Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The tumor microenvironment (TME) is created by the tumor and dominated by tumor-induced interactions. Long-term survival of lung adenocarcinoma (LUAD) patients is strongly influenced by immune cell infiltration in TME. The current article intends to construct a gene signature from LUAD ICI for predicting patient outcomes.

Methods

For the initial phase of the study, the TCGA-LUAD dataset was chosen as the training group for dataset selection. We found two datasets named GSE72094 and GSE68465 in the Gene Expression Omnibus (GEO) database for model validation. Unsupervised clustering was performed on the training cohort patients using the ICI profiles. We employed Kaplan-Meier estimators and univariate Cox proportional-hazard models to identify prognostic differentially expressed genes in immune cell infiltration (ICI) clusters. These prognostic genes are then used to develop a LASSO Cox model that generates a prognostic gene signature. Validation was performed using Kaplan-Meier estimation, Cox, and ROC analysis. Our signature and vital immune-relevant signatures were analyzed. Finally, we performed gene set enrichment analysis (GSEA) and immune infiltration analysis on our finding gene signature to further examine the functional mechanisms and immune cellular interactions.

Results

Our study found a sixteen-gene signature (EREG, HPGDS, TSPAN32, ACSM5, SFTPD, SCN7A, CCR2, S100P, KLK12, MS4A1, INHA, HOXB9, CYP4B1, SPOCK1, STAP1, and ACAP1) to be prognostic based on data from the training cohort. This prognostic signature was certified by Kaplan-Meier, Cox proportional-hazards, and ROC curves. 11/15 immune-relevant signatures were related to our signature. The GSEA results indicated our gene signature strongly correlates with immune-related pathways. Based on the immune infiltration analysis findings, it can be deduced that a significant portion of the prognostic significance of the signature can be attributed to resting mast cells.

Conclusion

We used bioinformatics to determine a new, robust sixteen-gene signature. We also found that this signature's prognostic ability was closely related to the resting mast cell infiltration of LUAD patients.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673293174240320053546
2024-03-25
2024-11-19
Loading full text...

Full text loading...

References

  1. RochaV. FragaS. MoreiraC. CarmeliC. LenoirA. SteptoeA. GilesG. GoldbergM. ZinsM. KivimäkiM. VineisP. VollenweiderP. BarrosH. StringhiniS. ConsortiumL. LIFEPATH Consortium members of the LIFEPATH Consortium (in alphabetical order) Life-course socioeconomic disadvantage and lung function: A multicohort study of 70 496 individuals.Eur. Respir. J.2021573200160010.1183/13993003.01600‑202033214206
    [Google Scholar]
  2. DemirY. TürkeşC. KüfrevioğluÖ.İ. BeydemirŞ. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione-dependent enzymes.Chem. Biodivers.2023201e20220065610.1002/cbdv.20220065636538730
    [Google Scholar]
  3. YıldızM.L. DemirY. KüfrevioğluÖ.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes.J. Mol. Recognit.20223512e298710.1002/jmr.298736326002
    [Google Scholar]
  4. UguzH. AvcıB. PalabıyıkE. Nurseli SulumerA. Kızıltunç ÖzmenH. DemirY. AşkınH. Naringenin, hesperidin and quercetin ameliorate radiation-induced damage in rats: In vivo and in silico evaluations.Chem. Biodivers.2024212e20230161310.1002/cbdv.20230161338105348
    [Google Scholar]
  5. AslanH.E. DemirY. ÖzaslanM.S. TürkanF. BeydemirŞ. KüfrevioğluÖ.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity.Drug Chem. Toxicol.201942663464010.1080/01480545.2018.146324229860891
    [Google Scholar]
  6. AltorkiN.K. MarkowitzG.J. GaoD. PortJ.L. SaxenaA. StilesB. McGrawT. MittalV. The lung microenvironment: An important regulator of tumour growth and metastasis.Nat. Rev. Cancer201919193110.1038/s41568‑018‑0081‑930532012
    [Google Scholar]
  7. SchoenhalsJ.E. SeyedinS.N. AndersonC. BrooksE.D. LiY.R. YounesA.I. NiknamS. LiA. BarsoumianH.B. CortezM.A. WelshJ.W. Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation.Transl. Lung Cancer Res.20076214815810.21037/tlcr.2017.03.0628529897
    [Google Scholar]
  8. NewmanA.M. SteenC.B. LiuC.L. GentlesA.J. ChaudhuriA.A. SchererF. KhodadoustM.S. EsfahaniM.S. LucaB.A. SteinerD. DiehnM. AlizadehA.A. Determining cell type abundance and expression from bulk tissues with digital cytometry.Nat. Biotechnol.201937777378210.1038/s41587‑019‑0114‑231061481
    [Google Scholar]
  9. MaC. LiF. GuZ. YangY. QiY. A novel defined risk signature of cuproptosis-related long non-coding RNA for predicting prognosis, immune infiltration, and immunotherapy response in lung adenocarcinoma.Front. Pharmacol.202314114684010.3389/fphar.2023.114684037670938
    [Google Scholar]
  10. ZhangK. ShiJ. LinF. Immunohistochemical evaluation of inhibin-alpha in non-small-cell lung carcinomas--a pitfall in diagnosing metastatic pulmonary carcinomas.Ann Clin Lab Sci2012422118122
    [Google Scholar]
  11. HuangK. YuanR. WangK. HuJ. HuangZ. YanC. ShenW. ShaoJ. Overexpression of HOXB9 promotes metastasis and indicates poor prognosis in colon cancer.Chin. J. Cancer Res.2014261728010.3978/j.issn.1000‑9604.2014.01.1124653628
    [Google Scholar]
  12. HsuY.L. HungJ.Y. LiangY.Y. LinY.S. TsaiM.J. ChouS.H. LuC.Y. KuoP.L. S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer.Oncotarget2015630295852959810.18632/oncotarget.498726320193
    [Google Scholar]
  13. SunagaN. KairaK. Epiregulin as a therapeutic target in non-small-cell lung cancer.Lung Cancer20156919810.2147/LCTT.S6042728210154
    [Google Scholar]
  14. WangT. LiuX. TianQ. LiangT. ChangP. Reduced SPOCK1 expression inhibits non-small cell lung cancer cell proliferation and migration through Wnt/β-catenin signaling.Eur. Rev. Med. Pharmacol. Sci.201822363764410.26355/eurrev_201802_1428829461591
    [Google Scholar]
  15. ChengW.L. FengP.H. LeeK.Y. ChenK.Y. SunW.L. Van HiepN. LuoC.S. WuS.M. The role of EREG/EGFR pathway in tumor progression.Int. J. Mol. Sci.202122231282810.3390/ijms22231282834884633
    [Google Scholar]
  16. UmedaY. HasegawaY. OtsukaM. ArikiS. TakamiyaR. SaitoA. UeharaY. SaijoH. KuronumaK. ChibaH. OhnishiH. SakumaY. TakahashiH. KurokiY. TakahashiM. Surfactant protein D inhibits activation of non-small cell lung cancer-associated mutant EGFR and affects clinical outcomes of patients.Oncogene201736466432644510.1038/onc.2017.25328745320
    [Google Scholar]
  17. LiuY. WangL. LoK.W. LuiV.W.Y. Omics-wide quantitative B-cell infiltration analyses identify GPR18 for human cancer prognosis with superiority over CD20.Commun. Biol.20203123410.1038/s42003‑020‑0964‑732398659
    [Google Scholar]
  18. ZhangJ. ZhangQ. ZhangJ. WangQ. Expression of ACAP1 is associated with tumor immune infiltration and clinical outcome of ovarian cancer.DNA Cell Biol.20203991545155710.1089/dna.2020.559632456571
    [Google Scholar]
  19. LiM. QiuM. XuY. MaoQ. WangJ. DongG. XiaW. YinR. XuL. Differentially expressed protein-coding genes and long noncoding RNA in early-stage lung cancer.Tumour Biol.201536129969997810.1007/s13277‑015‑3714‑626178480
    [Google Scholar]
  20. LiuX. JiaY. ShiC. KongD. WuY. ZhangT. WeiA. WangD. CYP4B1 is a prognostic biomarker and potential therapeutic target in lung adenocarcinoma.PLoS One2021162e024702010.1371/journal.pone.024702033592039
    [Google Scholar]
  21. LombardoS.D. MazzonE. BasileM.S. CampoG. CorsicoF. PrestiM. BramantiP. ManganoK. PetraliaM.C. NicolettiF. FagoneP. Modulation of tetraspanin 32 (TSPAN32) expression in T cell-mediated immune responses and in multiple sclerosis.Int. J. Mol. Sci.20192018432310.3390/ijms2018432331487788
    [Google Scholar]
  22. MurataT. LinM.I. AritakeK. MatsumotoS. NarumiyaS. OzakiH. UradeY. HoriM. SessaW.C. Role of prostaglandin D 2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo.Proc. Natl. Acad. Sci. USA200810550200092001410.1073/pnas.080517110519060214
    [Google Scholar]
  23. MaC. LuoH. CaoJ. ZhengX. ZhangJ. ZhangY. FuZ. Identification of a novel tumor microenvironment–associated eight-gene signature for prognosis prediction in lung adenocarcinoma.Front. Mol. Biosci.2020757164110.3389/fmolb.2020.57164133102522
    [Google Scholar]
  24. PlanqueC. LiL. ZhengY. SoosaipillaiA. ReckampK. ChiaD. DiamandisE.P. GoodglickL. A multiparametric serum kallikrein panel for diagnosis of non-small cell lung carcinoma.Clin. Cancer Res.20081451355136210.1158/1078‑0432.CCR‑07‑411718316555
    [Google Scholar]
  25. AnJ. XueY. LongM. ZhangG. ZhangJ. SuH. Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells.Oncotarget2017824392303924010.18632/oncotarget.1683728424406
    [Google Scholar]
  26. ZhaoR. DingD. YuW. ZhuC. DingY. The lung adenocarcinoma microenvironment mining and its prognostic merit.Technol. Cancer Res. Treat.20201910.1177/153303382097754733280515
    [Google Scholar]
  27. WrightC.M. Savarimuthu FrancisS.M. TanM.E. MartinsM.U. WinterfordC. DavidsonM.R. DuhigE.E. ClarkeB.E. HaywardN.K. YangI.A. BowmanR.V. FongK.M. MS4A1 dysregulation in asbestos-related lung squamous cell carcinoma is due to CD20 stromal lymphocyte expression.PLoS One201274e3494310.1371/journal.pone.003494322514692
    [Google Scholar]
  28. WangN. ZhuL. XuX. YuC. HuangX. Integrated analysis and validation reveal ACAP1 as a novel prognostic biomarker associated with tumor immunity in lung adenocarcinoma.Comput. Struct. Biotechnol. J.2022204390440110.1016/j.csbj.2022.08.02636051873
    [Google Scholar]
  29. YangY. YuanS. YanS. DongK. YangY. Missense variants in CYP4B1 associated with increased risk of lung cancer among Chinese Han population.World J. Surg. Oncol.202321135210.1186/s12957‑023‑03223‑237950293
    [Google Scholar]
  30. KadomotoS. IzumiK. MizokamiA. Roles of CCL2-CCR2 axis in the tumor microenvironment.Int. J. Mol. Sci.20212216853010.3390/ijms2216853034445235
    [Google Scholar]
  31. VialeP.H. The american cancer society’s facts & figures: 2020 edition.J. Adv. Pract. Oncol.202011213513610.6004/jadpro.2020.11.2.133532112
    [Google Scholar]
  32. XiaL. LiuY. WangY. PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions.Oncologist201924S1Suppl. 1S31S4110.1634/theoncologist.2019‑IO‑S1‑s0530819829
    [Google Scholar]
  33. PeretsR. BarJ. RascoD.W. AhnM.J. YohK. KimD.W. NagrialA. SatouchiM. LeeD.H. SpigelD.R. KotasekD. GutierrezM. NiuJ. SiddiqiS. LiX. CyrusJ. ChackerianA. ChainA. AlturaR.A. ChoB.C. Safety and efficacy of quavonlimab, a novel anti-CTLA-4 antibody (MK-1308), in combination with pembrolizumab in first-line advanced non-small-cell lung cancer.Ann. Oncol.202132339540310.1016/j.annonc.2020.11.02033276076
    [Google Scholar]
  34. XiaoW. HuangH. ZhengP. LiuY. ChenY. ChenJ. ZhengX. ChenL. JiangJ. The CXCL10/CXCR3 pathway contributes to the synergy of thermal ablation and PD-1 blockade therapy against tumors.Cancers2023155142710.3390/cancers1505142736900218
    [Google Scholar]
  35. HongS. KangN. KimO. HongS.A. ParkJ. KimJ. LeeM.A. KangJ. EGFR-tyrosine kinase inhibitors induced activation of the autocrine CXCL10/CXCR3 pathway through crosstalk between the tumor and the microenvironment in EGFR-mutant lung cancer.Cancers202215112410.3390/cancers1501012436612121
    [Google Scholar]
  36. TibbsE. CaoX. Emerging canonical and non-canonical roles of granzyme B in health and disease.Cancers2022146143610.3390/cancers1406143635326588
    [Google Scholar]
  37. Krepela KrepelaE. Granzyme B-induced apoptosis in cancer cells and its regulation (Review).Int. J. Oncol.20103761361137810.3892/ijo_0000078821042704
    [Google Scholar]
  38. HurkmansD.P. BasakE.A. SchepersN. Oomen-De HoopE. Van der LeestC.H. El BouazzaouiS. BinsS. KoolenS.L.W. SleijferS. Van der VeldtA.A.M. DebetsR. Van SchaikR.H.N. AertsJ.G.J.V. MathijssenR.H.J. Granzyme B is correlated with clinical outcome after PD-1 blockade in patients with stage IV non-small-cell lung cancer.J. Immunother. Cancer202081e00058610.1136/jitc‑2020‑00058632461348
    [Google Scholar]
  39. ChamphekarA. HeymansR. SacoJ. Turon FontG. GonzalezC. GaoA. PhamJ. LeeJ. MaryoungR. MedinaE. CampbellK.M. KarinD. AustinD. DamioseauxR. RibasA. ERK mediates interferon gamma-induced melanoma cell death.Mol. Cancer202322116510.1186/s12943‑023‑01868‑x37803324
    [Google Scholar]
  40. SongM. PingY. ZhangK. YangL. LiF. ZhangC. ChengS. YueD. MaimelaN.R. QuJ. LiuS. SunT. LiZ. XiaJ. ZhangB. WangL. ZhangY. Low-dose IFNγ induces tumor cell stemness in tumor microenvironment of non-small cell lung cancer.Cancer Res.201979143737374810.1158/0008‑5472.CAN‑19‑059631085700
    [Google Scholar]
  41. CaseyS.C. BaylotV. FelsherD.W. The MYC oncogene is a global regulator of the immune response.Blood2018131182007201510.1182/blood‑2017‑11‑74257729514782
    [Google Scholar]
  42. IrelandA.S. MicinskiA.M. KastnerD.W. GuoB. WaitS.J. SpainhowerK.B. ConleyC.C. ChenO.S. GuthrieM.R. SolteroD. QiaoY. HuangX. TarapcsákS. DevarakondaS. ChalishazarM.D. GertzJ. MoserJ.C. MarthG. PuriS. WittB.L. SpikeB.T. OliverT.G. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate.Cancer Cell20203816078.e1210.1016/j.ccell.2020.05.00132473656
    [Google Scholar]
  43. Soto-HerederoG. Gómez de las HerasM.M. Gabandé-RodríguezE. OllerJ. MittelbrunnM. Glycolysis - a key player in the inflammatory response.FEBS J.2020287163350336910.1111/febs.1532732255251
    [Google Scholar]
  44. CasconeT. McKenzieJ.A. MbofungR.M. PuntS. WangZ. XuC. WilliamsL.J. WangZ. BristowC.A. CarugoA. PeoplesM.D. LiL. KarpinetsT. HuangL. MaluS. CreasyC. LeaheyS.E. ChenJ. ChenY. PelicanoH. BernatchezC. GopalY.N.V. HeffernanT.P. HuJ. WangJ. AmariaR.N. GarrawayL.A. HuangP. YangP. WistubaI.I. WoodmanS.E. RoszikJ. DavisR.E. DaviesM.A. HeymachJ.V. HwuP. PengW. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy.Cell Metab.2018275977987.e410.1016/j.cmet.2018.02.02429628419
    [Google Scholar]
  45. WangH. WangX. XuL. ZhangJ. CaoH. Integrated analysis of the E2F transcription factors across cancer types.Oncol. Rep.20204341133114610.3892/or.2020.750432323836
    [Google Scholar]
  46. SunC.C. ZhouQ. HuW. LiS.J. ZhangF. ChenZ.L. LiG. BiZ.Y. BiY.Y. GongF.Y. BoT. YuanZ.P. HuW.D. ZhanB.T. ZhangQ. TangQ.Z. LiD.J. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma.Aging201810597398710.18632/aging.10144129754146
    [Google Scholar]
  47. ZhangH. SunL. HuX. Mast cells resting-related prognostic signature in hepatocellular carcinoma.J. Oncol.202120211910.1155/2021/461425734840569
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673293174240320053546
Loading
/content/journals/cmc/10.2174/0109298673293174240320053546
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test