Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Allosteric inhibition of EGFR tyrosine kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies.

Methods

A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide () and 1,2,4-triazole () derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR, and HR-mass spectroscopy.

Results

Compound had a relatively high pharmacophore-fit score, indicating that it may have biological activity similar to the EGFR allosteric inhibitor reference, and it scored a relatively low ΔG against EGFR TK allosteric site, indicating a high likelihood of drug-receptor complex formation. Compound was cytotoxic to the three cancer cell lines tested, particularly HCT-116 colorectal cancer cells, with an IC value comparable to Erlotinib. Compound induced the intrinsic apoptotic pathway in HCT-116 cells by arresting them in the G2/M phase. All of the new derivatives, including , met the requirements for EGFR allosteric inhibitory activity.

Conclusion

Compound is a promising EGFR tyrosine kinase allosteric inhibitor that warrants further research.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673305163240427065543
2024-04-30
2025-01-19
Loading full text...

Full text loading...

References

  1. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.2126225651787
    [Google Scholar]
  2. LeeM.M.L. ChanB.D. WongW.Y. LeungT.W. QuZ. HuangJ. ZhuL. LeeC.S. ChenS. TaiW.C.S. Synthesis and evaluation of novel anticancer compounds derived from the natural product.Brevilin A. ACS Omega2020524145861459610.1021/acsomega.0c0127632596596
    [Google Scholar]
  3. BourzikatO. El AbbouchiA. GhammazH. El BrahmiN. El FahimeE. ParisA. DaniellouR. SuzenetF. GuillaumetG. El KazzouliS. Synthesis, anticancer activities and molecular docking studies of a novel class of 2-phenyl-5, 6, 7, 8-tetrahydroimidazo [1, 2-b] pyridazine derivatives bearing sulfonamides.Molecules20222716523810.3390/molecules2716523836014478
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide. for 36 cancers in 185 countries. CA.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  5. GavandeN.S. VanderVere-CarozzaP.S. HinshawH.D. JalalS.I. SearsC.R. PawelczakK.S. TurchiJ.J. DNA repair targeted therapy: The past or future of cancer treatment?Pharmacol. Ther.2016160658310.1016/j.pharmthera.2016.02.00326896565
    [Google Scholar]
  6. WangY.H. HuangK. QinZ.J. XiongH.J. LiuT.F. WangT.Y. LaiX.D. LiuX.H. JiangH. WangX.M. Tumor microenvironment as a bioreactor for Au&Fe3O4-DNA complex synthesis and targeted cancer therapy.Chem. Eng. J.202346714345510.1016/j.cej.2023.143455
    [Google Scholar]
  7. MinH.Y. LeeH.Y. Cellular dormancy in cancer: Mechanisms and potential targeting strategies.Cancer Res. Treat.202355372073610.4143/crt.2023.46836960624
    [Google Scholar]
  8. RuthJR. PantDK. PanTC. SeidelHE. BakshSC. KeisterBA. SinghR. SternerCJ. BakewellSJ. MoodySE. BelkaGK. Cellular dormancy in minimal residual disease following targeted therapy. Breast Ca. Res20212316310.1186/s13058‑021‑01416‑9
    [Google Scholar]
  9. ZhongL. Small molecules in targeted cancer therapy: advances, challenges, and future perspectivesSig. Transduct. Target Ther20216114810.1038/s41392‑021‑00572‑w
    [Google Scholar]
  10. WangM.D. ShinD.M. SimonsJ.W. NieS. Nanotechnology for targeted cancer therapy.Expert Rev. Anticancer Ther.20077683383710.1586/14737140.7.6.83317555393
    [Google Scholar]
  11. YamaokaT. KusumotoS. AndoK. OhbaM. OhmoriT. Receptor tyrosine kinase-targeted cancer therapy.Int. J. Mol. Sci.20181911349110.3390/ijms1911349130404198
    [Google Scholar]
  12. YangL. ShiP. ZhaoG. XuJ. PengW. ZhangJ. ZhangG. WangX. DongZ. ChenF. CuiH. Targeting cancer stem cell pathways for cancer therapy.Signal Transduct. Target. Ther.202051810.1038/s41392‑020‑0110‑532296030
    [Google Scholar]
  13. BhullarK.S. LagarónN.O. McGowanE.M. ParmarI. JhaA. HubbardB.P. RupasingheH.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions.Mol. Cancer20181714810.1186/s12943‑018‑0804‑229455673
    [Google Scholar]
  14. BackesA.C. ZechB. FelberB. KleblB. MüllerG. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition.Expert Opin. Drug Discov.20083121427144910.1517/1746044080258010623506107
    [Google Scholar]
  15. BakrR.B. MehanyA.B.M. AbdellatifK.R.A. Synthesis, EGFR inhibition and anti-cancer activity of new 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine derivatives.Anticancer. Agents Med. Chem.201717101389140010.2174/187221131166617021310500428270084
    [Google Scholar]
  16. KurbanB. SağlıkB.N. OsmaniyeD. LeventS. ÖzkayY. KaplancıklıZ.A. Synthesis and anticancer activities of pyrazole-thiadiazole-based EGFR inhibitors.ACS Omega2023834315003150910.1021/acsomega.3c0463537663500
    [Google Scholar]
  17. ElzahabiH.S.A. NossierE.S. AlasfouryR.A. El-ManawatyM. SayedS.M. ElkaeedE.B. MetwalyA.M. HagrasM. EissaI.H. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers.J. Enzyme Inhib. Med. Chem.20223711053107610.1080/14756366.2022.206275235821615
    [Google Scholar]
  18. OthmanI.M.M. AlamshanyZ.M. TashkandiN.Y. Gad-ElkareemM.A.M. AnwarM.M. NossierE.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies.Bioorg. Chem.202111410507810.1016/j.bioorg.2021.10507834161878
    [Google Scholar]
  19. GschwindA. FischerO.M. UllrichA. The discovery of receptor tyrosine kinases: Targets for cancer therapy.Nat. Rev. Cancer20044536137010.1038/nrc136015122207
    [Google Scholar]
  20. AyatiA. MoghimiS. SalarinejadS. SafaviM. PouramiriB. ForoumadiA. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.Bioorg. Chem.20209910381110.1016/j.bioorg.2020.10381132278207
    [Google Scholar]
  21. SigismundS. AvanzatoD. LanzettiL. Emerging functions of the EGFR in cancer.Mol. Oncol.201812132010.1002/1878‑0261.1215529124875
    [Google Scholar]
  22. HuangL. JiangS. ShiY. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020).J. Hematol. Oncol.202013114310.1186/s13045‑020‑00977‑033109256
    [Google Scholar]
  23. BeyettT.S. ToC. HeppnerD.E. RanaJ.K. SchmokerA.M. JangJ. De ClercqD.J.H. GomezG. ScottD.A. GrayN.S. JänneP.A. EckM.J. Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors.Nat. Commun.2022131253010.1038/s41467‑022‑30258‑y35534503
    [Google Scholar]
  24. JiaY. YunC.H. ParkE. ErcanD. ManuiaM. JuarezJ. XuC. RheeK. ChenT. ZhangH. PalakurthiS. JangJ. LelaisG. DiDonatoM. BursulayaB. MichellysP.Y. EppleR. MarsiljeT.H. McNeillM. LuW. HarrisJ. BenderS. WongK.K. JänneP.A. EckM.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors.Nature2016534760512913210.1038/nature1796027251290
    [Google Scholar]
  25. KenakinT. MillerL.J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery.Pharmacol. Rev.201062226530410.1124/pr.108.00099220392808
    [Google Scholar]
  26. MaityS. PaiK.S.R. NayakY. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance.Pharmacol. Rep.202072479981310.1007/s43440‑020‑00131‑032666476
    [Google Scholar]
  27. ToC. JangJ. ChenT. ParkE. MushajiangM. De ClercqD.J.H. XuM. WangS. CameronM.D. HeppnerD.E. ShinB.H. GeroT.W. YangA. DahlbergS.E. WongK.K. EckM.J. GrayN.S. JänneP.A. Single and dual targeting of mutant EGFR with an allosteric inhibitor.Cancer Discov.20199792694310.1158/2159‑8290.CD‑18‑090331092401
    [Google Scholar]
  28. ToC. BeyettT.S. JangJ. FengW.W. BahcallM. HaikalaH.M. ShinB.H. HeppnerD.E. RanaJ.K. LeeperB.A. SorokoK.M. PoitrasM.J. GokhaleP.C. KobayashiY. WahidK. KurppaK.J. GeroT.W. CameronM.D. OginoA. MushajiangM. XuC. ZhangY. ScottD.A. EckM.J. GrayN.S. JänneP.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer.Nat. Can.20223440241710.1038/s43018‑022‑00351‑835422503
    [Google Scholar]
  29. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms2403265136768973
    [Google Scholar]
  30. ZhangJ. YangP.L. GrayN.S. Targeting cancer with small molecule kinase inhibitors.Nat. Rev. Cancer200991283910.1038/nrc255919104514
    [Google Scholar]
  31. SinghS. GeethaP. RamajayamR. Isolation, synthesis and medicinal chemistry of biphenyl analogs – A review.Results in Chemistry2023610113510.1016/j.rechem.2023.101135
    [Google Scholar]
  32. AliH.A. IsmailM.A. FoudaA.E.A.S. GhaithE.A. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: Applications and biological aspects.RSC Advances20231327182621830510.1039/D3RA03531J37333795
    [Google Scholar]
  33. ChengB. ZhuG. MengL. WuG. ChenQ. MaS. Identification and optimization of biphenyl derivatives as novel tubulin inhibitors targeting colchicine-binding site overcoming multidrug resistance.Eur. J. Med. Chem.202222822811393010.1016/j.ejmech.2021.11393034794817
    [Google Scholar]
  34. MuraliP. KaruppasamyR. Imidazole and biphenyl derivatives as anti-cancer agents for glioma therapeutics: Computational drug repurposing strategy.Anticancer. Agents Med. Chem.20232391085110110.2174/187152062366623012509081536698225
    [Google Scholar]
  35. PisanoM. DettoriM.A. FabbriD. DeloguG. PalmieriG. RozzoC. Anticancer activity of two novel hydroxylated biphenyl compounds toward malignant melanoma cells.Int. J. Mol. Sci.20212211563610.3390/ijms2211563634073232
    [Google Scholar]
  36. SangY. HanS. HanS. PannecouqueC. De ClercqE. ZhuangC. ChenF. Follow on-based optimization of the biphenyl-DAPYs as HIV-1 nonnucleoside reverse transcriptase inhibitors against the wild-type and mutant strains.Bioorg. Chem.2019898910297410.1016/j.bioorg.2019.10297431102693
    [Google Scholar]
  37. IsmailM.A.H. Aboul-EneinM.N. El-AzzounyA.A.E. AbouzidK.A.M. IsmailN.S.M. Design, synthesis, and antihypertensive evaluation of 2′-tetrazolyl and 2′-carboxy-biphenylylmethyl-pyrrolidine scaffolds substituted at their N1, C3, and C4 positions as potential angiotensin II AT1 receptor antagonists.Med. Chem. Res.201524144245810.1007/s00044‑014‑1095‑9
    [Google Scholar]
  38. ZewailM.B. El-GizawyS.A. OsmanM.A. HaggagY.A. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed- dose combination of candesartan cilexetil and hydrochlorothiazide.J. Drug Deliv. Sci. Technol.20216110232010.1016/j.jddst.2021.102320
    [Google Scholar]
  39. MekaG. ChintakuntaR. Analgesic and anti-inflammatory activity of quinoxaline derivatives: Design synthesis and characterization.Results in Chemistry2023510078310.1016/j.rechem.2023.100783
    [Google Scholar]
  40. WangY. HuangQ. ZhangL. ZhengC. XuH. Biphenyls in clusiaceae: Isolation, structure diversity, synthesis and bioactivity.Front Chem.20221098700910.3389/fchem.2022.98700936531325
    [Google Scholar]
  41. AbbasA.H. MahmoodA.A.R. TahtamouniL.H. Al- MazaydehZ.A. RammahaM.S. AlsoubaniF. Al-bayatiR.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: Synthesis, docking study, and anticancer activity.Pharmacia202168367969210.3897/pharmacia.68.e70654
    [Google Scholar]
  42. ValeJ.A. RodriguesM.P. LimaÂ.M.A. SantiagoS.S. LimaG.D.A. AlmeidaA.A. OliveiraL.L. BressanG.C. TeixeiraR.R. Machado-NevesM. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells.Biomed. Pharmacother.202214811268910.1016/j.biopha.2022.11268935149386
    [Google Scholar]
  43. DengY. YangT. WangH. YangC. ChengL. YinS.F. KambeN. QiuR. Recent progress on photocatalytic synthesis of ester derivatives and reaction mechanisms.Top. Curr. Chem. (Cham)202137964210.1007/s41061‑021‑00355‑534668085
    [Google Scholar]
  44. HassanO.M. KubbaA. TahtamouniL.H. Novel 5-bromoindole-2-carboxylic acid derivatives as EGFR inhibitors: Synthesis, docking study, and structure activity relationship.Anticancer. Agents Med. Chem.202323111336134810.2174/187152062366623022715344936847231
    [Google Scholar]
  45. HusseinSA. KubbaAA. TahtamouniLH. SalehKM. RammahaMS. RidhaDM. Synthesis, docking study, and cytotoxicity evaluation of new hydroxy benzoic acid derivatives.T.J.P.H.S.20231713034510.25130/tjphs.2023.17.1.4.30.45
    [Google Scholar]
  46. KubbaA.A.R.M. ShihabW.A. Al-ShawiN.N. In silico and in vitro approach for design, synthesis, and anti-proliferative activity of novel derivatives of 5-(4-Aminophenyl)-4-substituted phenyl-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione.Res. J. Pharm. Technol.20201373329333910.5958/0974‑360X.2020.00591.0
    [Google Scholar]
  47. YaseenY.S. MahmoodA.A.R. AbbasA.H. ShihabW.A. TahtamouniL.H. New niflumic acid derivatives as egfr inhibitors: Design, synthesis, in-silico studies, and anti-proliferative assessment.Med. Chem.202319544545910.2174/157340641966622121914480436537605
    [Google Scholar]
  48. BerilloDA. DyusebaevaMA. Synthesis of hydrazides of heterocyclic amines and their antimicrobial and spasmolytic activity.S.P.J., 20223071036104310.1016/j.jsps.2022.04.009
    [Google Scholar]
  49. YaseenY. KubbaA. ShihabW. TahtamouniL. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities.Pharmacia202269359561410.3897/pharmacia.69.e86504
    [Google Scholar]
  50. HosnyN.M. HassanN.Y. MahmoudH.M. Abdel-RhmanM.H. Synthesis, characterization and cytotoxicity of new 2-isonicotinoyl-N-phenylhydrazine-1-carbothioamide and its metal complexes.Appl. Organomet. Chem.2019338e499810.1002/aoc.4998
    [Google Scholar]
  51. El-GammalO.A. Abdel-LatifE. FaragM.G. Abdel-RhmanM.H. Synthesis, characterization, and anticancer activity of new binuclear complexes of 2,2′-malonylbis( N -phenylhydrazine-1-carbothioamide).Appl. Organomet. Chem.2021355e619410.1002/aoc.6194
    [Google Scholar]
  52. AcarE. KansızS. DegeN. Synthesis, crystal structure and hirshfeld surface analysis of (E)-2-(4-Methylbenzylidene)-N-Phenylhydrazine-1-Carbothioamide.J. Struct. Chem.202364697498310.1134/S0022476623060021
    [Google Scholar]
  53. AllawiM M. MahmoodAA. TahtamouniLH. AlSakhenM F. KanaanS I. SalehK M. YasinS R. New indole-6-carboxylic acid derivatives as multi-target antiproliferative agents: Synthesis, in silico studies, and cytotoxicity evaluation.Chem. Biodivers2023e20230189210.1002/cbdv.202301892
    [Google Scholar]
  54. HassanOM. Design, synthesis, and molecular docking studies of 5-bromoindole-2-carboxylic acid hydrazone derivatives: In vitro anticancer and vegfr-2 inhibitory effects.Chem. Select.2022746e202203726
    [Google Scholar]
  55. SchüttelkopfA.W. van AaltenD.M.F. PRODRG : A tool for high-throughput crystallography of protein-ligand complexes.Acta Crystallogr. D Biol. Crystallogr.20046081355136310.1107/S090744490401167915272157
    [Google Scholar]
  56. SulimovV.B. KutovD.C. SulimovA.V. Advances in docking.Curr. Med. Chem.202026427555758010.2174/092986732566618090411500030182836
    [Google Scholar]
  57. FanJ. FuA. ZhangL. Progress in molecular docking.Quant. Biol.201972838910.1007/s40484‑019‑0172‑y
    [Google Scholar]
  58. MengL. LinY. GuH. SuT.C. Study on dynamic docking process and collision problems of captured-rod docking method.Ocean Eng.201919310662410.1016/j.oceaneng.2019.106624
    [Google Scholar]
  59. KaurT. MadgulkarA. BhalekarM. AsgaonkarK. Molecular docking in formulation and development.Curr. Drug Discov. Technol.2019161303910.2174/157016381566618021911242129468973
    [Google Scholar]
  60. LiuK. KokuboH. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study.J. Chem. Inf. Model.201757102514252210.1021/acs.jcim.7b0041228902511
    [Google Scholar]
  61. Al-ShabibN.A. KhanJ.M. MalikA. AlsenaidyM.A. RehmanM.T. Al AjmiM.F. AlsenaidyA.M. HusainF.M. KhanR.H. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies.J. Mol. Liq.201826951152010.1016/j.molliq.2018.07.122
    [Google Scholar]
  62. Vidal-LimonA. Aguilar-ToaláJE. LiceagaAM. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides.J. Agric. Food Chem.202270493494310.1021/acs.jafc.1c06110
    [Google Scholar]
  63. HussenN.H. Synthesis, characterization, molecular docking, ADMET prediction, and anti-inflammatory activity of some Schiff bases derived from salicylaldehyde as a potential cyclooxygenase inhibitor.Baghdad Sci. J202320516621674
    [Google Scholar]
  64. van MeerlooJ. KaspersG.J.L. CloosJ. Cell sensitivity assays: The MTT assay.Methods Mol. Biol.201173123724510.1007/978‑1‑61779‑080‑5_2021516412
    [Google Scholar]
  65. TahtamouniL. AlzghoulA. AlderferS. SunJ. AhramM. PrasadA. BamburgJ. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics.PLoS One20221712e027974610.1371/journal.pone.027974636584207
    [Google Scholar]
  66. MehihiA.A.R. KubbaA.A.R. ShihabW.A. TahtamouniL.H. New tolfenamic acid derivatives with hydrazine-1- carbothioamide and 1,3,4-oxadiazole moieties targeting VEGFR: Synthesis, in silico studies, and in vitro anticancer assessment.Med. Chem. Res.202332112334234810.1007/s00044‑023‑03137‑4
    [Google Scholar]
  67. BhanjaK.K. SharmaM. PatraN. Uncovering the structural and binding insights of dual inhibitors simultaneously targeting two distinct sites on EGFR Kinase.J. Phys. Chem. B202312750107491076510.1021/acs.jpcb.3c0433738055900
    [Google Scholar]
  68. DouD. WangJ. QiaoY. WumaierG. ShaW. LiW. MeiW. YangT. ZhangC. HeH. WangC. ChuL. SunB. SuR. MaX. GongM. XieL. JiangW. DiaoY. ZhuL. ZhaoZ. ChenZ. XuY. LiS. LiH. Discovery and optimization of 4-anilinoquinazoline derivatives spanning ATP binding site and allosteric site as effective EGFR-C797S inhibitors.Eur. J. Med. Chem.202224411485610.1016/j.ejmech.2022.11485636279692
    [Google Scholar]
  69. KubbaRM. MohammedMA. AhamedLS. DFT calculations and experimental study to inhibit carbon steel corrosion in saline solution by quinoline-2-one derivative: Carbon steel corrosion.Baghdad Sci. J202118111310.21123/bsj.2021.18.1.0113
    [Google Scholar]
  70. Calderón-MontañoJ.M. Martínez-SánchezS.M. Jiménez-GonzálezV. Burgos-MorónE. Guillén-MancinaE. Jiménez-AlonsoJ.J. Díaz-OrtegaP. GarcíaF. AparicioA. López-LázaroM. Screening for selective anticancer activity of 65 extracts of plants collected in Western Andalusia. Spain. Plants20211010219310.3390/plants1010219334686002
    [Google Scholar]
  71. JulienO. WellsJ.A. Caspases and their substrates.Cell Death Differ.20172481380138910.1038/cdd.2017.4428498362
    [Google Scholar]
  72. ShaliniS. DorstynL. DawarS. KumarS. Old, new and emerging functions of caspases.Cell Death Differ.201522452653910.1038/cdd.2014.21625526085
    [Google Scholar]
  73. UribeM.L. MarroccoI. YardenY. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance.Cancers20211311274810.3390/cancers1311274834206026
    [Google Scholar]
  74. TinivellaA. RastelliG. Investigating the selectivity of allosteric inhibitors for mutant T790M EGFR over wild type using molecular dynamics and binding free energy calculations.ACS Omega2018312165561656210.1021/acsomega.8b03256
    [Google Scholar]
  75. FanM. HuL. ShiS. SongX. HeH. QiB. Design, synthesis and biological evaluation of EGFR kinase inhibitors that spans the orthosteric and allosteric sites.Bioorg. Med. Chem.20239611753410.1016/j.bmc.2023.11753437952262
    [Google Scholar]
  76. BhatiaP. SharmaV. AlamO. ManaithiyaA. AlamP. Kahksha AlamM.T. ImranM. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019).Eur. J. Med. Chem.202020411264010.1016/j.ejmech.2020.11264032739648
    [Google Scholar]
  77. TripathiS.K. BiswalB.K. Allosteric mutant-selective fourth-generation EGFR inhibitors as an efficient combination therapeutic in the treatment of non-small cell lung carcinoma.Drug Discov. Today20212661466147210.1016/j.drudis.2021.02.00533581322
    [Google Scholar]
  78. CaporuscioF. TinivellaA. RestelliV. SemrauM.S. PinziL. StoriciP. BrogginiM. RastelliG. Identification of small-molecule EGFR allosteric inhibitors by high-throughput docking.Future Med. Chem.201810131545155310.4155/fmc‑2018‑006329766737
    [Google Scholar]
  79. FoschiF. TinivellaA. CrippaV. PinziL. MologniL. PassarellaD. RastelliG. Structure-activity exploration of a small-molecule allosteric inhibitor of T790M/L858R double mutant EGFR.J. Enzyme Inhib. Med. Chem.202338123924510.1080/14756366.2022.214528436373202
    [Google Scholar]
  80. MiljkovićF. BajorathJ. Computational analysis of kinase inhibitors identifies promiscuity cliffs across the human kinome.ACS Omega2018312172951730810.1021/acsomega.8b02998
    [Google Scholar]
  81. Al-RubayeIM. In silico and in vitro evaluation of novel carbothioamide-based and heterocyclic derivatives of 4-(tert-butyl)-3-methoxybenzoic acid as EGFR tyrosine kinase allosteric site inhibitors.Results Chem.2024710132910.1016/j.rechem.2024.101329
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673305163240427065543
Loading
/content/journals/cmc/10.2174/0109298673305163240427065543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test