar]
  53. LiuZ. WangJ. XuY. GuoM. MiK. XuR. PeiY. ZhangQ. LuanX. HuZ. Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2.ArXiv preprint202004874
    [Google Scholar]
  54. WalshD. MathewsM.B. MohrI. Tinkering with translation: Protein synthesis in virus-infected cells.Cold Spring Harb. Perspect. Biol.201351a01235110.1101/cshperspect.a01235123209131
    [Google Scholar]
  55. PawlicaP. YarioT.A. WhiteS. WangJ. MossW.N. HuiP. VinetzJ.M. SteitzJ.A. SARS-CoV-2 expresses a microRNA-like small RNA able to selectively repress host genes.Proc. Natl. Acad. Sci. USA202111852e211666811810.1073/pnas.211666811834903581
    [Google Scholar]
  56. MengF. SiuG.K.H. MokB.W.Y. SunJ. FungK.S.C. LamJ.Y.W. WongN.K. GedefawL. LuoS. LeeT.M.H. YipS.P. HuangC.L. Viral MicroRNAs encoded by nucleocapsid gene of SARS-CoV-2 are detected during infection, and targeting metabolic pathways in host cells.Cells2021107176210.3390/cells1007176234359932
    [Google Scholar]
  57. AshirmetovA.K. Pharmacotherapeutic treatment strategies COVID-19: Lessons learned and perspectives.ERHM2023813647
    [Google Scholar]
  58. DhuriK. BechtoldC. QuijanoE. PhamH. GuptaA. VikramA. BahalR. Antisense oligonucleotides: An emerging area in drug discovery and development.J. Clin. Med.202096200410.3390/jcm906200432604776
    [Google Scholar]
  59. QuemenerA.M. CentomoM.L. SaxS.L. PanellaR. Small drugs, huge impact: The extraordinary impact of antisense oligonucleotides in research and drug development.Molecules202227253610.3390/molecules2702053635056851
    [Google Scholar]
  60. YuA.M. TuM.J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination.Pharmacol. Ther.202223010796710.1016/j.pharmthera.2021.10796734403681
    [Google Scholar]
  61. ZhaoX. PanF. HoltC.M. LewisA.L. LuJ.R. Controlled delivery of antisense oligonucleotides: A brief review of current strategies.Expert Opin. Drug Deliv.20096767368610.1517/1742524090299289419552611
    [Google Scholar]
  62. XueK. MacLarenR.E. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases.Expert Opin. Investig. Drugs202029101163117010.1080/13543784.2020.180485332741234
    [Google Scholar]
  63. ChowJ.T.S. SalmenaL. Prediction and analysis of SARS-CoV-2-targeting microRNA in human lung epithelium.Genes2020119100210.3390/genes1109100232858958
    [Google Scholar]
  64. LiangX.H. SunH. NicholsJ.G. CrookeS.T. RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus.Mol. Ther.20172592075209210.1016/j.ymthe.2017.06.00228663102
    [Google Scholar]
  65. SuX. MaW. FengD. ChengB. WangQ. GuoZ. ZhouD. TangX. Efficient inhibition of SARS-CoV-2 using chimeric antisense oligonucleotides through RNase L activation**.Angew. Chem. Int. Ed.20216040216622166710.1002/anie.20210594234278671
    [Google Scholar]
  66. SardoneV. ZhouH. MuntoniF. FerliniA. FalzaranoM. Antisense oligonucleotide-based therapy for neuromuscular disease.Molecules201722456310.3390/molecules2204056328379182
    [Google Scholar]
  67. PaunovskaK. LoughreyD. DahlmanJ.E. Drug delivery systems for RNA therapeutics.Nat. Rev. Genet.202223526528010.1038/s41576‑021‑00439‑434983972
    [Google Scholar]
  68. BennettC.F. BakerB.F. PhamN. SwayzeE. GearyR.S. Pharmacology of antisense drugs.Annu. Rev. Pharmacol. Toxicol.20175718110510.1146/annurev‑pharmtox‑010716‑10484627732800
    [Google Scholar]
  69. MansoorM. MelendezA.J. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics.Gene Regul. Syst. Bio.20082GRSB.S41810.4137/GRSB.S41819787090
    [Google Scholar]
  70. PenchovskyR. GeorgievaA.V. DyakovaV. TraykovskaM. PavlovaN. Antisense and functional nucleic acids in rational drug development.Antibiotics202413322110.3390/antibiotics1303022138534656
    [Google Scholar]
  71. EvichM. Spring-ConnellA.M. GermannM.W. Impact of modified ribose sugars on nucleic acid conformation and function.Heterocycl. Commun.201723315516510.1515/hc‑2017‑0056
    [Google Scholar]
  72. SproatB.S. LamondA.I. BeijerB. NeunerP. RyderU. Highly efficient chemical synthesis of 2′-O-methyloligoribonucleotides and tetrabiotinylated derivatives; Novel probes that are resistant to degradation by RNA or DNA specific nucleases.Nucleic Acids Res.19891793373338610.1093/nar/17.9.33732726482
    [Google Scholar]
  73. MoniaB.P. LesnikE.A. GonzalezC. LimaW.F. McGeeD. GuinossoC.J. KawasakiA.M. CookP.D. FreierS.M. Evaluation of 2‘-modified oligonucleotides containing 2‘-deoxy gaps as antisense inhibitors of gene expression.J. Biol. Chem.199326819145141452210.1016/S0021‑9258(19)85268‑78390996
    [Google Scholar]
  74. ChanJ.H.P. LimS. WongW.S.F. Antisense oligonucleotides: From design to therapeutic application.Clin. Exp. Pharmacol. Physiol.2006335-653354010.1111/j.1440‑1681.2006.04403.x16700890
    [Google Scholar]
  75. NanY. ZhangY.J. Antisense phosphorodiamidate morpholino oligomers as novel antiviral compounds.Front. Microbiol.2018975010.3389/fmicb.2018.0075029731743
    [Google Scholar]
  76. PellestorF. PaulasovaP. The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics.Eur. J. Hum. Genet.200412969470010.1038/sj.ejhg.520122615213706
    [Google Scholar]
  77. RayA. NordénB. Peptide nucleic acid (PNA): Its medical and biotechnical applications and promise for the future.FASEB J.20001491041106010.1096/fasebj.14.9.104110834926
    [Google Scholar]
  78. MalchéreC. VerheijenJ. Van Der LaanS. BastideL. Van BoomJ. LebleuB. RobbinsI. A short phosphodiester window is sufficient to direct RNase H-dependent RNA cleavage by antisense peptide nucleic acid.Antisense Nucleic Acid Drug Dev.200010646346810.1089/oli.1.2000.10.46311198930
    [Google Scholar]
  79. LeeM-H. YangH-I. YuanY. L’ItalienG. ChenC-J. Epidemiology and natural history of hepatitis C virus infection.World J. Gastroenterol.201420289270928025071320
    [Google Scholar]
  80. LiuC. ZhouQ. LiY. GarnerL.V. WatkinsS.P. CarterL.J. SmootJ. GreggA.C. DanielsA.D. JerveyS. AlbaiuD. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases.ACS Cent. Sci.20206331533110.1021/acscentsci.0c0027232226821
    [Google Scholar]
  81. WangJ. VerbeureB. LuytenI. LescrinierE. FroeyenM. HendrixC. RosemeyerH. SeelaF. Van AerschotA. HerdewijnP. Cyclohexene nucleic acids (CeNA): Serum stable oligonucleotides that activate RNase H and increase duplex stability with complementary RNA.J. Am. Chem. Soc.2000122368595860210.1021/ja000018+
    [Google Scholar]
  82. GryaznovS.M. Oligonucleotide n3′-->p5′ phosphoramidates and thio-phoshoramidates as potential therapeutic agents.Chem. Biodivers.20107347749310.1002/cbdv.20090018720232321
    [Google Scholar]
  83. ZhangB. Expression analysis of 2019-nCoV related ACE2 and TMPRSS2 in eye tissues.Chin. J. Ophthalmol.2020566E011
    [Google Scholar]
  84. VincentM.J. BergeronE. BenjannetS. EricksonB.R. RollinP.E. KsiazekT.G. SeidahN.G. NicholS.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.Virol. J.2005216910.1186/1743‑422X‑2‑6916115318
    [Google Scholar]
  85. AhnD.G. ChoiJ.K. TaylorD.R. OhJ.W. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates.Arch. Virol.2012157112095210410.1007/s00705‑012‑1404‑x22791111
    [Google Scholar]
  86. OhashiH. WatashiK. SasoW. ShionoyaK. IwanamiS. HirokawaT. ShiraiT. KanayaS. ItoY. KimK.S. Multidrug treatment with nelfinavir and cepharanthine against COVID-19.BioRxiv20202020-0410.1101/2020.04.14.039925
    [Google Scholar]
  87. ShuT. HuangM. WuD. RenY. ZhangX. HanY. MuJ. WangR. QiuY. ZhangD.Y. ZhouX. SARS- coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts.Virol. Sin.202035332132910.1007/s12250‑020‑00242‑132500504
    [Google Scholar]
  88. ZivO. PriceJ. ShalamovaL. KamenovaT. GoodfellowI. WeberF. MiskaE.A. The short-and long-range RNA-RNA interactome of SARS-CoV-2.Mol. Cell202080610671077.e510.1016/j.molcel.2020.11.00433259809
    [Google Scholar]
  89. TiduA. JanvierA. SchaefferL. SosnowskiP. KuhnL. HammannP. WesthofE. ErianiG. MartinF. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation.RNA202127325326410.1261/rna.078121.12033268501
    [Google Scholar]
  90. VankadariN. JeyasankarN.N. LopesW.J. Structure of the SARS-CoV-2 Nsp1/5′-untranslated region complex and implications for potential therapeutic targets, a vaccine, and virulence.J. Phys. Chem. Lett.202011229659966810.1021/acs.jpclett.0c0281833135884
    [Google Scholar]
  91. VermaN.K. FazilM.H.U.T. DugganS.P. KelleherD. Combination therapy using inhalable GapmeR and recombinant ACE2 for COVID-19.Front. Mol. Biosci.2020719710.3389/fmolb.2020.0019732850978
    [Google Scholar]
  92. GuS.H. YuC.H. SongY. KimN.Y. SimE. ChoiJ.Y. SongD.H. HurG.H. ShinY.K. JeongS.T. A Small interfering RNA lead targeting RNA-dependent RNA-polymerase effectively inhibit the SARS-CoV-2 infection in Golden Syrian hamster and Rhesus macaque.bioRxiv202010.1101/2020.07.07.190967
    [Google Scholar]
  93. HuangY. LiuX. DongL. LiuZ. HeX. LiuW. Development of viral vectors for gene therapy for chronic pain.Pain Res Treat.2011201196821810.1155/2011/968218
    [Google Scholar]
  94. BostJ.P. BarrigaH. HolmeM.N. GalludA. MaugeriM. GuptaD. LehtoT. ValadiH. EsbjörnerE.K. StevensM.M. El-AndaloussiS. Delivery of oligonucleotide therapeutics: Chemical modifications, lipid nanoparticles, and extracellular vesicles.ACS Nano2021159139931402110.1021/acsnano.1c0509934505766
    [Google Scholar]
  95. PandeyE. HarrisE.N. Chloroquine and cytosolic galectins affect endosomal escape of antisense oligonucleotides after Stabilin-mediated endocytosis.Mol. Ther. Nucleic Acids20233343044310.1016/j.omtn.2023.07.01937575283
    [Google Scholar]
  96. AdamsD. Gonzalez-DuarteA. O’RiordanW.D. YangC.C. UedaM. KristenA.V. TournevI. SchmidtH.H. CoelhoT. BerkJ.L. LinK.P. VitaG. AttarianS. Planté-BordeneuveV. MezeiM.M. CampistolJ.M. BuadesJ. BrannaganT.H.III KimB.J. OhJ. ParmanY. SekijimaY. HawkinsP.N. SolomonS.D. PolydefkisM. DyckP.J. GandhiP.J. GoyalS. ChenJ. StrahsA.L. NochurS.V. SweetserM.T. GargP.P. VaishnawA.K. GollobJ.A. SuhrO.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.N. Engl. J. Med.20183791112110.1056/NEJMoa171615329972753
    [Google Scholar]
  97. DobrowolskiC. PaunovskaK. HatitM.Z.C. LokugamageM.P. DahlmanJ.E. Therapeutic RNA delivery for COVID and other diseases.Adv. Healthc. Mater.20211015200202210.1002/adhm.20200202233661555
    [Google Scholar]
  98. SunM. DangU.J. YuanY. PsarasA.M. OsipitanO. BrooksT.A. LuF. Di PasquaA.J. Optimization of DOTAP/chol cationic lipid nanoparticles for mRNA, pDNA, and oligonucleotide delivery.AAPS PharmSciTech202223513510.1208/s12249‑022‑02294‑w35534697
    [Google Scholar]
  99. AkincA. MaierM.A. ManoharanM. FitzgeraldK. JayaramanM. BarrosS. AnsellS. DuX. HopeM.J. MaddenT.D. MuiB.L. SempleS.C. TamY.K. CiufoliniM. WitzigmannD. KulkarniJ.A. van der MeelR. CullisP.R. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs.Nat. Nanotechnol.201914121084108710.1038/s41565‑019‑0591‑y31802031
    [Google Scholar]
  100. HuangS. HaoX.Y. LiY.J. WuJ.Y. XiangD.X. LuoS. Nonviral delivery systems for antisense oligonucleotide therapeutics.Biomater. Res.20222614910.1186/s40824‑022‑00292‑436180936
    [Google Scholar]
  101. HosseiniM. KhatamianfarS. HassanianS.M. NedaeiniaR. ShafieeM. MaftouhM. Ghayour-MobarhanM. ShahidSalesS. AvanA. Exosome-encapsulated microRNAs as potential circulating biomarkers in colon cancer.Curr. Pharm. Des.201723111705170910.2174/138161282266616120114463427908272
    [Google Scholar]
  102. NedaeiniaR. ManianM. JazayeriM.H. RanjbarM. SalehiR. SharifiM. MohagheghF. GoliM. JahedniaS.H. AvanA. Ghayour-MobarhanM. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer.Cancer Gene Ther.2017242485610.1038/cgt.2016.7727982021
    [Google Scholar]
  103. LamichhaneT.N. SokicS. SchardtJ.S. RaikerR.S. LinJ.W. JayS.M. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine.Tissue Eng. Part B Rev.2015211455410.1089/ten.teb.2014.030024957510
    [Google Scholar]
  104. Pinky GuptaS. KrishnakumarV. SharmaY. DindaA.K. MohantyS. Mesenchymal stem cell derived exosomes: A nano platform for therapeutics and drug delivery in combating COVID-19.Stem Cell Rev. Rep.2021171334310.1007/s12015‑020‑10002‑z32661867
    [Google Scholar]
  105. WangZ. PopowskiK.D. ZhuD. de Juan AbadB.L. WangX. LiuM. LutzH. De NaeyerN. DeMarcoC.T. DennyT.N. DinhP.U.C. LiZ. ChengK. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine.Nat. Biomed. Eng.20226779180510.1038/s41551‑022‑00902‑535788687
    [Google Scholar]
  106. TangM. ChenY. LiB. SugimotoH. YangS. YangC. LeBleuV.S. McAndrewsK.M. KalluriR. Therapeutic targeting of STAT3 with small interference RNAs and antisense oligonucleotides embedded exosomes in liver fibrosis.FASEB J.2021355e2155710.1096/fj.202002777RR33855751
    [Google Scholar]
  107. YangJ. LuoS. ZhangJ. YuT. FuZ. ZhengY. XuX. LiuC. FanM. ZhangZ. Exosome-mediated delivery of antisense oligonucleotides targeting α-synuclein ameliorates the pathology in a mouse model of Parkinson’s disease.Neurobiol. Dis.202114810521810.1016/j.nbd.2020.10521833296726
    [Google Scholar]
  108. AlavizadehS.H. DoagooyanM. ZahedipourF. TorghabeS.Y. BahariehB. SoleymaniF. GheybiF. Antisense technology as a potential strategy for the treatment of coronaviruses infection: With focus on COVID-19.IET Nanobiotechnol.2022163677710.1049/nbt2.1207935274474
    [Google Scholar]
  109. AlizadehmohajerN. ZahedifarS. SohrabiE. Shaddel BasirS. NourigheimasiS. FalakR. NedaeiniaR. A FernsG. Emami NejadA. ManianM. Using in silico bioinformatics algorithms for the accurate prediction of the impact of spike protein mutations on the pathogenicity, stability, and functionality of the SARS-CoV-2 virus and analysis of potential therapeutic targets.Biochem. Genet.202361277880810.1007/s10528‑022‑10282‑936173498
    [Google Scholar]
  110. KulkarniJ.A. WitzigmannD. ThomsonS.B. ChenS. LeavittB.R. CullisP.R. van der MeelR. The current landscape of nucleic acid therapeutics.Nat. Nanotechnol.202116663064310.1038/s41565‑021‑00898‑034059811
    [Google Scholar]
  111. GearyR.S. NorrisD. YuR. BennettC.F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides.Adv. Drug Deliv. Rev.201587465110.1016/j.addr.2015.01.00825666165
    [Google Scholar]
  112. ZhangL. LiangX. De HoyosC.L. MigawaM. NicholsJ.G. FreestoneG. TianJ. SethP.P. CrookeS.T. The combination of mesyl-phosphoramidate inter-nucleotide linkages and 2′-O-methyl in selected positions in the antisense oligonucleotide enhances the performance of RNaseH1 active PS-ASOs.Nucleic Acid Ther.202232540141110.1089/nat.2022.000535861704
    [Google Scholar]
  113. AndersonB.A. FreestoneG.C. LowA. De-HoyosC.L. IiiW.J.D. ØstergaardM.E. MigawaM.T. FazioM. WanW.B. BerdejaA. ScandalisE. BurelS.A. VickersT.A. CrookeS.T. SwayzeE.E. LiangX. SethP.P. Towards next generation antisense oligonucleotides: Mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides.Nucleic Acids Res.202149169026904110.1093/nar/gkab71834417625
    [Google Scholar]
  114. Stein, D.A.; Skilling, D.E.; Iversen, P.L.; Smith, A.W. Inhibition of Vesivirus infetions in mammalian tissue culture with antisense morpholino oligomers. Antisense Nucleic Acid Drug Dev., 2001, 11, 317–325.10.1089/108729001753231696
  115. Crooke, S.T.E.; Ecker, D.J.; Sampath, R.; Freier, S.M.; Massire, C.; Hofstadler, S.A.; Lowery, K.S.; Swayze, E.E.; Baker, B.F.; Bennett, F.C. Compositions and methods for the treatment of severe acute respiratory syndrome (SARS). WO Patent 2005023083A3, 2004.
  116. NeumanB.W. SteinD.A. KroekerA.D. ChurchillM.J. KimA.M. KuhnP. DawsonP. MoultonH.M. BestwickR.K. IversenP.L. BuchmeierM.J. Inhibition, escape, and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers.J. Virol.200579159665967610.1128/JVI.79.15.9665‑9676.200516014928
    [Google Scholar]
  117. PatersonB.M. RobertsB.E. KuffE.L. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation.Proc. Natl. Acad. Sci. USA197774104370437410.1073/pnas.74.10.4370270678
    [Google Scholar]
  118. KilanowskaA. StudzińskaS. In vivo and in vitro studies of antisense oligonucleotides – a review.RSC Advances20201057345013451610.1039/D0RA04978F35514414
    [Google Scholar]
  119. EgliM. ManoharanM. Chemistry, structure and function of approved oligonucleotide therapeutics.Nucleic Acids Res.20235162529257310.1093/nar/gkad06736881759
    [Google Scholar]
  120. LinJ. LiuF. JiangY. Antisense technologies targeting fatty acid synthetic enzymes.20127219820622339357
    [Google Scholar]
  121. MillerC.M. DonnerA.J. BlankE.E. EggerA.W. KellarB.M. ØstergaardM.E. SethP.P. HarrisE.N. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver.Nucleic Acids Res.20164462782279410.1093/nar/gkw11226908652
    [Google Scholar]
  122. ZhangH. LöwenbergE.C. CrosbyJ.R. MacLeodA.R. ZhaoC. GaoD. BlackC. RevenkoA.S. MeijersJ.C.M. StroesE.S. LeviM. MoniaB.P. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: A novel antithrombotic strategy with lowered bleeding risk.Blood2010116224684469210.1182/blood‑2010‑04‑27779820807891
    [Google Scholar]
  123. Karaki, S.; Paris, C.; Rocchi, P. Antisense Oligonucleotides, A Novel Developing Targeting Therapy. In: Antisense Therapy, S. Sharad and S. Kapur, eds. (IntechOpen): Rijeka, 2019, pp. Ch. 2.
  124. LimK.R.Q. YokotaT. Invention and early history of gapmers.Methods Mol. Biol.2020217631910.1007/978‑1‑0716‑0771‑8_132865779
    [Google Scholar]
  125. ZhangL. VickersT.A. SunH. LiangX. CrookeS.T. Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins.Nucleic Acids Res.20214952721273910.1093/nar/gkab07833577678
    [Google Scholar]
  126. CurreriA. SankholkarD. MitragotriS. ZhaoZ. RNA therapeutics in the clinic.Bioeng. Transl. Med.202381e1037410.1002/btm2.1037436684099
    [Google Scholar]
  127. PfafenrotC. SchneiderT. MüllerC. HungL.H. SchreinerS. ZiebuhrJ. BindereifA. Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs.Nucleic Acids Res.20214921125021251610.1093/nar/gkab109634850109
    [Google Scholar]
  128. QuijanoE. BahalR. RicciardiA. SaltzmanW.M. GlazerP.M. Therapeutic peptide nucleic acids: Principles, limitations, and opportunities.Yale J. Biol. Med.201790458359829259523
    [Google Scholar]
  129. SwayzeE.E. SiwkowskiA.M. WancewiczE.V. MigawaM.T. WyrzykiewiczT.K. HungG. MoniaB.P. BennettC.F. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals.Nucleic Acids Res.200735268770010.1093/nar/gkl107117182632
    [Google Scholar]
  130. VoraS.M. FontanaP. MaoT. LegerV. ZhangY. FuT.M. LiebermanJ. GehrkeL. ShiM. WangL. IwasakiA. WuH. Targeting stem-loop 1 of the SARS- CoV-2 5′ UTR to suppress viral translation and Nsp1 evasion.Proc. Natl. Acad. Sci. USA20221199e211719811910.1073/pnas.211719811935149555
    [Google Scholar]
  131. ZhangK. ZheludevI.N. HageyR.J. HasleckerR. HouY.J. KretschR. PintilieG.D. RanganR. KladwangW. LiS. WuM.T.P. PhamE.A. Bernardin- SouibguiC. BaricR.S. SheahanT.P. D’SouzaV. GlennJ.S. ChiuW. DasR. Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome.Nat. Struct. Mol. Biol.202128974775410.1038/s41594‑021‑00653‑y34426697
    [Google Scholar]
  132. NemethovaV. MazancovaP. SelcM. JakicK. UhelskaL. NemethovaB. PoturnayovaA. DrgonaL. BabelovaA. RazgaF. Effective reduction of SARS-CoV-2 RNA levels using a tailor-made oligonucleotide-based RNA inhibitor.Viruses202214468510.3390/v1404068535458415
    [Google Scholar]
  133. MillerC.M. WanW.B. SethP.P. HarrisE.N. Endosomal escape of antisense oligonucleotides internalized by stabilin receptors is regulated by Rab5C and EEA1 during endosomal maturation.Nucleic Acid Ther.2018282869610.1089/nat.2017.069429437530
    [Google Scholar]
  134. GasparR. CoelhoF. SilvaB.F.B. Lipid-nucleic acid complexes: Physicochemical aspects and prospects for cancer treatment.Molecules20202521500610.3390/molecules2521500633126767
    [Google Scholar]
  135. AmanatM. NemethC.L. FineA.S. LeungD.G. FatemiA. Antisense oligonucleotide therapy for the nervous system: From bench to bedside with emphasis on pediatric neurology.Pharmaceutics20221411238910.3390/pharmaceutics1411238936365206
    [Google Scholar]
  136. GuptaR. SalaveS. RanaD. KarunakaranB. ButreddyA. BenivalD. KommineniN. Versatility of liposomes for antisense oligonucleotide delivery: A special focus on various therapeutic areas.Pharmaceutics2023155143510.3390/pharmaceutics1505143537242677
    [Google Scholar]
  137. FelgnerJ.H. KumarR. SridharC.N. WheelerC.J. TsaiY.J. BorderR. RamseyP. MartinM. FelgnerP.L. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations.J. Biol. Chem.199426942550256110.1016/S0021‑9258(17)41980‑68300583
    [Google Scholar]
  138. BelmadiN. MidouxP. LoyerP. PassiraniC. PichonC. Le GallT. JaffresP.A. LehnP. MontierT. Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration.Biotechnol. J.20151091370138910.1002/biot.20140084126037687
    [Google Scholar]
  139. EygerisY. GuptaM. KimJ. SahayG. Chemistry of lipid nanoparticles for RNA delivery.Acc. Chem. Res.202255121210.1021/acs.accounts.1c0054434850635
    [Google Scholar]
  140. HuangH. ZhangC. YangS. XiaoW. ZhengQ. SongX. The investigation of mRNA vaccines formulated in liposomes administrated in multiple routes against SARS-CoV-2.J. Control. Release202133544945610.1016/j.jconrel.2021.05.02434029632
    [Google Scholar]
  141. KhuranaA. AllawadhiP. KhuranaI. AllwadhiS. WeiskirchenR. BanothuA.K. ChhabraD. JoshiK. BharaniK.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19.Nano Today20213810114210.1016/j.nantod.2021.10114233815564
    [Google Scholar]
  142. KumarS. ThambirajaT.S. KaruppananK. SubramaniamG. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein.J. Med. Virol.20229441641164910.1002/jmv.2752634914115
    [Google Scholar]
  143. CheryJ. RNA therapeutics: RNAi and antisense mechanisms and clinical applications.Postdoc J.201647355010.14304/SURYA.JPR.V4N7.527570789
    [Google Scholar]
  144. BabalolaB.A. AkinsuyiO.S. FolajimiE.O. OlujimiF. OtunbaA.A. ChikereB. AdewumagunI.A. AdetobiT.E. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics.Biomed. Pharmacother.202316511509910.1016/j.biopha.2023.11509937406505
    [Google Scholar]
  145. PandeyM. OjhaD. BansalS. RodeA.B. ChawlaG. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases.Mol. Aspects Med.20218110100334332771
    [Google Scholar]
  146. QuemenerA.M. GalibertM.D. Antisense oligonucleotide: A promising therapeutic option to beat COVID-19.Wiley Interdiscip. Rev. RNA2022134e170310.1002/wrna.170334842345
    [Google Scholar]
  147. Iversen, P.L.; AVI Biopharma Inc. Sense antiviral compound and method for treating ssRNA viral infection. U.S. Patent Application, 2008. 10/567,470.
  148. PerryC.M. Barman BalfourJ.A. Fomivirsen.Drugs199957337538010.2165/00003495‑199957030‑0001010193689
    [Google Scholar]
  149. AndersonK.P. FoxM.C. Brown-DriverV. MartinM.J. AzadR.F. Inhibition of human cytomegalovirus immediate-early gene expression by an antisense oligonucleotide complementary to immediate-early RNA.Antimicrob. Agents Chemother.19964092004201110.1128/AAC.40.9.20048878571
    [Google Scholar]
  150. HighleymanL. Fomivirsen. BETA: bulletin of experimental treatments for AIDS: A publication of the San Francisco AIDS Foundation.19982931
    [Google Scholar]
  151. Mipomersen.Am. J. Cardiovasc. Drugs201010427127910.2165/11533460‑000000000‑0000020653334
    [Google Scholar]
  152. SyedY.Y. Eteplirsen: First global approval.Drugs201676171699170410.1007/s40265‑016‑0657‑127807823
    [Google Scholar]
  153. NeilE.E. BisacciaE.K. Nusinersen: A novel antisense oligonucleotide for the treatment of spinal muscular atrophy.J. Pediatr. Pharmacol. Ther.201924319420310.5863/1551‑6776‑24.3.19431093018
    [Google Scholar]
  154. KeamS.J. Inotersen: First global approval.Drugs201878131371137610.1007/s40265‑018‑0968‑530120737
    [Google Scholar]
  155. KimJ. Patient-customized oligonucleotide therapy for a rare genetic disease.N. Engl. J. Med.20193811716441652
    [Google Scholar]
  156. PaikJ. DugganS. Volanesorsen: First global approval.Drugs201979121349135410.1007/s40265‑019‑01168‑z31301033
    [Google Scholar]
  157. HeoY.A. Golodirsen: First approval.Drugs202080332933310.1007/s40265‑020‑01267‑232026421
    [Google Scholar]
  158. DhillonS. Viltolarsen: First approval.Drugs202080101027103110.1007/s40265‑020‑01339‑332519222
    [Google Scholar]
  159. VasterlingM.E. MaitskiR.J. DavisB.A. BarnesJ.E. KelkarR.A. KlapperR.J. PatelH. AhmadzadehS. ShekoohiS. KayeA.D. VarrassiG. AMONDYS 45 (Casimersen), a novel antisense phosphorodiamidate morpholino oligomer: Clinical considerations for treatment in duchenne muscular dystrophy.Cureus20231512e5123710.7759/cureus.5123738283433
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673300236240529195835
Loading
/content/journals/cmc/10.2174/0109298673300236240529195835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test