Skip to content
2000
Volume 31, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

To facilitate drug discovery and development for the treatment of osteoporosis.

Background

With global aging, osteoporosis has become a common problem threatening the health of the elderly. It is of important clinical value to explore new targets for drug intervention and develop promising drugs for the treatment of osteoporosis.

Objective

To understand the major molecules that mediate the communication between the cell populations of bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteoporosis and osteoarthritis patients and identify potential reusable drugs for the treatment of osteoporosis.

Methods

Single-cell RNA sequencing (scRNA-seq) data of BM-MSCs in GSE147287 dataset were classified using the Seurat package. CellChat was devoted to analyzing the ligand-receptor pairs (LR pairs) contributing to the communication between BM-MSCs subsets. The LR pairs that were differentially expressed between osteoporosis samples and control samples and significantly correlated with immune score were screened in the GSE35959 dataset, and the differentially expressed gene in both GSE35959 and GSE13850 data sets were identified as targets from a single ligand or receptor. The therapeutic drugs for osteoporosis were screened by network proximity method, and the top-ranked drugs were selected for molecular docking and molecular dynamics simulation with the target targets.

Results

Twelve subsets of BM-MSCs were identified, of which CD45-BM-MSCS_4, CD45-BM-MSCS_5, and CD45+ BM-MSCs_5 subsets showed significantly different distributions between osteoporosis samples and osteoarthritis samples. Six LR pairs were identified in the bidirectional communication between these three BM-MSCs subsets and other BM-MSCs subsets. Among them, MIF-CD74 and ITGB2-ICAM2 were significantly correlated with the immune score. CD74 was identified as the target, and a total of 48 drugs targeting CD47 protein were identified. Among them, DB01940 had the lowest free energy binding score with CD74 protein and the binding state was very stable.

Conclusion

This study provided a new network-based framework for drug reuse and identified initial insights into therapeutic agents targeting CD74 in osteoporosis, which may be meaningful for promoting the development of osteoporosis treatment.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673291526240322081017
2024-03-28
2025-01-20
Loading full text...

Full text loading...

References

  1. LookerA.C. Sarafrazi IsfahaniN. FanB. ShepherdJ.A. Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014.Osteoporos. Int.20172861979198810.1007/s00198‑017‑3996‑128315954
    [Google Scholar]
  2. Andreo-LópezM.C. Contreras-BolívarV. García-FontanaB. García-FontanaC. Muñoz-TorresM. The influence of the mediterranean dietary pattern on osteoporosis and sarcopenia.Nutrients20231514322410.3390/nu1514322437513646
    [Google Scholar]
  3. RahimF. Zaki ZadehA. JavanmardiP. Emmanuel KomolafeT. KhalafiM. ArjomandiA. GhofraniH.A. ShirbandiK. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study.Biomed. Eng. Online20232216810.1186/s12938‑023‑01132‑937430259
    [Google Scholar]
  4. NohJ.Y. YangY. JungH. Molecular mechanisms and emerging therapeutics for osteoporosis.Int. J. Mol. Sci.20202120762310.3390/ijms2120762333076329
    [Google Scholar]
  5. ReidI.R. BillingtonE.O. Drug therapy for osteoporosis in older adults.Lancet2022399103291080109210.1016/S0140‑6736(21)02646‑535279261
    [Google Scholar]
  6. Black, DM.; Rosen, CJ.; Clinical Practice. Postmenopausal Osteoporosis. N. Engl. J. Med., 2016, 21;374(3), 254-62.10.1056/NEJMcp151372426789873
  7. ClynesM.A. HarveyN.C. CurtisE.M. FuggleN.R. DennisonE.M. CooperC. The epidemiology of osteoporosis.Br. Med. Bull.2020133110511732282039
    [Google Scholar]
  8. Aibar-AlmazánA. Voltes-MartínezA. Castellote-CaballeroY. Afanador-RestrepoD.F. Carcelén-FraileM.C. López-RuizE. Current status of the diagnosis and management of osteoporosis.Int. J. Mol. Sci.20222316946510.3390/ijms2316946536012730
    [Google Scholar]
  9. FoesslI. DimaiH.P. Obermayer-PietschB. Long-term and sequential treatment for osteoporosis.Nat. Rev. Endocrinol.202319952053310.1038/s41574‑023‑00866‑937464088
    [Google Scholar]
  10. DayanandanA.P. ChoW.J. KangH. BelloA.B. KimB.J. AraiY. LeeS.H. Emerging nano-scale delivery systems for the treatment of osteoporosis.Biomater. Res.20232716810.1186/s40824‑023‑00413‑737443121
    [Google Scholar]
  11. SaxenaY. RouthS. MukhopadhayaA. Immunoporosis: Role of innate immune cells in osteoporosis.Front. Immunol.20211268703710.3389/fimmu.2021.68703734421899
    [Google Scholar]
  12. GuneyE. MencheJ. VidalM. BarábasiA.L. Network-based in silico drug efficacy screening.Nat. Commun.2016711033110.1038/ncomms1033126831545
    [Google Scholar]
  13. GuX.Y. HuoJ-L. YuZ-Y. JiangJ-C. XuY-X. ZhaoL-J. Immunotherapy in hepatocellular carcinoma: An overview of immune checkpoint inhibitors, drug resistance, and adverse effects.Oncologie202426192510.1515/oncologie‑2023‑0412
    [Google Scholar]
  14. SiegelinM.D. SchneiderE. WesthoffM.A. WirtzC.R. Karpel-MasslerG. Current state and future perspective of drug repurposing in malignant glioma.Semin. Cancer Biol.2021689210410.1016/j.semcancer.2019.10.01831734137
    [Google Scholar]
  15. KimK.J. MoonS.J. ParkK.S. TagkopoulosI. Network-based modeling of drug effects on disease module in systemic sclerosis.Sci. Rep.20201011339310.1038/s41598‑020‑70280‑y32770109
    [Google Scholar]
  16. LiS. LuC. ZhaoZ. LuD. ZhengG. Uncovering neuroinflammation-related modules and potential repurposing drugs for Alzheimer’s disease through multi-omics data integrative analysis.Front. Aging Neurosci.202315116140510.3389/fnagi.2023.116140537333458
    [Google Scholar]
  17. ShahiniE. PasculliG. MastropietroA. StolfiP. TieriP. VergniD. CozzolongoR. PesceF. GiannelliG. Network proximity-based drug repurposing strategy for early and late stages of primary biliary cholangitis.Biomedicines2022107169410.3390/biomedicines1007169435884999
    [Google Scholar]
  18. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.409629608179
    [Google Scholar]
  19. LaurensV.D.M. HintonG. Visualizing Data using t-SNE.J. Mach. Learn. Res.20089260525792605
    [Google Scholar]
  20. JinS. Guerrero-JuarezC.F. ZhangL. ChangI. RamosR. KuanC.H. MyungP. PlikusM.V. NieQ. Inference and analysis of cell-cell communication using CellChat.Nat. Commun.2021121108810.1038/s41467‑021‑21246‑933597522
    [Google Scholar]
  21. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  22. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  23. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  24. JiménezJ. DoerrS. Martínez-RosellG. RoseA.S. De FabritiisG. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks.Bioinformatics201733193036304210.1093/bioinformatics/btx35028575181
    [Google Scholar]
  25. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  26. BaiR.J. LiY.S. ZhangF.J. Osteopontin, a bridge links osteoarthritis and osteoporosis.Front. Endocrinol. (Lausanne)202213101250810.3389/fendo.2022.101250836387862
    [Google Scholar]
  27. XuJ. YuL. LiuF. WanL. DengZ. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review.Front. Immunol.202314122212910.3389/fimmu.2023.122212937475866
    [Google Scholar]
  28. JiangY. ZhangP. ZhangX. LvL. ZhouY. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis.Cell Prolif.2021541e1295610.1111/cpr.1295633210341
    [Google Scholar]
  29. HuL. YinC. ZhaoF. AliA. MaJ. QianA. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment.Int. J. Mol. Sci.201819236010.3390/ijms1902036029370110
    [Google Scholar]
  30. MaT. SuG. WuQ. ShenM. FengX. ZhangZ. Mesenchymal stem cell exosomes: A promising delivery system for glioma therapy.Oncologie20240010.1515/oncologie‑2023‑0482
    [Google Scholar]
  31. BozzaM.T. LintomenL. KitokoJ.Z. PaivaC.N. OlsenP.C. The role of MIF on eosinophil biology and eosinophilic inflammation.Clin. Rev. Allergy Immunol.2020581152410.1007/s12016‑019‑08726‑z30680604
    [Google Scholar]
  32. MunS.H. WonH.Y. HernandezP. AguilaH.L. LeeS.K. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass.J. Bone Miner. Res.201328494895910.1002/jbmr.178723044992
    [Google Scholar]
  33. GuR. SantosL.L. NgoD. FanH. SinghP.P. Fingerle-RowsonG. BucalaR. XuJ. QuinnJ.M.W. MorandE.F. Macrophage migration inhibitory factor is essential for osteoclastogenic mechanisms in vitro and in vivo mouse model of arthritis.Cytokine201572213514510.1016/j.cyto.2014.11.01525647268
    [Google Scholar]
  34. Becker-HermanS. RozenbergM. Hillel-KarnielC. Gil-YaromN. KramerM.P. BarakA. SeverL. DavidK. RadomirL. LewinskyH. LeviM. FriedlanderG. BucalaR. PeledA. ShacharI. CD74 is a regulator of hematopoietic stem cell maintenance.PLoS Biol.2021193e300112110.1371/journal.pbio.300112133661886
    [Google Scholar]
  35. HopwoodB. TsykinA. FindlayD.M. FazzalariN.L. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling.Arthritis Res. Ther.200795R10010.1186/ar230117900349
    [Google Scholar]
  36. LöfdahlE. AhmedS. AhmedA. RådegranG. Plasma biomarkers for clinical assessment of bone mineral density in heart transplanted patients-a single-center study at skåne university hospital in lund.Transpl. Int.2022351016110.3389/ti.2022.1016136148003
    [Google Scholar]
  37. LiX. AkiyamaM. NakahamaK. KoshiishiT. TakedaS. MoritaI. Role of intercellular adhesion molecule-2 in osteoclastogenesis.Genes Cells201217756857510.1111/j.1365‑2443.2012.01608.x22646472
    [Google Scholar]
  38. ZhangZ. ZhouL. XieN. NiceE.C. ZhangT. CuiY. HuangC. Overcoming cancer therapeutic bottleneck by drug repurposing.Signal Transduct. Target. Ther.20205111310.1038/s41392‑020‑00213‑832616710
    [Google Scholar]
  39. LiM. WeiJ. XuG. LiuY. ZhuJ. Surgery combined with molecular targeted therapy successfully treated giant esophageal gastrointestinal stromal tumor.Oncologie202224234935610.32604/oncologie.2022.022436
    [Google Scholar]
  40. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z37100941
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673291526240322081017
Loading
/content/journals/cmc/10.2174/0109298673291526240322081017
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): BM-MSCs; drug reuse; molecular docking; network proximity; Osteoporosis; therapeutic target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test